Skip to main content

Spectrum of a Pot for DNA Complexes

  • Conference paper
DNA Computing (DNA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4287))

Included in the following conference series:

Abstract

Given a set of flexible branched junction DNA molecules (building blocks) with sticky ends we consider the question of determining the proper stoichiometry such that all sticky ends could end up connected. The idea is to determine the proper proportion (spectrum) of each type of molecules present, which in general is not uniform. We classify the pot in three classes: weakly satisfiable, satisfiable and strongly satisfiable according to possible components that assemble in complete complexes. This classification is characterized through the spectrum of the pot, which can be computed in PTIME using the standard Gauss-Jordan elimination method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., de Espanes, P.M., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: STOC 2002 Proceedings, Montreal Quebec, Canada (2002)

    Google Scholar 

  2. Adleman, L.M., Kari, J., Kari, L., Reishus, D.: On the decidability of self-assembly of infinite ribons. In: Proceedings of FOCS 2002, IEEE Symposium on Foundations of Computer Science, Washington, pp. 530–537 (2002)

    Google Scholar 

  3. Chen, J.H., Seeman, N.C.: Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350 (1991)

    Google Scholar 

  4. Goodman, R.P., Schaap, I.A.T., Tardin, C.F., Erben, C.M., Berry, R.M., Schmidt, C.F., Turberfield, A.J.: Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication. Science 310 (2005)

    Google Scholar 

  5. Jonoska, N., Karl, S., Saito, M.: Three dimensional DNA structures in computing. BioSystems 52, 143–153 (1999)

    Article  Google Scholar 

  6. Jonoska, N., Sa-Ardyen, P., Seeman, N.C.: Computation by self-assembly of DNA graphs. Genetic Programming and Evolvable Machines 4, 123–137 (2003)

    Article  Google Scholar 

  7. Jonoska, N., McColm, G.L., Staninska, A.: Expectation and Variance of Self-assembled Graph Structures. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 144–157. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Jonoska, N., McColm, G.L.: A Computational Model for Self-assembling Flexible Tiles. In: Calude, C.S., et al. (eds.) UC 2005. LNCS, vol. 3699, pp. 142–156. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Kao, M.-Y., Ramachandran, V.: DNA Self-Assembly For Constructing 3D Boxes. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 429–440. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Kurtz, S.A., Mahaney, S.R., Royer, J.S., Simon, J.: Active transport in biological computing. In: Landweber, L., Baum, E. (eds.) DIMACS, vol. 44, pp. 171–181 (1997)

    Google Scholar 

  11. Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA holliday junction arrays visualized by atomic force microscopy. Journal of American Chemical Society 121(23), 5437–5443 (1999)

    Article  Google Scholar 

  12. Qi, J., Li, X., Yang, X., Seeman, N.C.: Ligation of triangles built from bulged 3-arm DNA branched junctions. Journal of American Chemical Society 120, 6121–6130 (1996)

    Article  Google Scholar 

  13. Reif, J.H., Sahu, S., Yin, P.: A Self-assembly Model of Time-Dependent Glue Strength. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 290–304. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Rothemund, P.W.K., Papadakis, P., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoD Biology 2(12), e424 (2004)

    Article  Google Scholar 

  15. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: Proceedings of 33rd ACM meeting STOC 2001, Portland, Oregon, May 21-23, pp. 459–468 (2001)

    Google Scholar 

  16. Sa-Ardyen, P., Jonoska, N., Seeman, N.C.: Self-assembly of graphs represented by DNA helix axis topology. Journal of American Chemical Society 126(21), 6648–6657 (2004)

    Article  Google Scholar 

  17. Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single stranded DNA folds into a nanoscale octahedron. Nature 427, 618–621 (2004)

    Article  Google Scholar 

  18. Zhang, Y., Seeman, N.C.: The construction of a DNA truncated octahedron. Journal of American Chemical Society 116(5), 1661–1669 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jonoska, N., McColm, G.L., Staninska, A. (2006). Spectrum of a Pot for DNA Complexes. In: Mao, C., Yokomori, T. (eds) DNA Computing. DNA 2006. Lecture Notes in Computer Science, vol 4287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925903_7

Download citation

  • DOI: https://doi.org/10.1007/11925903_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49024-1

  • Online ISBN: 978-3-540-68423-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics