Offline sorting buffers on Line

Rohit Khandekar! and Vinayaka Pandit?

! University of Waterloo, ON, Canada. email: rkhandekar@gmail.com
2 IBM India Research Lab, New Delhi. email: pvinayak@in.ibm.com

Abstract. We consider the offline sorting buffers problem. Input to
this problem is a sequence of requests, each specified by a point in a
metric space. There is a “server” that moves from point to point to serve
these requests. To serve a request, the server needs to visit the point
corresponding to that request. The objective is to minimize the total
distance travelled by the server in the metric space. In order to achieve
this, the server is allowed to serve the requests in any order that requires
to “buffer” at most k requests at any time. Thus a valid reordering can
serve a request only after serving all but k previous requests.

In this paper, we consider this problem on a line metric which is moti-
vated by its application to a widely studied disc scheduling problem. On
a line metric with N uniformly spaced points, our algorithm yields the
first constant-factor approximation and runs in quasi-polynomial time
O(m - N - k°U°eN)) where m is the total number of requests. Our ap-
proach is based on a dynamic program that keeps track of the number of
pending requests in each of O(log N) line segments that are geometrically
increasing in length.

1 Introduction

The sorting buffers problem arises in scenarios where a stream of requests needs
to be served. Each request has a “type” and for any pair of types t; and ts, the
cost of serving a request of type t2 immediately after serving a request of type ¢;
is known. The input stream can be reordered while serving in order to minimize
the cost of type-changes between successive requests served. However, a “sorting
buffer” has to be used to store the requests that have arrived but not yet served
and often in practice, the size of such a sorting buffer, denoted by k, is small.
Thus a legal reordering must satisfy the following property: any request can be
served only after serving all but k of the previous requests. The objective in the
sorting buffers problem is to compute the minimum cost output sequence which
respects this sequencing constraint.

Consider, as an example, a workshop dedicated to coloring cars. A sequence
of requests to color cars with specific colors is received. If the painting schedule
paints a car with a certain color followed by a car with a different color, then, a
significant set-up cost is incurred in changing colors. Assume that the workshop
has space to hold at most k cars in waiting. A natural objective is to rearrange
the sequence of requests such that it can be served with a buffer of size k and
the total set-up cost over all the requests is minimized.

Consider, as another example, the classical disc scheduling problem. A se-
quence of requests each of which is a block of data to be written on a particular
track is given. To write a block on a track, the disc-head has to be moved to that
track. As discussed in [3], the set of tracks can be modeled by uniformly spaced
points on a straight line. The cost of moving from a track to another is then the
distance between those tracks on the straight line. We are given a buffer that can
hold at most k blocks at a time, and the goal is to find a write-sequence subject
to the buffer constraint such that the total head movement is minimized.

Usually, the type-change costs satisfy metric properties and hence we for-
mulate the sorting buffers problem on a metric space. Let (V,d) be a metric
space on N points. The input to the Sorting Buffers Problem (SBP) consists of
a sequence of m requests, the ith request being labeled with a point p; € V.
There is a server, initially located at a point pg € V. To serve ith request, the
server has to visit p;. There is a sorting buffer which can hold up to k requests
at a time. In a legal schedule, the ith request can be served only after serving at
least © — k requests of the first ¢ — 1 requests. More formally, the output is given
by a permutation 7 of {1,...,m} where the ith request in the output sequence
is the 7(4)th request in the input sequence. Observe that a schedule 7 is legal if
and only if it satisfies 7(i) < i+ k for all . The cost of the schedule is the total
distance that the server has to travel, i.e., Cr = > 1", d(pr(i—1)> Pr(s)) Where
m(0) = po corresponds to the starting point. The goal in SBP is to find a legal
schedule 7 that minimizes C;. In the online version of SBP, the ith request is
revealed only after serving at least ¢« — k among the first ¢ — 1 requests. In the
offline version, on the other hand, the entire input sequence is known in advance.

The car coloring problem described above can be thought of as the SBP on
a uniform metric where all the pair-wise distances are identical while the disc
scheduling problem corresponds to the SBP on a line metric where all the points
lie on a straight line and the distances are given along that line.

1.1 Previous Work

On a general metric, the SBP is known to be NP-hard due to a simple reduction
from the Hamiltonian Path problem. However, for the uniform or line metrics, it
is not known if the problem remains NP-hard. In fact, no non-trivial lower bound
is known on the approximation (resp. competitive) ratio of offline (resp. online)
algorithms, deterministic or randomized. In [3], it is shown that the popular
heuristics like shortest time first, first-in-first-out (FIFO) have £2(k) competitive
ratio on a line metric. In [5], it is shown that the popular heuristics like FIFO,
LRU, and Most-Common-First (MCF) have a competitive ratio of 2(v/k) on a
uniform metric.

The offline version of the sorting buffers problem on any metric can be solved
optimally using dynamic programming in O(m**1!) time where m is the number
of requests in the sequence. This follows from the observation that the algorithm
can pick k requests to hold in the buffer from first i requests in (;) ways when
the (7 + 1)th request arrives.

The SBP on a uniform metric has been studied before. Récke et al. [5] pre-
sented a deterministic online algorithm, called Bounded Waste that has O(log? k)
competitive ratio. Englert and Westermann [2] considered a generalization of the
uniform metric in which moving to a point p from any other point in the space
has a cost c¢,. They proposed an algorithm called Maximum Adjusted Penalty
(MAP) and showed that it gives an O(logk) approximation, thus improving
the competitive ratio of the SBP on uniform metric. Kohrt and Pruhs [4] also
considered the uniform metric but with different optimization measure. Their
objective was to maximize the reduction in the cost from that of the schedule
without a buffer. They presented a 20-approximation algorithm for this variant
and this ratio was improved to 9 by Bar-Yehuda and Laserson [1].

For SBP on line metric, Khandekar and Pandit [3] gave a polynomial time
randomized online algorithm with O(log? N) competitive ratio. In fact, their
approach works on a class of “line-like” metrics. Their approach is based on
probabilistic embedding of the line metric into the so-called hierarchical well-
separated trees (HSTs) and an O(log N)-competitive algorithm for the SBP
on a binary tree metric. No better approximations were known for the offline
problem.

1.2 Our results

The first step in understanding the structure of the SBP is to develop offline al-
gorithms with better performance than the known online algorithms. We provide
such an algorithm. Following is our main theorem.

Theorem 1. There is a constant factor approximation algorithm for the offline
SBP on a line metric on N uniformly spaced points that runs in quasi-polynomial
time: O(m- N - kO N)Y where k is the buffer-size and m is the number of input
requests.

This is the first constant factor approximation algorithm for this problem on
any non-trivial metric space. The approximation factor we prove here is 15. How-
ever we remark that this factor is not optimal and most likely can be improved
even using our techniques. Our algorithm is based on dynamic programming.
We show that there is a near-optimum schedule with some “nice” properties and
give a dynamic program to compute the best schedule with those nice proper-
ties. In Section 2.1, we give an intuitive explanation of our techniques and the
Sections 2.2 and 2.3 present the details of our algorithm.

2 Algorithm

2.1 Outline of our approach

We start by describing an exact algorithm for the offline SBP on a general
metric on N points. As we will be interested in a line metric as in the disc
scheduling problem, we use the term “head” for the server and “tracks” for

the points. Since the first k requests can be buffered without loss of generality,
we fetch and store them in the buffer. At a given step in the algorithm, we
define a configuration (t,C) to be the pair of current head location ¢ and an N-
dimensional vector C' that specifies the number of requests pending at each track.
Since there are N choices for ¢ and a total of k requests pending, the number
of distinct configurations is O(N - kV). We construct a dynamic program that
keeps track of the current configuration and computes the optimal solution in
time O(m-N-k"™) where m is the total number of requests. The dynamic program
proceeds in m levels. For each level ¢ and each configuration (¢, C'), we compute
the least cost of serving i requests from the first i + k£ requests and ending up in
the configuration (¢,C). Let us denote this cost by DP[i, ¢, C]. This cost can be
computed using the relation

DP[i,t,C] = (micn)(DP[i —1,¢,C" +d(t',t))
t/7 !

where the minimum is taken over all configurations (', C") such that while mov-
ing the head from t’ to ¢, a request at either ¢’ or ¢ in C’ can be served and
a new request can be fetched to arrive at the configuration (¢, C). Note that it
is easy to make suitable modifications to keep track of the order of the output
sequence.

Note that the high complexity of the above dynamic program is due to the
fact that we keep track of the number of pending requests at each of the N tracks.
We now describe our intuition behind obtaining much smaller dynamic program
for a line metric on IV uniformly spaced points. Our dynamic program keeps track
of the number of pending requests only in O(log N) segments of the line which
are geometrically increasing in lengths. The key observation is as follows: if the
optimum algorithm moves the head from a track ¢ to ¢’ (thereby paying the cost
[t—t']), a constant factor approximation algorithm can safely move an additional
O(|t — t'|) distance and clear all the nearby requests surrounding ¢ and ¢'. We
show that instead of keeping track of the number of pending requests at each
track, it is enough to do so for the ranges of length 2°,2% 22 23 ... surrounding
the current head location ¢. For each track ¢, we partition the disc into O(log V)
ranges of geometrically increasing lengths on both sides of ¢. The configuration
(t,C) now refers to the current head location ¢ and an O(log N)-dimensional
vector C' that specifies number of requests pending in each of these O(log N)
ranges. Thus the new dynamic program will have size O(m - N - kOUos N)).

To be able to implement the dynamic program, we ensure the property that
the new configuration around ¢’ should be easily computable from the previous
configuration around t. More precisely, we ensure that the partitions for ¢ and
t' satisfy the following property: outside an interval of length R = O(|t — t/|)
containing ¢ and t’, the ranges in the partition for ¢ coincide with those in the
partition for ¢’ (see Figure 1). Note however that inside this interval, the two
partitions may not agree. Thus when the optimum algorithm moves the head
from ¢ to t’, our algorithm starts the head from ¢, clears all the pending requests
in this interval and rests the head at ' and updates the configuration from the

Co-inciding ranges increasing geometrically Co-inciding ranges increasing geometrically
1 1 - 1 o - 1 1 1

R=0(lt -]

Fig. 1. Division of the line into ranges for tracks ¢ and t’

previous configuration. Since the length of the interval is O(|t—t'|), our algorithm
spends at most a constant factor more than the optimum.

2.2 Partitioning Scheme

Now we define a partitioning scheme and its properties that are used in our
algorithm. Let us assume, without loss of generality, that the total number of
tracks N = 2™ is a power of two and that the tracks are numbered from 0 to
2" — 1 left-to-right. In the following, we do not distinguish between a track and
its number. For tracks ¢t and ', the quantity |t —¢'| denotes the distance between
these tracks which is the cost paid in moving the head from ¢ to ¢'. We say that
a track ¢ is to the right (resp. left) of a track ¢/ if ¢ > ¢’ (resp. t < t').

Definition 1 (landmarks). For a track t and an integer p € [1,n], we define
pth landmark of t as £,(t) = (g + 1)2P where g is the unique integer such that
(g —1)27 <t < q2P. We also define (—p)th landmark as £_,(t) = (¢ — 2)2P. We
also define £o(t) = t.

Lop(t) Lp(t)
| | | b |
I I I 1 I
2P (@=2)2P (g —1)2P g2 (¢+1)2P

Fig. 2. The pth and (—p)th landmarks of a track ¢

It is easy to see that (_,(t) < --- < €_1(t) < lo(t) < £1(t) < --- < lp(t). In
fact the following lemma claims something stronger and follows easily from the
above definition.

Lemma 1. Letp € [1,n — 1] and (¢ — 1)2P < t < q2P for an integer q.

— If q is even, then €,11(t) — £,(t) = 2P and £_,(t) — 0_p_1(t) = 2PHL,
— If q is odd, then ly1(t) — €,(t) = 2PT and 0_,(t) — 0,1 (t) = 2P.

In the following definition, we use the notation [a,b) = {t integer | a < t < b}.

Definition 2 (ranges). For a track t, we define a “range” to be a contiguous
subset of tracks as follows.

— [0=1(t), Lo(t) =t) and [€o(t) =1,

— forpel,n—1], if lpy1(t) — ¢
[€p(t), €p(t) + 2F) and [€p(t) + 27
a range.

— forpe[l,n—1],if b_,(t) —l_p_1(t) = 2PT and 0,11 (t) — £, (t) = 2P~ 1
then [(_,_1(t),0—p_1(t) + 2P) and [l_p,_1(t) + 2P, £_,(t)) are ranges, else
[_p_1(t),€—p(t)) is a range.

1(t)) are ranges.
) = 2P and £,(t) — £,—1(t) = 2P~! then
p+1(t)) are ranges, else [€y(t), bpy1(t)) is

¢
p(t

The above ranges are disjoint and form a partition of the tracks which we denote
by (t).

Note that in the above definition, when the difference €,11(t) —¢,(t) and ¢_,(t)—
l_p_1(t) equals 4 times €,(t) — €p—1(t) and €_p41(t) — €_p(t) respectively, we
divide the intervals [€,(t), £p+1(t)) and [_,_1(t), {—p(t)) into two ranges of length
2P each. For example, in Figure 3, the region between ¢,;2(t) and £p43(t) is
divided into two disjoint ranges of equal size.

The following lemma proves a useful relation between the partitions 7(t)
and 7(¢') for a pair of tracks ¢ and ¢': the ranges in the two partitions coincide
outside the interval of length R = O(|¢t — ¢'|) around ¢ and ¢'. As explained in
Section 2.1, such a property is important for carrying the information about the
current configuration across the head movement from ¢ to t’.

Lemma 2. Let t and t' be two tracks such that 2P~' < t' —t < 2P. The ranges
in w(t) and w(t') are identical outside the interval R = [0_,(t), {,(t")).

Proof. First consider the case when (¢—1)2? <t < ' < ¢2P for an integer ¢, i.e.,
t and t’ lie in the same “aligned” interval of length 2. Then clearly they also
lie in the same aligned interval of length 2" for any r» > p. Thus, by definition,
£.(t) = £,.(t') for r > p and r < —p. Thus it is easy to see from the definition of
ranges that the ranges in m(t) and 7(t') outside the interval [(_,(t),¢,(t")) are
identical.

Consider now the case when ¢ and ¢’ do not lie in the same aligned interval
of length 2P. Since |t — /| < 2P, they must lie in the adjacent aligned intervals of
length 27, i.e., for some integer ¢, we have (¢ — 1)2°? <t < ¢q2? <t/ < (¢+1)2?
(See Figure 3). Let ¢ = 2%v where uw > 0 is an integer and v is an odd integer.

The following key claim states that depending upon how r compares with
the the highest power of two that divides the “separator” ¢q2P of t and t’, either
the rth landmarks of ¢ and ¢’ coincide with each other or the (r+ 1)th landmark
of ¢ coincides with the rth landmark of ¢'.

Claim. 1. 0.(t) =4,) forr>p+u+landr < —p—u—1.
2. €T+1(t):€7,("Nforp<r<p+u,
3.l (t)y=l_p (') forp<r<p+u,

4. €p+u (t/) = €p+u (t) + 2p+u and €p+u+1(t) — £p+u (t) = 2p+u+1,
5.l p(t) =l 1 () + 22T and £y (t') — b pyr (V') = 2PTUFL,

Proof. The equation 1 follows from the fact that since 2PT* is the highest power
of two that divides ¢2P, both ¢ and ¢’ lie in the same aligned interval of length
2" forr >p+u+1.

The equations 2, 3, 4, and 5 follow from the definition of the landmarks and
the fact that ¢ and ¢’ lie in the different but adjacent aligned intervals of length
2" for p < r < p+ u (see Figure 3).

£p(t) fhlf) Cpt2(t') tp3(t')

sy 4 ,/ Landmarks and ranges of
. .7t and t’ match beyond
. - this point.

£p(1) \\‘~\ -7

b1 () fio(t) B0l Rng2 fpes(l)

Fig. 3. Landmarks and ranges for tracks ¢t and ¢’ when ¢ = 4, u = 2.

Claim 2.2 implies that all but one landmarks of ¢ and ¢’ coincide with each
other. For the landmarks of ¢ and ¢’ that coincide with each other, it follows
from the definition of the ranges that the corresponding ranges in 7 (t) and 7 (t')
are identical.

The landmarks of ¢, ¢’ that do not coincide are €,1,(t') = €p4y(t) +2PT* and

Oy y(t) =l_p_y—1(t') + 2P*“. But, note that the intervals [€p4y(t), £ptut1(t))
and [{_p_y—1(t"), {—p—u(t')) are divided into two ranges each: [{piy(t), {ptru(t) +
2, [lpyu(t) + 2P, lpygr (t) and [(p_u1 (t), €—pur(t') +2P7),
[pu1(t')+2PT% 0, (t')). These ranges match with [£piy—1(t"), lptu(t’)),
[€p+u (t/)v €p+u+1 (t/)) and [f—p—u—l (t)7 é—p—u(t))v [g—p—u(t)v g—p—u+l (t)) respec-
tively. This follows again from the Claim 2.2 and the carefully chosen definition
of ranges. Thus the proof of Lemma 2 is complete.

For tracks ¢ and ¢/, where t < t/, let R(t,t') = R(t,t) be the interval
[0_p(t),L,(t) if 2771 </ — ¢ < 2P. Note that the length of the interval R(¢,t")
is at most |[€_,(t) — £,(t')| < 4-2P < 8- |t —t|. Thus the total movement in
starting from ¢, serving all the requests in R(¢,t’), and ending at t’ is at most
15- |t —t'].

2.3 The Dynamic Program

Our dynamic program to get a constant approximation for the offline SBP on a
line metric is based on the intuition given in Section 2.1 and uses the partition
scheme given in Section 2.2. Recall that according to the intuition, when the
optimum makes a move from ¢ to t/, we want our algorithm to clear all the
requests in R(t,t"). This motivates the following definition.

Definition 3. A feasible schedule for serving all the requests is said to be “locally
greedy” if there is a sequence of tracks ty,...,t;, called “landmarks”, which are
visited in that order and while moving between any consecutive pair of tracks t;
and t;1+1, the schedule also serves all the current pending requests in the interval
R(ti, tiJrl)'

Since the total distance travelled in a locally greedy schedule corresponding
to the optimum schedule is at most 15 times that of the optimum schedule,
the best locally greedy schedule is a 15-approximation to the optimum. Our
dynamic program computes the best locally greedy schedule. For a locally greedy
schedule, let a configuration be defined as a pair (¢,C) where ¢ is the location
of the head and C is an O(log N)-dimensional vector specifying the number
of requests pending in each range in the partition 7(¢). Clearly the number of
distinet configurations is O(N - kCUeg V),

The dynamic program is similar to the one given in Section 2.1 and proceeds
in m levels. For each level ¢ and each configuration (¢, C'), we compute the least
cost of serving i requests from the first i + k requests and ending up in the
configuration (¢,C) in a locally greedy schedule. Let DP[i, ¢, C] denote this cost.
This cost now can be computed as follows. Consider a configuration (', C") after
serving i — r requests for some r > 0 such that while moving from a landmark
t’ to the next landmark ¢,

1. the locally greedy schedule serves exactly r requests from the interval R(t', t),
2. it travels a distance of D, and
3. after fetching r new requests, it ends up in the configuration (¢, C').

In such a case,
DP[i —r,t',C'|+ D

is an upper bound on DP[i, t, C]. Taking the minimum over all such upper bounds,
one obtains the value of DP[, ¢, C].

Recall that the locally greedy schedule clears all the pending requests in the
interval R(t',t) while moving from ¢’ and ¢ and also that the ranges in 7 (¢) and
7(t') coincide outside the interval R(t,t). Thus it is feasible to determine if after
serving r requests in R(t',t) and fetching r new requests, the schedule ends up
in the configuration (¢, C).

The dynamic program, at the end, outputs min; DP[m, ¢, 0] as the minimum
cost of serving all the requests by a locally greedy schedule. It is also easy
to modify the dynamic program to compute the minimum cost locally greedy
schedule along with its cost.

3 Conclusions

Prior to this work, any offline algorithms with better approximation factors than
the corresponding online algorithms were not known for the sorting buffers prob-
lem on any non-trivial metric. We give the first constant factor approximation for
the sorting buffers problem on the line metric improving the previously known
O(log® N) competitive ratio. As the running time of our algorithm is quasi-
polynomial, we suggest that there may be a polynomial time constant factor
approximation algorithm as well. Proving any hardness results for the sorting
buffers problem on the uniform or line metrics; or poly-logarithmic approxima-
tion results for general metrics remain as interesting open questions.

References

1. R. Bar-Yehuda and J. Laserson. 9-approximation algorithm for the sorting buffers
problem. In 8rd Workshop on Approximation and Online Algorithms, 2005.

2. M. Englert and M. Westermann. Reordering buffer management for non-uniform
cost models. In Proceedings of the 82nd International Colloquium on Algorithms,
Langauages, and Programming, pages 627-638, 2005.

3. R. Khandekar and V. Pandit. Online sorting buffers on line. In Proceedings of the
Symposium on Theoretical Aspects of Computer Science, pages 616—-625, 2006.

4. J. Kohrt and K. Pruhs. A constant approximation algorithm for sorting buffers. In
LATIN 04, pages 193-202, 2004.

5. H. Récke, C. Sohler, and M. Westermann. Online scheduling for sorting buffers. In
Proceedings of the European Symposium on Algorithms, pages 820-832, 2002.

