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Abstract  A robust voice activity detector (VAD) is expected to increase the 
accuracy of ASR in noisy environments. This study focuses on how to extract 
robust information for designing a robust VAD. To do so, we construct a noise 
eigenspace by the principal component analysis of the noise covariance matrix. 
Projecting noise speech onto the eigenspace, it is found that available 
information with higher SNR is generally located in the channels with smaller 
eigenvalues. According to this finding, the available components of the speech 
are obtained by sorting the noise eigenspace. Based on the extracted high-SNR 
components, we proposed a robust voice activity detector. The threshold for 
deciding the available channels is determined using a histogram method. A 
probability-weighted speech presence is used to increase the reliability of the 
VAD. The proposed VAD is evaluated using TIMIT database mixed with a 
number of noises. Experiments showed that our algorithm performs better than 
traditional VAD algorithms. 

Keywords: Voice activity detection, Principal component analysis, Auto-
segmentation, Local noise estimation 

1   Introduction 

The performance of speech processing systems such as Automatic Speech 
Recognition (ASR) systems, speech enhancement and coding systems, suffers 
substantial degradations in noise environments. By applying a robust Voice Activity 
Detection (VAD) algorithm to those systems, their performances can be improved in 
the adverse environments. In clean conditions, the VAD systems using short-term 
energy or zero-crossing features work fairly well [1], but in noisy conditions, a 
traditional VAD is no longer robust when speech signal is seriously contaminated by 
noise. It is still a challenging problem to design a robust VAD for noise environments. 

In the past twenty years, many researches have been conducted to obtain a robust 
VAD in adverse environments. Some of the researches paid attention to the intrinsic 
speech features such as periodic measure [2]. The other methods focused on the 



statistical model of speech and noise signals, such as the Gaussian statistical model 
based VAD [3] [4], Laplacian model based VAD [5] and high-order statistical VAD 
[6]. However, in low Signal-to-Noise Ratios (SNR) condition, speech features and 
speech statistical characteristics were not easy to be obtained. To reduce the noise 
effect, recently, a method combining speech enhancement with VAD was proposed 
[8]. Their method, however, has the two problems in the speech enhancement stage: 
residual noise and speech distortion, which brought error to VAD. 

In this paper, we propose a novel approach to realize a robust VAD. The basic 
consideration is that speech usually has a different distribution from noises in the 
energy domain. If we can sort the components that have low power for noise and 
high power for speech, it is possible to extract more reliable information for speech 
even if the average SNR of the noisy speech is low. For this purpose, first, a noise 
eigenspace is constructed based on an estimated covariance matrix of noise 
observations using Principal Component Analysis (PCA). Projecting the noisy speech 
onto the noise eigenspace, the reliable information can be found out in the sub-
eigenspace with smaller eigenvalues. Thus, a robust VAD can be realized based on 
the reliable information. Section 2 introduces the principles of noise eigenspace 
projection. Section 3 shows the implementation of the algorithm. In Section 4, we 
give the experimental evaluation, and compare our algorithm with some leading 
algorithms.  

2   Projection in noise eigenspace 

This section first investigates the SNR distribution property in a noise eigenspace. 
Then, we describe how to obtain the noise eigenspace in real application. 

2.1 SNR Distribution in Noise Eigenspace 

 The noise eigenspace is used to describe the property of noise energy distribution. It 
is constructed from by principal component analysis of noise covariance matrix. 
Using eigenvalue decomposition, we can get the following relationship between 
eigenvalues and eigenvectors: 
             k k kCϕ λ ϕ= ,  1, 2,...,k K=                          (1) 

where C  is the covariance matrix of a zero mean noise signal n , ( )kϕ  is the 

eigenvector corresponding to eigenvalue kλ . By sorting the eigen-coordinates based 
on eigenvalues order Kλλλ >>> ,...,21 , we get the corresponding 
eigenvectors{ }Kkk ,...,2,1=ϕ . The projection of a noisy speech frame x on the kth 
eigen-coordinate then is written as: 

                kk xy ϕ⋅=                                       (2)                         
Since the noise energy centers on some coordinates, when projecting noisy 

speech into the noise eigenspace, it is possible to find a sub-eigenspace with few 
noise energy, hence higher SNR, where we can extract available information. Here, 
we use a specific noise to demonstrate the idea how to extract available information 



from noisy speech based on the noise eigenspace. We construct a noise eigenspace 
from a period of destroyer-engine noise. A speech sentence is mixed with the period 
of noise at 0dB. Both the speech and noise are respectively projected into the 
eigenspace. Since covariance matrix is calculated from the whole period of mixed 
noise, noise projection energy is actually the noise eigenvalue of the corresponding 
eigen-coordinate. The results of this processing are shown in Fig. 1. The left panel of 
Fig. 1 illustrates the initial distribution of projection energy in the original eigenspace. 
The blue curve is noise projection energy and the red is the projection energy of the 
clean speech. We sort eigenvalues in a descending order and rearrange the coordinate 
of the eigenspace according to the sorted order, where speech projections will move 
with the noise eigenvector in pair. For example, the channel with the maximum noise 
and the projected speech, shown by the dashed line in the left panel, are transferred to 
the lowest channel in the sorted noise eigenspace. Thus, a monotonically descending 
curve of the noise energy is obtained as shown in middle panel of Fig. 1, and the 
corresponding speech projections are shown in red curve with non-monotonic 
changes. In the rearranged space, one can see that in the high coordinates the 
speech’s energy is higher than that of noise even though the average SNR is equal to 
zero or lower. Especially in last coordinates, the SNRs are much larger than the 
original SNR, as shown in right panel of Fig.1.  

 
Fig. 1.  Energy distributions in a noise eigenspace. 

For investigating the generality, the noisy speech projections are testified using 
eigenspaces of other types of noises out of the NOISEX’92 database. We mixed the 
noises with clean speech sentences from TIMIT database at given SNR levels. In real 
application, it’s impossible to calculate the noise covariance matrix from the whole 
period of mixed noise. So, we estimate the covariance matrix by the non-speech 
period at each sentence beginning (as described in section 2.2).  

Then, we project the noise and speech onto the sorted eigenspace and measure the 
SNR at each coordinate. Here we define the projection SNR iξ  of the ith coordinate 
as the difference between the ith coordinate SNR and the mixture SNR, as described 
in formula (3):  

      ( ) ( )NSNS iii /log10/log10 1010 −=ξ                (3) 

where S and N are the total energy of a speech sentence and the mixed noise 
respectively. iS and iN are the projection energy of speech and noise at the ith 
coordinate respectively. The energy in the original space equals the summation of 
projected energy at each coordinate: 
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From formula, we can find out that projection SNR iξ is only concerned with the 
percentage of energy distribution at the ith coordinate. Since, projection SNR has no 
relationship with the global average SNR, we can easily represent the relationship 
among projection SNR, eigen-coordinate index and distribution probability by a 
three-dimension color image.  

The color image is constructed by this way. For each sentence, we can calculate 
its projection SNR at each coordinate. At a given coordinate, we construct a 
histogram to describe the projection SNR distribution of all noisy sentences, and 
represent the value as probability of occurrence. So, the probability summation of 
each coordinate equals to 1. We combine the histograms at all coordinates into a 
colored image. In this algorithm, the speech sampling rate is 16 kHz, frame length 
0.02s and frame shift 0.01s. Thus, the full eigenspace has 320 eigen-coordinates.  

 

Fig. 2. Projection SNR distribution in noise eigenspace. Vertical axes describe the 
projection SNR. The color represents its distribution probability. 

From the figure, it’s easy to understand that the SNR of the projected signal on 
high dimensional coordinates is greater than that of projection on low dimensional 
coordinates. In another word, the SNR have an increasing tendency from the low to 
high coordinates. The statistics experiment shows the projections on eigen-
coordinates with smaller eigenvalues always associate with high SNR. Therefore, it’s 
possible to utilize the information of coordinates with smaller eigenvalues and ignore 
the coordinates with larger eigenvalues to carry out robust VAD.  

2.2   Noise Eigenspace Estimation 
Noise covariance matrix is the basis of eigenspace calculation. Before implementing 
VAD in eigenspace, it is necessary to obtain a reliable estimation of noise covariance 
matrix from noisy speech. Suppose there is somewhat a non-speech period in the 



beginning of each sentence, an initial covariance matrix can be estimated from this 
period. Then, the covariance matrix is updated stepwise using the detected noise. 

To obtain a credible estimation of the initial noise covariance matrix, the frame 
shift is reduced to 0.375ms so that we can obtain 350 noise frames within 140ms at 
the beginning of sentences. The noise eigenspace is updated based on a time-varying 
estimation of the covariance matrix ( )nĈ ( KK × ). Giving an initial estimation ( )0Ĉ , 
it is successively updated as: 

             ( ) ( ) ( ) ( ) ( )nxnxnCnC Tαα −+−= 11ˆˆ                         (5) 

where n is time (frame) index, α is a low-pass, forgetting factor with value 0.98, 
( )nx is the observed noisy signal vector. 

As known, eigenvalue decomposition is a time-consuming operation. Since noise 
is much more stationary comparing to speech signal, it’s possible to doing eigenvalue 
decomposition periodically. On one hand, a longer period for eigenvalue 
decomposition can save computation time. On the other hand, a shorter period will 
benefit to an accurate estimation of noise eigenspace. So, a tradeoff is made between 
computation time and the accuracy of eigenspace. 

3   Voice Activity Detection in Noise Eigenspace 

In this section, we address how to detect the voice activity in the sub-eigenspace with 
high SNR. Before the noisy speech projected into noise eigenspace, the input signal is 
partitioned into homogenous segments as units for VAD decision. We construct 
channels using high-SNR coordinates and realize a sub-VAD at each channel. At last, 
the reliable channels with greater SNR will give a voting. The processing block 
diagram is shown in Fig. 3. 
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Fig. 3.  Block diagram of the proposed VAD 

3.1   Auto-segmentation and Channel Construction  

Firstly, we use auto-segmentation to partition the frame sequence into homogeneous 
segments. It is based on the consideration that, in noisy speech signal, the voiced and 



unvoiced blocks usually occur as segments consisting of several consecutive frames. 
The decision results should not transfer between speech and noise frame by frame. 
Here, homogeneous segments are taken as units for VAD decision, which reduces the 
problem of spurious changes of speech detection and limits speech-noise transfer 
times in the decision. The algorithm is a dynamic programming based procedure to 
minimize the segmentation cost [9]. In our algorithm, eight-dimension MFCC 
features including the log-power energy are used for auto-segmentation. 

Secondly, the noisy speech frames are projected onto the noise eigenspace. Then, 
the every 10 adjacent projections are grouped into one channel by using the logarithm 
of the absolute magnitude summation to form a smoothed envelope. There are totally 
32 grouped, projected channels in our algorithm.  

The constructed channels located at the low dimensional coordinates have low 
SNR. Those channels bring much speech false alarm and contribute a little to speech 
hit rate. Therefore, those channels should be ignored in decision. Here, the channel 
SNR is used to evaluate each channel’s reliability. It is estimated based on 
eigenvalues (average noise energy) and observed projection energy. According to 
experiments, the channels with SNR less than 2dB should be ignored in VAD 
decision. The left channels are used for VAD. 
 
3.2 Histogram based Local Noise Estimation 
 
For making a correct final VAD decision, we carried out a sub-VAD decision at each 
channel. To do so, an appropriate threshold for each channel should be given. We 
propose a histogram-based method to estimate the sub-VAD threshold. The sub-VAD 
threshold is decided by noise level and variance of noise log-power. Suppose that the 
noise log-power of each channel obeys a Gaussian distribution, the problem arrived 
at estimation of the mean (noise level) and variance of the Gaussian function. 

Many approaches such as clustering [9] and GMM fitting [7] have been proposed 
to estimate noise level in noisy speech. All these methods are based on the following 
observations in the histograms of log-power energy of noisy speech [10]: 

a. In the two peak mode of the histogram, the peak in lower region is usually 
contributed by background noise, while the peak in lower region is contributed 
by speech. 

b. In general, the noise mode has a salient peak and its variance is smaller than that 
of speech. The reason is that, as commonly assumed, the energy of the 
background noise is more stationary than that of speech. 

c. The two modes are clearly separated in high SNR conditions. As SNR is 
decreasing, the two modes are getting closer and eventually merge into one 
mode. 

However, in most situations, the two-peak mode assumption is not kept well. There 
may be only one peak model in speech pause duration or the mode with more than 
two peaks on the histogram. Traditional ways for estimation of noise level can not 
deal with those situations. It is necessary to design a local noise estimation method to 
deal with one peak, two peaks, and several peaks cases. Our estimation method only 
concern with noise mode, since noise mode is more salient than speech mode. Based 
on the basic observation in (a), (b) and (c), we present a local noise estimation method, 
as following steps: 



i. Taking a dynamic range (0~9dB relative to minimum power) to construct the 
40-bin histogram. This range is wide enough to include the noise level.  

ii. Using a 3-point median filter to smooth the occurrence number, and taking the 
first peak at left side as the noise level location. 

The noise level is the average of noise log-power Gaussian model. It is also 
assumed that noise log-power less than the noise level is affected little by speech as 
shown by shadow in Fig. 4. Then, its variance is estimated by the data less than the 
noise level. Based upon the local noise Gaussian model, we can define a sub-VAD 
threshold: 

γσµ += Threshold         (6) 
where   µ is the noise level, σ is the estimated variance, γ  is the coefficient for 
tuning the threshold. Fig. 5 illustrates the sub-VAD threshold estimation of noisy 
speech at 5dB in factory noise situation using the histogram method. The thick curve 
in the upper panel is noisy speech power envelope; the thin curve is clean speech 
power envelope. The dark segments in the middle panel are the detected speech 
segments. The threshold is calculated using formula (6). The centroids of 
homogenous segments partitioned by auto-segmentation are compared with sub-VAD 
threshold. Our local noise estimation method can deal with all cases, whether in 
speech pause, high or low SNR conditions. 
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Fig.4. Noise and noisy speech mode 
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Fig.5. Noise estimation by histogram. 

The coefficientγ tuning the sub-VAD threshold in formula (4) should adapt to 
channel SNR. In high SNR channels, γ should be smaller to make the sub-VAD 
sensitive to speech and be larger in low SNR channels to avoid speech false alarm. 



According to experiments, whenγ is linearly interpolated 1.3~1.1 between 2dB~8dB, 
it achieves better tradeoff between speech false alarm rate and hit rate. If channels’ 
SNR is higher than 8dB, γ equals 1.1.   

3.3 Voting and Parameter Adaptation 

As mentioned in section 3.1, the channels with SNR less than 2dB are ignored. 
Only those channels with SNR larger than 2dB take part in the voting. So, the 
numbers of voting channels varies with average SNR conditions, it’s necessary to 
normalize the votes by channel numbers. If the normalized votes exceed the 
thresholdδ , the homogenous segments will be decided as speech. Fig. 6 is the voting 
result of a speech sentence mixed with babble noise at SNR=0dB. There are 30 
channels with SNR larger than 2dB, taking part in the voting. In the middle panel, the 
red part is the detected speech segments. 

0

5

10

15

20

25

30

Vo
tes

Probability−weighted Output

−0.2

0

0.2

Am
pli

tud
e

Clean Speech Signal

0 0.5 1 1.5 2 2.5 3 3.5
−0.2

0

0.2

Time(Sec)

Am
pli

tud
e

Noisy Speech Signal

Threshold 

 

Fig.6. Detection results of 0dB babble noise 

Considering the tradeoff between noise and speech hit rate, in real application, we 
adapt the voting threshold δ  to the average SNR level as: 
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where 
hSNR and

lSNR are the highest and lowest SNR levels respectively in real 
applications; 

hδ  and 
lδ  are the voting thresholds corresponding to the highest and 

lowest SNR levels. For SNR between lowest and highest levels, the voting threshold 
is linearly interpolated between 

lδ  and
hδ ; round is the nearest integer function. 

4. Experimental Evaluation  

To evaluate the effectiveness of our VAD algorithm, we measured the detection 
probability (including speech hit rate HR1 and noise hit rate HR0) for a number of 
noisy speech paragraphs. The experiment data were taken from the TIMIT database. 
We connected every ten sentences from one speaker into a speech paragraph and 



mixed it with noise taken from NOISEX’92 database at variant SNR situations. Our 
experiment data consisted of 168 paragraphs with duration of about half a minute. 
The VAD references were labeled based on energy envelopes of clean speech signals. 
In the detection, the paragraphs were chopped into 4-second segments. The noise 

eigenspace was estimated as described in section 2.2. For every 4 seconds, the noise 
eigenspace was updated by the detected noise. The adaptive voting threshold was 
calculated using formula (7), where the parameters were set as 1=lδ  for 

dBSNRl 5−=  and 6=hδ for dBSNRl 20= . 
Table 1 shows the experiment results of our proposed algorithm with the 

traditional VAD algorithms. The values in the table are the noise hit rate (HR0) and 
speech hit rate (HR1) averaged over noisy speech different SNR from -5dB to 20dB. 
In this table, one can see that, in noisy environments, our algorithm works much 
better than G.729B [1] and AFE [11] algorithms. 

Table 1.  Experimental results 
 G.729B AFE 

(Wiener Filtering ) Proposed VAD 

HR1 77.91% 89.91% 94.77% Factory 
 HR0 84.43% 40.76% 58.48% 

HR1 74.79% 86.43% 91.18% Babble HR0 74.99% 45.30% 55.81% 
HR1 77.21% 90.86% 94.62% Tank HR0 85.25% 36.75% 64.74% 

5. Conclusions 

In this paper, we proposed a noise eigenspace based VAD algorithm. A local 
noise estimation method was implemented in the proposed method to increase the 
robustness of the detection. The experiments showed that our algorithm were much 
more robust than traditional VAD algorithms, such as G.729 and AFE VAD 
algorithms.  
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