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Abstract. At Eurocrypt 2005, Waters presented an identity based en-
cryption (IBE) protocol which is secure in the full model without random
oracle. In this paper, we extend Waters’ IBE protocol to a hierarchical
IBE (HIBE) protocol which is secure in the full model without random
oracle. The only previous construction in the same setting is due to
Waters. Our construction improves upon Waters’ HIBE by significantly
reducing the number of public parameters.

1 Introduction

The concept of identity based encryption (IBE) was introduced by Shamir in
1984 [17]. An IBE is a type of public key encryption where the public key can
be any binary string. The corresponding secret key is generated by a private
key generator (PKG) and provided to the legitimate user. The notion of IBE
simplifies several applications of public key cryptography. The first efficient im-
plementation and an appropriate security model for IBE was provided by Boneh
and Franklin [5].

The PKG issues a private key associated with an identity. The notion of
hierarchical identity based encryption (HIBE) was introduced in [14,13] to reduce
the workload of the PKG. An entity in a HIBE structure has an identity which
is a tuple (v1, . . . , vj). The private key corresponding to such an identity can
be generated by the entity whose identity is (v1, . . . , vj−1) and which possesses
the private key corresponding to his identity. The security model for IBE was
extended to that of HIBE in [14,13].

The construction of IBE in [5] and of HIBE in [13], was proved to be secure in
appropriate models using the random oracle heuristic, i.e., the protocols make
use of cryptographic hash functions that are modeled as random oracle in the
security proof. The first construction of an IBE which can be proved to be secure
in the full model without the random oracle heuristic was given by Boneh and
Boyen in [3]. Later, Waters [19] presented an efficient construction of an IBE
which is secure in the same setting.

An important construction of a HIBE is given by Boneh-Boyen [2]. This paper
describes a general framework for constructing a HIBE. For an h-level HIBE,
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the idea in [2] is to use h functions ψ1, . . . , ψh, where ψi is viewed as a hash
function which maps the ith component of the identity tuple to an appropriate
group element. This framework is instantiated in [2] to obtain a HIBE protocol
which can be proved secure in weaker model called the selective-ID (sID) model.

The construction by Waters in [19] can be viewed as another instantiation
of a 1-level BB-framework [2]. Identities are considered to be n-bit strings. The
construction uses group elements U ′, U1, . . . , Un (and P, P1, P2) as public pa-
rameters. A natural extension of this construction to an h-level HIBE is given
in [19]. In this extension, for an h-level HIBE, the public parameters will be of
the form U ′

1, U1,1, . . . , U1,n, U ′
2, U2,1, . . . , U2,n, . . ., U ′

h, Uh,1, . . . , Uh,n. One still
requires the parameters P, P1, P2, giving rise to 3 + (n+ 1)h many parameters.

Our Contributions: We present a HIBE which can be proved to be secure
in the full model assuming the decisional bilinear Diffie-Hellman problem to be
hard without using the random oracle heuristic. Our construction can also be
viewed as another instantiation of the BB-framework [2]. The public parameters
for an h-level HIBE are of the form U ′

1, . . . , U
′
h, U1, . . . , Un. In other words, the

parameters U ′
1, . . . , U

′
h correspond to the different levels of the HIBE, whereas

the parameters U1, . . . , Un are the same for all the levels. These parameters
U1, . . . , Un are reused in the key generation procedure. We require 3 + n + h
parameters compared to 3 + (n+ 1)h parameters in Waters’ HIBE.

The reuse of public parameters over the different levels of the HIBE compli-
cates the security proof. A straightforward extension of the independence results
and lower bound proofs from [19] is not possible. We provide complete proofs of
the required results. The constructed HIBE is proved to be secure under chosen
plaintext attack (called CPA-secure). Standard techniques [8,6] can convert such
a HIBE into one which is secure against chosen ciphertext attack (CCA-secure).

Related Work: The first construction of HIBE which is secure in the full model
is due to Gentry and Silverberg [13]. The security proof depends on the random
oracle heuristic. HIBE constructions which can be proved secure without random
oracle are known [2,4]. However, these are secure in the weaker selective-ID model.
A generic transformation converts a selective-ID secure HIBE to a HIBE secure in
the full model. Unfortunately, this results in an unacceptable degradation in the
security bound. It is also possible to convert it into a HIBE secure in the full model
under the random oracle hypothesis. As mentioned earlier, Waters [19] HIBE is
the only previous indication of directly obtaining a HIBE which is secure in the full
model without random oracle. In Table 1 of Section 4, we provide a comparison
of our construction with the previous constructions.

An extension of Waters’ IBE was independently done by Chatterjee-Sarkar [9]
and Naccache [16]. In this extension, the n-bit identities of Waters’ IBE are
replaced by l strings of length n/l bits each. This reduces the number of public
parameters from 3+n in Waters’ IBE to 3+ l. The trade-off is a further security
degradation by a factor of approximately 2n/l. This can be translated into a
trade-off between the size of the public parameters and the efficiency of the
protocol (see [9]). The CSN idea of extending Waters’ IBE can also be applied
to the HIBE we describe.
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2 Definitions

In this section, we describe HIBE, security model for HIBE, cryptographic bi-
linear map and the hardness assumption that will be required in the proof.

2.1 HIBE Protocol

Following [14,13] a HIBE scheme is specified by four probabilistic algorithms:
Setup, Key Generation, Encryption and Decryption. Note that, for a HIBE of
height h (henceforth denoted as h-HIBE) any identity v is a tuple (v1, . . . , vj)
where 1 ≤ j ≤ h.

Setup: It takes as input a security parameter and returns the system parameters
together with the master key. The system parameters include the public param-
eters of the PKG, a description of the message space, the ciphertext space and
the identity space. These are publicly known while the master key is known only
to the PKG.

Each of the algorithms below (Key Generation, Encryption and Decryption)
have the system public parameters as an input. We do not mention this explicitly.

Key Generation: It takes as input an identity v = (v1, . . . , vj), the public pa-
rameters of the PKG and the private key dv|(j−1) corresponding to the identity
(v1, . . . , vj−1) and returns a private key dv for v. The identity v is used as the
public key while dv is the corresponding private key. If j = 1, then the private
key is generated by the PKG. It is not difficult to see that any entity which
possesses a private key for a prefix of v can generate a private key for v.

Encryption: It takes as input the identity v, the public parameters of the PKG
and a message from the message space and produces a ciphertext in the cipher-
text space.

Decryption: It takes as input the ciphertext and the private key of the cor-
responding identity v and returns the message or bad if the ciphertext is not
valid.

2.2 Security Model for HIBE

Security is defined using an adversarial game. An adversaryA is allowed to query
two oracles – a decryption oracle and a key-extraction oracle. At the initiation,
it is provided with the public parameters of the PKG. The game has two query
phases with a challenge phase in between.

Query Phase 1: Adversary A makes a finite number of queries where each query
is addressed either to the decryption oracle or to the key-extraction oracle. In
a query to the decryption oracle it provides a ciphertext as well as the identity
under which it wants the decryption. It gets back the corresponding message or
bad if the ciphertext is invalid. Similarly, in a query to the key-extraction oracle,
it asks for the private key of the identity it provides and gets back this private
key. Further, A is allowed to make these queries adaptively, i.e., any query may
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depend on the previous queries as well as their answers. The adversary is not
allowed to make any useless queries, i.e., queries for which it can compute the
answer itself. For example, the adversary is not allowed to ask for the decryp-
tion of a message under an identity if it has already obtained a private key
corresponding to the identity.

Challenge: At this stage, A outputs an identity v∗ = (v∗1 , . . . , v∗j ) for 1 ≤ j ≤ h,
and a pair of messages M0 and M1. There is the natural restriction on the
adversary, that it cannot query the key extraction oracle on v∗ or any of its
proper prefixes in either of the phases 1 or 2. A random bit b is chosen and the
adversary is provided with C∗ which is an encryption of Mb under v∗.

Query Phase 2: A now issues additional queries just like Phase 1, with the
(obvious) restrictions that it cannot ask the decryption oracle for the decryption
of C∗ under v∗, nor the key-extraction oracle for the private key v∗ or any of its
prefix.

Guess: A outputs a guess b′ of b.
The advantage of the adversary A is defined as:

AdvHIBE
A = |Pr[(b = b′)] − 1/2|.

The quantity AdvHIBE(t, qID, qC) denotes the maximum of AdvHIBE
A where the max-

imum is taken over all adversaries running in time at most t and making at
most qC queries to the decryption oracle and at most qID queries to the key-
extraction oracle. A HIBE protocol is said to be (ε, t, qID, qC)-CCA secure if
AdvHIBE(t, qID, qC) ≤ ε.

In the above game, we can restrict the adversary A from querying the de-
cryption oracle. AdvHIBE(t, q) in this context denotes the maximum advantage
where the maximum is taken over all adversaries running in time at most t and
making at most q queries to the key-extraction oracle. A HIBE protocol is said
to be (t, q, ε)-CPA secure if AdvHIBE(t, q) ≤ ε.

As mentioned earlier there are generic techniques [8,6] for converting a CPA-
secure HIBE into a CCA-secure HIBE. In view of these techniques, we will
concentrate only on CPA-secure HIBE.

2.3 Cryptographic Bilinear Map

Let G1 and G2 be cyclic groups having the same prime order p and G1 = 〈P 〉,
where we write G1 additively and G2 multiplicatively. A mapping e : G1×G1 →
G2 is called a cryptographic bilinear map if it satisfies the following properties.

– Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and a, b ∈ ZZp.
– Non-degeneracy: If G1 = 〈P 〉, then G2 = 〈e(P, P )〉.
– Computability: There exists an efficient algorithm to compute e(P,Q) for all
P,Q ∈ G1.

Since e(aP, bP ) = e(P, P )ab = e(bP, aP ), e() also satisfies the symmetry prop-
erty. The modified Weil pairing [5] and the modified Tate pairing [1,11] are
examples of cryptographic bilinear maps.
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Note: Known examples of e() haveG1 to be a group of Elliptic Curve (EC) points
and G2 to be a subgroup of a multiplicative group of a finite field. Hence, in
papers on pairing implementations [1,11], it is customary to write G1 additively
and G2 multiplicatively. On the other hand, some “pure” protocol papers [2,3,19]
write both G1 and G2 multiplicatively though this is not true for the initial
protocol papers [15,5]. Here we follow the first convention as it is closer to the
known examples of cryptographic bilinear map.

The decisional bilinear Diffie-Hellman (DBDH) problem in 〈G1, G2, e〉 [5] is
as follows: Given a tuple 〈P, aP, bP, cP, Z〉, where Z ∈ G2, decide whether Z =
e(P, P )abc (which we denote as Z is real) or Z is random.

The advantage of a probabilistic algorithm B, which takes as input a tuple
〈P, aP, bP, cP, Z〉 and outputs a bit, in solving the DBDH problem is defined as

AdvDBDH
B = |Pr[B(P, aP, bP, cP, Z) = 1|Z is real]

−Pr[B(P, aP, bP, cP, Z) = 1| Z is random]|
where the probability is calculated over the random choices of a, b, c ∈ ZZp as well
as the random bits used by B. The quantity AdvDBDH(t) denotes the maximum
of AdvDBDH

B where the maximum is taken over all adversaries B running in time
at most t. By the (ε, t)-DBDH assumption we mean AdvDBDH(t) ≤ ε.

3 HIBE Construction

The IBE scheme proposed in [19] has some similarities with the 1-level (H)IBE
scheme of Boneh-Boyen [2]. Waters in his paper [19], utilized this similarity to
build a HIBE in an obvious manner, i.e., for each level we have to generate new
parameters. This makes the public parameters quite large – for a HIBE of height
h with n-bit identities, the number of public parameters becomes n× h.

Here we present an alternative construction where the public parameters can
be significantly reduced. We show that for an h-HIBE it suffices to store (n+ h)
elements in the public parameter.

The identities are of the type (v1, . . . , vj), for j ∈ {1, . . . , h} where each vk =
(vk,1, . . . , vk,n), vk,j ∈ {0, 1} for 1 ≤ j ≤ n.

Let G1 and G2 be cyclic groups having the same prime order p. We use a
cryptographic bilinear map e : G1 ×G1 → G2 the definition of which is given in
Section 2.3. The message space is G2.

Set-Up: The protocol is built from groups G1, G2 and a bilinear map e as men-
tioned above. The public parameters are the following elements: P , P1 = αP ,
P2, U ′

1, . . . , U
′
h, U1, . . . , Un, where G1 = 〈P 〉, α is chosen randomly from ZZp

and the other quantities are chosen randomly from G1. The master secret is
αP2. (The quantities P1 and P2 are not directly required; instead e(P1, P2) is
required. Hence one may store e(P1, P2) as part of the public parameters instead
of P1 and P2.)

Note that for the jth level of the HIBE, we add a single element, i.e., U ′
j in

the public parameter while the elements U1, . . . , Un are re-used for each level.
This way we are able to shorten the public parameter size.
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A shorthand: Let v = (v1, . . . , vn), where each vi is a bit. For 1 ≤ k ≤ h we
define,

Vk(v) = U ′
k +

n∑

i=1

viUi. (1)

When v is clear from the context we will write Vk instead of Vk(v). The modu-
larity introduced by this notation allows an easier understanding of the protocol.

Key Generation: Let v = (v1, . . . , vj), j ≤ h, be the identity for which the
private key is required. The private key dv for v is defined to be a tuple dv =
(d0, d1, . . . , dj) where

d0 = αP2 +
j∑

k=1

rkVk(vk); and dk = rkP for 1 ≤ k ≤ j.

Here r1, . . . , rj are random elements from ZZp.
Such a key can be generated by an entity which possesses a private key for

the tuple (v1, . . . , vj−1) in the manner shown in [2]. Suppose (d′0, d
′
1, . . . , d

′
j−1) is

a private key for the identity (v1, . . . , vj−1). To generate a private key for v, first
choose a random rj ∈ ZZp and compute dv = (d0, d1, . . . , dj) as follows.

d0 = d′0 + rjVj(vj); di = d′i for 1 ≤ i ≤ j − 1; and dj = rjP.

In fact, any prefix of v as well as the PKG can generate a private key dv for v.

Encryption: Let v = (v1, . . . , vj) be the identity under which a message M ∈ G2

is to be encrypted. Choose t to be a random element of ZZp. The ciphertext is

(C0 = M × e(P1, P2)t, C1 = tP,B1 = tV1(v1), . . . , Bj = tVj(vj)).

Decryption: Let C = (C0, C1, B1, . . . , Bj) be a ciphertext and the corresponding
identity v = (v1, . . . , vj). Let (d0, d1, . . . , dj) be the decryption key corresponding
to the identity v. The decryption steps are as follows.

Verify whether C0 is in G2, C1 and the Bi’s are in G1. If any of these ver-
ifications fail, then return bad, else proceed with further decryption as follows.
Compute V1(v1), . . . , Vj(vj). Return

C0 ×
∏j

k=1 e(Bi, di)
e(d0, C1)

.

It is standard to verify the consistency of decryption.

Chatterjee-Sarkar-Naccache Extension: Following [9,16], let l be a size parameter
which divides n. An identity is a tuple (v1, . . . , vj), j ≤ h, where each vk, 1 ≤
k ≤ j is represented as vk = (vk,1, . . . , vk,l) where vk,i is an (n/l)-bit string
considered to be an element of ZZ2n/l .
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The public parameters are P,P1, P2, U1, . . . , Ul and U ′
1, . . . , U

′
h. In this case,

we change the definition of Vk() to the following: Vk(v) = U ′
k +

∑l
i=1 viUi where

each vi is a bit string of length n/l. Using this modified definition of Vk() for
1 ≤ k ≤ h, the key generation, encryption and decryption algorithms of the HIBE
described above can be extended to the Chatterjee-Sarkar-Naccache settings.

4 Security

In this section, we state the result on security and discuss its implications. The
proof is given in Section 5.

Theorem 1. The HIBE protocol described in Section 3 is (εhibe, t, q)-CPA se-
cure assuming that the (t′, εdbdh)-DBDH assumption holds in 〈G1, G2, e〉, where
εhibe ≤ 2εdbdh/λ; t′ = t+ χ(εhibe) and

χ(ε) = O(τq +O(ε−2 ln(ε−1)λ−1 ln(λ−1));
τ is the time required for one scalar multiplication in G1;
λ = 1/(2(4q(n+ 1))h).

We further assume 4q(n+ 1) < p.

The last assumption is practical and similar assumptions are alsomade in [19,9,16],
though not quite so explicitly. Before proceeding to the proof, we discuss the above
result. The main point of the theorem is the bound on εhibe. This is given in terms
of λ and in turn in terms of q, n and h.

The reduction is not tight; security degrades by a factor of 4(4q(n + 1))h.
The actual value of degradation depends on the value of q, the number of key
extraction queries made by the adversary. A value of q used in earlier analysis
is q = 230 [12].

h = 1: This implies that the HIBE is actually an IBE. This is the situation
originally considered by Waters [19] and εhibe ≤ 16q(n+ 1)εdbdh ≤ 32nqεdbdh.

h > 1: This corresponds to a proper HIBE and we obtain εhibe ≤ 4(4q(n +
1))hεdbdh ≤ 4(8nq)hεdbdh. For n = 160 (and q = 230), this amounts to εhibe ≤
4(10 × 237)hεdbdh.

In Table 1, we compare the known HIBE protocols which are secure in the full
model. We note that HIBE protocols which are secure in the selective-ID model
are also secure in the full model with a security degradation of ≈ 2nh, where h
is the number of levels in the HIBE and n is number of bits in the identity. This
degradation is far worse than the protocols in Table 1.

The BB-HIBE in Table 1 is obtained through a generic transformation (as
mentioned in [2]) of the selective-ID secure BB-HIBE to a HIBE secure in the full
model using random oracle. For the GS-HIBE [13] and BB-HIBE, the parameter
qH stands for the total number of random oracle queries and in general qH ≈
260 � q [12]. The parameter j in the private key size, ciphertext size and the
encryption and decryption columns of Table 1 represents the number of levels
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Table 1. Comparison of HIBE Protocols

Protocol Hardness Rnd. Sec. Pub. Para. sz Pvt. Key sz Cprtxt sz Pairing
Assump. Ora. Deg. (elts. of G1) (elts. of G1) (elts. of G1) Enc. Dec.

GS [13] BDH Yes qHqh 2 j j 1 j

BB [2] DBDH Yes qh
H h + 3 j + 1 j + 1 None j + 1

Waters [19] DBDH No 4(8nq)h (n + 1)h + 3 j + 1 j + 1 None j + 1

Our DBDH No 4(8nq)h h + n + 3 j + 1 j + 1 None j + 1

of the identity on which the operations are performed. The parameter h is the
maximum number of levels in the HIBE. The construction in this paper requires
(h + n + 3) many elements of G1 as public parameters whereas Waters HIBE
requires (n+1)h+3 many elements. The security degradation remains the same
in both cases.

5 Proof of Theorem 1

The security reduction follows along standard lines and develops on the proof
given in [19,9,16]. We need to lower bound the probability of the simulator
aborting on certain queries and in the challenge stage. The details of obtaining
this lower bound are given in Section 5.1. In the following proof, we simply use
the lower bound. We want to show that the HIBE is (εhibe, t, q)-CPA secure. In
the game sequence style of proofs, we start with the adversarial game defining
the CPA-security of the protocol against an adversary A and then obtain a
sequence of games as usual. In each of the games, the simulator chooses a bit δ
and the adversary makes a guess δ′. By Xi we will denote the event that the bit
δ is equal to the bit δ′ in the ith game.

Game 0: This is the usual adversarial game used in defining CPA-secure HIBE.
We assume that the adversary’s runtime is t and it makes q key extraction
queries. Also, we assume that the adversary maximizes the advantage among all
adversaries with similar resources. Thus, we have εhibe =

∣∣Pr[X0] − 1
2

∣∣ .

Game 1: In this game, we setup the protocol from a tuple 〈P, P1 = aP, P2 =
bP, P3 = cP, Z = e(P1, P2)abc〉 and answer key extraction queries and generate
the challenge. The simulator is assumed to know the values a, b and c. However,
the simulator can setup the protocol as well as answer certain private key queries
without the knowledge of these values. Also, for certain challenge identities it
can generate the challenge ciphertext without the knowledge of a, b and c. In the
following, we show how this can be done. If the simulator cannot answer a key
extraction query or generate a challenge without using the knowledge of a, b and
c, it sets a flag flg to one. The value of flg is initially set to zero.

Note that the simulator is always able to answer the adversary (with or with-
out using a, b and c). The adversary is provided with proper replies to all its
queries and is also provided the proper challenge ciphertext. Thus, irrespective
of whether flg is set to one, the adversary’s view in Game 1 is same as that in
Game 0. Hence, we have Pr[X0] = Pr[X1].
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We next show how to setup the protocol and answer the queries based on the
tuple 〈P, P1 = aP, P2 = bP, P3 = cP, Z = e(P1, P2)abc〉.

Set-Up: Let m be a prime such that 2q < m < 4q. Our choice of m is different
from that of previous works [19,9,16] where m was chosen to be equal to 4q and
2q.

Choose x′1, . . . , x
′
h and x1, . . . , xn randomly from ZZm; also choose y′1, . . . , y

′
h

and y1, . . . , yn randomly from ZZp. Choose k1, . . . , kh randomly from {0, . . . , n}.
For 1 ≤ j ≤ h, define U ′

j = (p−mkj + x′j)P2 + y′jP and for 1 ≤ i ≤ n define
Ui = xiP2 + yiP . The public parameters are (P, P1, P2, U

′
1, . . . , U

′
h, U1, . . . , Un).

The master secret is aP2 = abP . The distribution of the public parameters is
as expected by A. In its attack, A will make some queries, which have to be
properly answered by the simulator.

For 1 ≤ j ≤ h, we define several functions. Let v = (v1, . . . , vn) where each
vi ∈ {0, 1}. We define

Fj(v) = p−mkj + x′j +
∑n

i=1 xivi

Jj(v) = y′j +
∑n

i=1 yivi

Lj(v) = x′j +
∑n

i=1 xivi (mod m)

Kj(v) =
{

0 if Lj(v) = 0
1 otherwise.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2)

Recall that we have assumed 4q(n+1) < p. Let Fmin and Fmax be the minimum
and maximum values of Fj(v). Fmin is achieved when kj is maximum and x′j
and the xi’s are all zero. Thus, Fmin = p −mn. We have mn < 4q(n + 1) and
by assumption 4q(n + 1) < p. Hence, Fmin > 0. Again Fmax is achieved when
kj = 0 and x′j and the xi’s and vi’s are equal to their respective maximum
values. We get Fmax < p + m(n + 1) < p + 4q(n + 1) < 2p. Thus, we have
0 < Fmin ≤ Fj(v) ≤ Fmax < 2p. Consequently, Fj(v) ≡ 0 mod p if and only if
Fj(v) = p which holds if and only if −mkj + x′j +

∑n
i=1 xivi = 0.

Now we describe how the queries made by A are answered by B. The queries
can be made in both Phases 1 and 2 of the adversarial game (subject to the
usual restrictions). The manner in which they are answered by the simulator is
the same in both the phases.

Key Extraction Query: Suppose A makes a key extraction query on the identity
v = (v1, . . . , vj). Suppose there is a u with 1 ≤ u ≤ j such that Ku(vu) = 1.
Otherwise set flg to one. In the second case, the simulator uses the value of a to
return a proper private key dv = (aP2 +

∑j
i=1 riVi, r1V1, . . . , rjVj). In the first

case, the simulator constructs a private key in the following manner.
Choose random r1, . . . , rj from ZZp and define

d0|u = − Ju(vu)
Fu(vu)P1 + ru(Fu(vu)P2 + Ju(vu)P )

du = −1
Fu(vu)P1 + ruP

dk = rkP for k 
= u
dv = (d0|u +

∑
k∈{1,...,j}\{u} rkVk, d1, . . . , dj)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(3)
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The quantity dv is a proper private key corresponding to the identity v. The
algebraic verification of this fact is similar to that in [2,19]. This key is provided
to A.

Challenge: Let the challenge identity be v∗ = (v∗1 , . . . , v∗h∗), 1 ≤ h∗ ≤ h and the
messages be M0 and M1. Choose a random bit δ. We need to have Fk(v∗k) ≡
0 mod p for all 1 ≤ k ≤ h∗. If this condition does not hold, then set flg to one. In
the second case, the simulator uses the value of c to provide a proper encryption
of Mδ to A by computing (Mδ × e(P1, P2)c, cP, cV1, . . . , cVh∗). In the first case,
it constructs a proper encryption of Mδ in the following manner.

(M δ × Z,C1 = P3, B1 = J1(v∗1)P3, . . . , Bh∗ = Jh∗(v∗h∗)P3).

We require Bj to be equal to cVj(v∗j ) for 1 ≤ j ≤ h∗. Recall that the definition
of Vj(v) is Vj(v) = U ′

j +
∑n

k=1 vkUk. Using the definition of U ′
j and the Uk’s as

defined in the setup by the simulator, we obtain, cVi = c(Fi(v∗i )P2 + Ji(v∗i )P ) =
Ji(v∗i )cP = Ji(v∗i )P3. Here we use the fact, Fi(v∗i ) ≡ 0 mod p. Hence, the quan-
tities B1, . . . , Bh∗ are properly formed.

Guess: The adversary outputs a guess δ′ of δ.

Game 2: This is a modification of Game 1 whereby the Z in Game 1 is now
chosen to be a random element of G2. This Z is used to mask the message
Mδ in the challenge ciphertext. Since Z is random, the first component of the
challenge ciphertext is a random element of G2 and provides no information to
the adversary about δ. Thus, Pr[X2] = 1

2 .
We have the following claim.

Claim:
|Pr[X1] − Pr[X2]| ≤ εdbdh

λ
+
εhibe

2
.

Proof: The change from Game 1 to Game 2 corresponds to an “indistinguisha-
bility” step in Shoup’s tutorial [18] on such games. Usually, it is easy to bound
the probability difference. In this case, the situation is complicated by the fact
that there is a need to abort.

We show that it is possible to obtain an algorithm B for DBDH by extending
Games 1 and 2. The extension of both the games is same and is described as
follows. B takes as input a tuple (P, aP, bP, cP, Z) and sets up the HIBE protocol
as in Game 1 (The setup of Games 1 and 2 are the same). The key extraction
queries are answered and the challenge ciphertext is generated as in Game 1.
If at any point of time flg is set to one by the game, then B outputs a random
bit and aborts. This is because the query cannot be answered or the challenge
ciphertext cannot be generated using the input tuple. At the end of the game,
the adversary outputs the guess δ′. B now goes through a separate abort stage
as follows.
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“Artificial Abort”: The probability that B aborts in the query or challenge phases
depends on the adversary’s input. The goal of the artificial abort step is to make
the probability of abort independent of the adversary’s queries by ensuring that
in all cases its probability of abort is the maximum possible. This is done by sam-
pling the transcript of adversary’s query and in certain cases aborting. The sam-
pling procedure introduces the extra component O(ε−2

hibe ln(ε−1
hibe)λ

−1 ln(λ−1))
into the simulator’s runtime. (For details see [19,16].) Here λ is a lower bound
on the probability that B does not abort before entering the artificial abort stage.
The expression for λ is obtained in Proposition 3 of Section 5.1.

Output: If B has not aborted up to this stage, then it outputs 1 if δ = δ′; else 0.
Note that if Z is real, then the adversary is playing Game 1 and if Z is random,

then the adversary is playing Game 2. The time taken by the simulator in either
Game 1 or 2 is clearly t + χ(εhibe). From this point, standard inequalities and
probability calculations establish the claim. ��
Now we can complete the proof in the following manner.

εhibe =
∣∣∣∣Pr[X0] − 1

2

∣∣∣∣

≤ |Pr[X0] − Pr[X2]|
≤ |Pr[X0] − Pr[X1]| + |Pr[X1] − Pr[X2]|
≤ εhibe

2
+
εdbdh

λ
.

Rearranging the inequality gives the desired result. This completes the proof of
Theorem 1. ��
5.1 Lower Bound on Not Abort

We require the following two independence results in obtaining the required lower
bound. Similar independence results have been used in [19,9,16] in connection
with IBE protocols. The situation for HIBE is more complicated than IBE and
especially so since we reuse some of the public parameters over different levels
of the HIBE. This makes the proofs more difficult. Our independence results are
given in Proposition 1 and 2 and these subsume the results of previous work. We
provide complete proofs for these two propositions as well as a complete proof
for the lower bound. The probability calculation for the lower bound is also more
complicated compared to the IBE case.

Proposition 1. Let m be a prime and L(·) be as defined in (2). Let v1, . . . , vj

be identities, i.e., each vi = (vi,1, . . . , vi,n), is an n-bit string.Then

Pr

[
j∧

k=1

(Lk(vk) = 0)

]
=

1
mj

.
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The probability is over independent and uniform random choices of x′1, . . . , x
′
j,

x1, . . . , xn from ZZm. Consequently, for any θ ∈ {1, . . . , j}, we have

Pr

⎡

⎣Lθ(vθ) = 0

∣∣∣∣∣∣

j∧

k=1,k �=θ

(Lk(vk) = 0)

⎤

⎦ =
1
m
.

Proof: Since ZZm forms a field, we can do linear algebra with vector spaces over
ZZm. The condition

∧j
k=1 (Lj(vj) = 0) is equivalent to the following system of

equations over ZZm.

x′1 + v1,1x1 + · · · + v1,nxn = 0
x′2 + v2,1x1 + · · · + v2,nxn = 0
· · · · · · · · · · · · · · · · ·
x′j + vj,1x1 + · · · + vj,nxn = 0

This can be rewritten as

(x′1, . . . , x
′
j , x1, . . . , xn)A(j+n)×(j+n) = (0, . . . , 0)1×(j+n)

where

A =
[

Ij Oj×n

Vn×j On×n

]
and Vn×j =

⎡

⎣
v1,1 · · · vj,1

· · · · · · · · ·
v1,n · · · vj,n

⎤

⎦ ;

Ij is the identity matrix of order j; O is the all zero matrix of the specified order.
The rank of A is clearly j and hence the dimension of the solution space is n.
Hence, there are mn solutions in (x′1, . . . , x

′
j , x1, . . . , xn) to the above system of

linear equations. Since the variables x′1, . . . , x
′
j , x1, . . . , xn are chosen indepen-

dently and uniformly at random, the probability that the system of linear equa-
tions is satisfied for a particular choice of these variables is mn/mn+j = 1/mj.
This proves the first part of the result.

For the second part, note that we may assume θ = j by renaming the x′’s if
required. Then

Pr

[
Lj(vj) = 0

∣∣∣∣∣

j−1∧

k=1

(Lk(vk) = 0)

]
=

Pr
[∧j

k=1 (Lk(vk) = 0)
]

Pr
[∧j−1

k=1 (Lk(vk) = 0)
] =

mj−1

mj
=

1
m
.

��
Proposition 2. Let m be a prime and L(·) be as defined in (2). Let v1, . . . , vj

be identities, i.e., each vi = (vi,1, . . . , vi,n), is an n-bit string. Let θ ∈ {1, . . . , j}
and let v′θ be an identity such that v′θ 
= vθ. Then

Pr

[
(Lθ(v′θ) = 0) ∧

j∧

k=1

(Lk(vk) = 0)

]
=

1
mj+1

.

The probability is over independent and uniform random choices of x′1, . . . , x
′
j,

x1, . . . , xn from ZZm. Consequently, we have

Pr

[
Lθ(v′θ) = 0

∣∣∣∣∣

j∧

k=1

(Lk(vk) = 0)

]
=

1
m
.
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Proof: The proof is similar to the proof of Proposition 1. Without loss of
generality, we may assume that θ = j, since otherwise we may rename variables
to achieve this. The condition (Lθ(v′θ) = 0)∧∧j

k=1 (Lk(vk) = 0) is equivalent to
a system of linear equations xA = 0 over ZZm. In this case, the form of A is the
following.

A =
[

Ij cT Oj×n

Vn×j (v′j)
T On×

]

where c = (0, . . . , 0, 1); cT denotes the transpose of c and (v′j)
T is the transpose

of v′j . The first j columns of A are linearly independent. The (j + 1)th column
of A is clearly linearly independent of the first (j− 1) columns. We have vj 
= v′j
and m > 2, hence vj 
≡ v′j mod m. Using this, it is not difficult to see that the
first (j + 1) columns of A are linearly independent and hence the rank of A is
(j + 1). Consequently, the dimension of the solution space is n − 1 and there
are mn−1 solutions in (x′1, . . . , x′j , x1, . . . , xn) to the system of linear equations.
Since the x′’s and the x’s are chosen independently and uniformly at random
from ZZm, the probability of getting a solution is mn−1/mn+j = 1/mj+1. This
proves the first part of the result. The proof of the second part is similar to that
of Proposition 1. ��

Proposition 3. The probability that the simulator in the proof of Theorem 1
does not abort before the artificial abort stage is at least λ = 1

2(4q(n+1))h .

Proof: We consider the simulator in the proof of Theorem 1. Up to the artificial
abort stage, the simulator could abort on either a key extraction query or in the
challenge stage. Let abort be the event that the simulator aborts before the
artificial abort stage. For 1 ≤ i ≤ q, let Ei denote the event that the simulator
does not abort on the ith key extraction query and let C be the event that the
simulator does not abort in the challenge stage. We have

Pr[abort] = Pr

[(
q∧

i=1

Ei

)
∧C

]

= Pr

[(
q∧

i=1

Ei

)
|C
]

Pr[C]

=

(
1 − Pr

[(
q∨

i=1

¬Ei

)
|C
])

Pr[C]

≥
(

1 −
q∑

i=1

Pr [¬Ei |C ]

)
Pr[C].

We first consider the event C. Let the challenge identity be v∗ = (v∗1 , . . . , v
∗
h∗).

Event C holds if and only if Fj(v∗j ) ≡ 0 mod p for 1 ≤ j ≤ h∗. Recall that by
choice of p, we can assume Fj(v∗j ) ≡ 0 mod p if and only if x′j +

∑n
k=1 xkvj,k =

mkj . Hence,
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Pr[C] = Pr

⎡

⎣
h∗∧

j=1

(
x′j +

n∑

k=1

xkvj,k = mkj

)⎤

⎦ . (4)

For 1 ≤ j ≤ h∗ and 0 ≤ i ≤ n, denote the event x′j +
∑n

k=1 xkvj,k = mi by Aj,i

and the event kj = i by Bj,i. Also, let Cj,i be the event Aj,i ∧Bj,i.
Note that the event

∨n
i=0 Aj,i is equivalent to x′j +

∑n
k=1 xkvj,k ≡ 0 mod m

and hence equivalent to the condition Lj(vj) = 0. Since kj is chosen uniformly
at random from the set {0, . . . , n}, we have Pr[Bj,i] = 1/(1 + n) for all j and
i. The events Bj,i’s are independent of each other and also independent of the
Aj,i’s. We have

Pr

⎡

⎣
h∗∧

j=1

(
x′j +

n∑

k=1

xkvj,k = mkj

)⎤

⎦ = Pr

⎡

⎣
h∗∧

j=1

(
n∨

i=0

Cj,i

)⎤

⎦

=
1

(1 + n)h∗ Pr

⎡

⎣
h∗∧

j=1

(
n∨

i=0

Aj,i

)⎤

⎦

=
1

(1 + n)h∗ Pr

⎡

⎣
h∗∧

j=1

(Lj(vj) = 0)

⎤

⎦

=
1

(m(1 + n))h∗

The last equality follows from Proposition 1.
Now we turn to bounding Pr[¬Ei|C]. For simplicity of notation, we will drop

the subscript i from Ei and consider the event E that the simulator does not
abort on a particular key extraction query on an identity (v1, . . . , vj). By the
simulation, the event ¬E implies that Li(vi) = 0 for all 1 ≤ i ≤ j. This
holds even when the event is conditioned under C. Thus, we have Pr[¬E|C] ≤
Pr[∧j

i=1Li(vi) = 0|C]. The number of components in the challenge identity is h∗

and now two cases can happen:

j ≤ h∗: By the protocol constraint (a prefix of the challenge identity cannot be
queried to the key extraction oracle), we must have a θ with 1 ≤ θ ≤ j such that
vθ 
= v∗θ .
j > h∗: In this case, we choose θ = h∗ + 1.

Now we have Pr[¬E|C] ≤ Pr

[
j∧

i=1

Li(vi) = 0|C
]
≤ Pr[Lθ(vθ) = 0|C] = 1/m.

The last equality follows from an application of either Proposition 1 or Propo-
sition 2 according as whether j > h∗ or j ≤ h∗. Substituting this in the bound
for Pr[abort] we obtain

Pr[abort] ≥
(

1 −
q∑

i=1

Pr [¬Ei |C ]

)
Pr[C].
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≥
(
1 − q

m

) 1
(m(n+ 1))h

≥ 1
2
× 1

(4q(n+ 1))h
.

We use h ≥ h∗ and 2q < m < 4q to obtain the inequalities. This completes the
proof. ��

6 Conclusion

Waters presented a construction of IBE [19] which significantly improves upon
the previous construction of Boneh-Boyen [3]. In his paper, Waters also described
a method to extend his IBE to a HIBE. The problem with this construction is
that it increases the number public parameters. In this paper, we have presented
a construction of a HIBE which builds upon the previous (H)IBE protocols. The
number of public parameters is significantly less compared to Waters’ HIBE.
The main open problem in the construction of HIBE protocols is to avoid or
control the security degradation which is exponential in the number of levels of
the HIBE.
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