
Approximating Tree Edit Distance through String
Edit Distance∗

Tatsuya Akutsu†

Bioinformatics Center, Institute for Chemical Research, Kyoto University,

Uji, Kyoto 611-0011, Japan.
e-mail: takutsu@kuicr.kyoto-u.ac.jp

Daiji Fukagawa Atsuhiro Takasu
National Institute of Informatics,

Chiyoda-ku, Tokyo 101-8430, Japan.
e-mail: {daiji,takasu}@nii.ac.jp

Abstract

We present an algorithm to approximate edit distance between two ordered and
rooted trees of bounded degree. In this algorithm, each input tree is transformed
into a string by computing the Euler string, where labels of some edges in the input
trees are modified so that structures of small subtrees are reflected to the labels. We
show that the edit distance between trees is at least 1/6 and at most O(n3/4) of the
edit distance between the transformed strings, where n is the maximum size of two
input trees and we assume unit cost edit operations for both trees and strings. The
algorithm works in O(n2) time since computation of edit distance and reconstruc-
tion of tree mapping from string alignment takes O(n2) time though transformation
itself can be done in O(n) time.

Key Words. tree edit distance, string matching, approximation algorithms, em-
bedding, Euler string

∗A preliminary version of this paper appeared in the Proceedings of the 17th Annual International
Symposium on Algorithms and Computation (ISAAC ’06), Lecture Notes in Computer Science, 4288, pp.
90-99, 2006. This work is partially supported by Grants-in-Aid on Scientific Research on Priority Areas
“Cyber Infrastructure for the Information-explosion Era” and “Systems Genomics”, and Grant-in-Aid
#16300092 from MEXT, Japan.

†Corresponding author. TEL: +81-774-38-3015, FAX: +81-774-38-3022

1

1 Introduction

Recently, comparison of tree-structured data is becoming important in several diverse ar-

eas such as computational biology, XML databases and image analysis [4, 12, 20]. Though

various measures have been proposed for comparison of trees [4], the edit distance between

rooted and ordered trees is well-studied and widely-used [14, 18, 19, 21]. This tree edit

distance is a generalization of the edit distance for two strings [2, 17], which is also well-

studied and widely-used for measuring the similarity between two strings. In this paper,

we use tree edit distance and string edit distance to denote the distance between rooted

and ordered trees and the distance between strings, respectively.

It is well-known that the string edit distance can be computed in O(n2) time by a

simple dynamic programming algorithm, where n is the maximum length of input strings.

Recently, extensive studies have been done on efficient (quasi linear time) approximation

and low distortion embedding of string edit distances [2, 3, 13, 15, 17].

For the tree edit distance problem, Tai [18] first developed a polynomial time algo-

rithm, from which several improvements followed [5, 9, 14, 21]. Among these, a recent

algorithm by Demaine et al. [9] is the fastest in the worst case and works in O(n3) time

where n is the maximum size of input trees. They also proved an Ω(n3) lower bound for

the class of decomposition strategy algorithms. Therefore, it is quite difficult to develop

an o(n3) time exact algorithm for the tree edit distance problem.

Garofalakis and Kumar developed an algorithm for efficient embedding of rooted and

ordered trees [10]. Their algorithm provides an approximate tree edit distance with a

guaranteed O(log2 log∗ n) factor in O(n log∗ n) time, where log∗ n denotes the number of

log applications required to reduce n to 1 or less. However, the distance considered there

is not the same as the tree edit distance: move operations are allowed in their distance.

Several practical algorithms have been developed for efficient computation of lower bounds

of tree edit distances [12, 20], but these algorithms do not guarantee upper bounds of tree

edit distances. Therefore, it is required to develop algorithms for efficient approximation

and/or low distortion embedding for trees in terms of the original definition of the tree

edit distance. It should be noted that for the case of strings, an efficient approxima-

tion/embedding algorithm was first proposed for edit distance with block copies, block

uncopies and block moves [7, 16], which was soon modified to take care of string edit

2

distance with block moves only [6], and then extensive studies followed for edit distance

without moves [2, 3, 13, 15, 17].

In order to approximate the tree edit distance, we studied a relation between the tree

edit distance and the sting edit distance for the Euler strings [1]. It was shown that the

tree edit distance is at least half and at most 2h + 1 of the edit distance for the Euler

strings, where h is the minimum height of two trees. This result gives good approximation

if the heights of input trees are low. However, it does not guarantee any upper bounds

of tree edit distances if the heights of input trees are O(n). In this paper, we improve

this result by modifying the Euler string. Modification is done by changing labels of some

edges in the trees so that structures of small subtrees are reflected to the labels. Though

the modification is slight, a novel idea is introduced and much more involved analysis is

performed. We show that the unit cost edit distance between trees is at least 1/6 and at

most O(n3/4) of the unit cost edit distance between the modified Euler strings, where we

assume that the maximum degree of trees is bounded by a constant. This result leads

to the first O(n3−ε) time algorithm for computing the unit cost tree edit distance with

a guaranteed approximation ratio (for bounded degree trees). Though this result is not

practical, it would stimulate further developments. It should be noted that the current

best approximation ratio within near linear time algorithms for string edit distance is

around O(n1/3) [3] even though extensive studies have been done in recent years. Though

we consider the unit cost edit distances in this paper, the result can be extended as in [1]

for more general distances for which the ratio of the maximum cost of an edit operation

to the minimum cost of an edit operation is bounded by a constant for both strings and

trees.

2 String Edit Distance and Tree Edit Distance

Here we briefly review the string edit distance and the tree edit distance. We consider

strings over a finite or infinite alphabet ΣS. For string s and integer i, s[i] denotes the

ith character of s, s[i . . . j] denotes s[i] . . . s[j], and |s| denotes the length of s. We may

use s[i] to denote both the character itself and the position. An edit operation on a

string s is either a deletion, an insertion, or a substitution of a character of s. The edit

distance between two strings s1 and s2 is defined as the minimum number of operations

3

to transform s1 into s2, where only unit cost operations are considered in this paper. We

use EDS(s1, s2) to denote the edit distance between s1 and s2.

We also define an alignment between two strings. An alignment between two strings

s1 and s2 is obtained by inserting gap symbols (denoted by ‘-’ where ‘-’ /∈ ΣS) into or at

either end of s1 and s2 such that the resulting strings s′1 and s′2 are of the same length l,

where it is not allowed for each i = 1, . . . , l that both s′1[i] and s′2[i] are gap symbols. The

cost of alignment is given by cost(s′1, s
′
2) =

∑l
i=1 f(s′1[i], s

′
2[i]), where f(x, y) = 0 if x = y �=

‘-’, otherwise f(x, y) = 1. Then, an optimal alignment is an alignment with the minimum

cost. It is straight-forward to see that the cost of an optimal alignment is equal to the

edit distance. For example, consider strings s1 =“TCGTGCAT” and s2=“CGATCCT”.

Then, the following is an optimal alignment.

T C G - T G C A T

- C G A T C C - T

(a) (b) (c) (d)

In this case, (a) and (d) correspond to deletions, (b) corresponds to an insertion, and

(c) corresponds to a substitution. Thus, we have EDS(s1, s2) = 4.

Next, we define edit distance between trees (for the details, see [4]), where we only

consider the unit cost case. Let T be a rooted ordered tree, where “ordered” means that

a left-to-right order among siblings is given in T . Moreover, we assume that each node v

has a label label(v) from a finite alphabet ΣT . |T | denotes the size (the number of nodes)

of T . An edit operation on a tree T is either a deletion, an insertion, or a substitution

(see also Fig. 1):

Deletion: Delete a non-root node v in T with parent u, making the children of v become

the children of u. The children are inserted in the place of v as a subsequence in

the left-to-right order of the children of u.

Insertion: Complement of delete. Insert a node v as a child of u in T making v the

parent of a consecutive subsequence of the children of v′.

Substitution: Change the label of a node v in T .

4

A

B

AB C

B D

D

BA

A

B

AB B D

D

BA

deletion of ’C’

insertion of ’C’

T1 T2(A)

(B) A

B

AB C

B D

D

BA

B

B

AB B D

E

BA

D

T1 T2

Figure 1: (A) Insertion and deletion operations. (B) T2 is obtained by deletion of a node
with label ‘C’, insertion of a node with label ‘E’ and substitution for the root node. A
mapping corresponding to this edit sequence is also shown by dashed curves.

The edit distance between two trees T1 and T2 is defined as the minimum number

of operations to transform T1 into T2. We use EDT (T1, T2) to denote the edit distance

between T1 and T2.

It is known that there exists a close relationship between the edit distance and the

ordered edit distance mapping (or just a mapping) [4]. M ⊆ V (T1) × V (T2) is called a

mapping if the following conditions are satisfied for any pair (v1, w1), (v2, w2) ∈ M : (i)

v1 = v2 iff. w1 = w2, (ii) v1 is an ancestor of v2 iff. w1 is an ancestor of w2, (iii) v1 is to the

left of v2 iff. w1 is to the left of w2. Let ID(M) be the number of pairs having identical

labels in M . It is well-known that the mapping M maximizing ID(M) corresponds to

the edit distance, for which EDT (T1, T2) = |T1| + |T2| − |M | − ID(M) holds.

3 Euler String

Our transformation from a tree to a string is based on the Euler string [14], which is

obtained by traversing a tree using the Euler tour. In this section, we review the Euler

string and our previous result on the Euler string [1].

5

AT1

B

DC

D

E

B

DC

D

E
B C C D D B D EE D" "

s() = T1

Figure 2: Construction of an Euler string.

For simplicity, we treat each tree T as an edge labeled tree: the label of each non-root

node v in the original tree is assigned to the edge {u, v} where u is the parent of v. It

should be noted that information on the label on the root is lost in this case. But, it is

not a problem because the roots are not deleted or inserted. In what follows, we assume

that the roots of two input trees have identical labels (otherwise, we just need to add 1

to the distance).

The depth-first search traversal of T (i.e., visiting children of each node according to

their left-to-right order) defines an Euler tour of a tree T . That is, the depth-fist search

gives an Euler path beginning from the root and ending at the root where each edge

{w, v} is traversed twice in the opposite directions. We use EE(T) to denote the set

of directed edges in the Euler tour of T . Let ΣS = {a, a|a ∈ ΣT}, where a /∈ ΣT . Let

(e1, e2, . . . , e2n−2) be the sequence of directed edges in the Euler path of a tree T with n

nodes. From this, we create the Euler string s(T) of length 2n − 2. Let e = {u, v} be an

edge in T , where u is the parent of v. Suppose that ei = (u, v) and ej = (v, u) (clearly,

i < j). We define i1(e) and i2(e) by i1(e) = i and i2(e) = j, respectively. That is, i1(e)

and i2(e) denote the first and second positions of e in the Euler tour, respectively. Then,

we define s(T) by letting s(T)[i1(e)] = L(e) and s(T)[i2(e)] = L(e), where L(e) is the

label of e (see also Fig. 3).

Proposition 1 [1, 19] s(T1) = s(T2) if and only if EDT (T1, T2) = 0. Moreover, we can

reconstruct T from s(T) in linear time.

Lemma 1 [1] EDS(s(T1), s(T2)) ≤ 2 · EDT (T1, T2).

6

T1 T2

B D

A C

B D

A C

B D

A C

D

B C

A D

B C

A D

B C

A D

Figure 3: Example for the case of EDT (T1, T2) = Θ(h) · EDS(s(T1), s(T2)) [1].

Proof. We associate each edit operation on T1 with two edit operations on s(T1). For a

deletion of e (i.e., deletion of the deeper node of the endpoints of e), we associate deletions

of L(e) and L(e). For an insertion of e, we associate insertions of L(e) and L(e). For

a substitution of e to e′, we associate substitutions of L(e) and L(e) to L(e′) and L(e′),

respectively. Clearly, the resulting sequence transforms s(T1) to s(T2) and the cost is

2 · EDT (T1, T2). �

Lemma 2 [1] EDT (T1, T2) ≤ (2h + 1) · EDS(s(T1), s(T2)), where h is the minimum

height of two input trees.

It was shown in [1] that this bound is tight up to a constant factor. Fig. 3 gives an

example such that EDS(s(T1), s(T2)) = 4 and EDT (T1, T2) = Θ(h).

4 Modified Euler String

As shown in the above, the approximation ratio of the tree edit distance through the edit

distance between the Euler strings is not good if the minimum height of input trees is

high. In order to improve the worst case approximation ratio, we modify labels of some

edges in the input trees so that structures of small subtrees are reflected to the labels.

For example, we consider trees shown in Fig. 3. Suppose that label “AC” is assigned

7

special
node

v

u
special
edge

special
node

downward path upward path

small subtree

n(size)<

large subtree
> n(size)

Figure 4: Special nodes, special edges, and large subtrees.

to each edge just above each node having children with labels ‘A’ and ‘C’. Similarly,

suppose that labels “BD”, “AD” and “BC” are assigned to appropriate edges. Then,

EDS(s(T1), s(T2)) = Θ(h) should hold. But, changes of labels should be performed

carefully in order to keep distance distortion not too large.

Before explaining changes of labels, we need several definitions (see also Fig. 4). Let

size(v) be the size (the number of nodes) of the subtree induced by v and its descendants.

A subtree rooted at v is called large if size(v) > α, where α is a parameter defined as

α = n1/2. Otherwise, it is called small. We call wi a special node if size(wi) ≤ α and

size(v) > α where v is the parent of wi. Then, we have the following proposition, where

depth(v) denotes the depth of v (i.e., the length of the path from the root to v).

Proposition 2 For each node v in T , there exists at most one special node in the path

from the root to v. Moreover, if v is a leaf and depth(v) ≥ α, there exists exactly one

special node in the path.

Proof. Let (v0 = r, v1, v2, · · · , vk = v) be the path from the root to v. Since size(v0) >

size(v1) > size(v2) > · · · > size(vk) holds, at most one vi can satisfy size(vi−1) > α ≥
size(vi).

If v is a leaf and depth(v) ≥ α, there must exist vi satisfying size(vi−1) > α ≥ size(vi)

because size(v0) ≥ α + 1 > α and size(vk) = 1. �

8

For a node v in T1 or T2, id(v) is an integer such that id(v) = id(v′) if and only if the

subtree induced by v and its descendants is isomorphic (including labels) to the subtree

induced by v′ and its descendants. Since we only consider subtrees induced by some node

v in T1 or T2 and its descendants and we assume that ΣT is a finite alphabet (i.e., |ΣT |
is a constant), all id(v)’s can be computed in O(n) time [11], where n = max{|T1|, |T2|}.
Furthermore, each id(v) can be an integer between 1 and 2n and thus can be stored in a

word (i.e., O(log n) bits). In the following, we briefly review the algorithm for computing

id(v). For details, refer to [11].

We construct a suffix tree T for a string s(T1)·“$”·s(T2)· “#”, where ‘$’ and ‘#’ are

letters not appearing in ΣS, and x · y denotes the concatenation of x and y. Then, each

suffix staring from a letter in ΣT corresponds to a subtree in T1 or T2. For each leaf l

in T corresponding to such a suffix, let sz(l) be the size of the corresponding subtree in

T1 or T2. Let a(l) be the first node v, encountered along the path from the root of T to

the leaf l, such that the length of the substring corresponding to the path from the root

to a(l) is no less than 2 · sz(l). Then, it is shown in [11] that the subtrees corresponding

to l1, l2, . . . , lk are isomorphic to each other if and only if a(l1) = a(l2) = · · · = a(lk).

Thus, by identifying all a(l)’s, we can partition all subtrees into the equivalent classes.

Identification of all a(l)’s can be done by using the depth first search traversal of T . When

the first leaf l corresponding to a subtree is found, we find the node a(l) by coming back

from l to the root of T . Next, we visit all descendants of a(l) and put leaves corresponding

to subtrees in T1 and T2 into the same class. Then, we delete a(l) and all of its descendants

and resume the depth first search traversal. It is shown in [11] that this algorithm works

in O(n) time for a finite alphabet, including the construction of a suffix tree. After the

set of equivalent classes is obtained, we can assign different integers to different classes in

O(n) time. Therefore, we can assign id(v) to all nodes in O(n) time.

Using id(v), we define edge labels, with which the modified Euler strings are con-

structed. Let v be a node in T1. Let u be the parent of v and w1, . . . , wk be the children

of v (Similarly, we define v′, u′, and w′
1, . . . for T2). If at least one of wi’s is special,

{u, v} is called a special edge. Otherwise, {u, v} is not special and the original label

(i.e., label in ΣT) of v is assigned to {u, v}. For a special edge {u, v}, let wi1 , . . . , wih

be the special children of v. Let id′(v, wi1, . . . , wih) be an integer number such that

9

id′(v, wi1, . . . , wih) = id′(v′, w′
i1, . . . , w

′
il
) if and only if h = l, label(v) = label(v′), and

id(wij) = id(w′
ij
) holds for all j = 1, . . . , h. Then, we assign id′(v, wi1, . . . , wih) to {u, v}

where we assume w.l.o.g. (without loss of generality) that id′(. . .) /∈ ΣT . It should be

noted that if v has at least one special children, information of the subtrees of the special

children is reflected to the label of {u, v}.
These indices can be computed in O(n) time as follows. We simply sort all tuples

(i.e., all (label(v), id(wi1), . . . , id(wih))’s) in lexicographic order. Since we assume that

the maximum degree is bounded, each tuple is a sequence of at most constant number

of integers between 1 and 2n + |ΣT |. Furthermore, each label of a special edge does not

depend on labels of other special edges. Therefore, we can obtain the sorted list of tuples

in O(n) time by performing radix sort only once.

Using the above labeling of edges, we create a modified Euler string ss(T) as in s(T).

It should be noted that ss(T) and s(T) differ only on labels of special edges. It is also

worthy to note that ss(T1) and ss(T2) can be constructed in O(n) time from T1 and T2. In

what follows, we consider editing operations on T1 and T2, by which the number of nodes

in trees may change. However, α is fixed to α = n1/2 = (max{|T1|, |T2|})1/2 throughout

editing operations.

Proposition 3 Substitution, insertion or deletion of a node in T1 or T2 affects the label

of at most two special edges.

Proof. Since there exists at most one special node in the path from the root to each node

v (though there may exist many special edges), each edit operation can change the label

of at most one existing special edge, including the case where a special edge becomes

non-special. In addition, at most one non-special edge in the path may become special.

Therefore, each edit operation affects the label of at most two special edges. �

5 Analysis

In this section, we show the following main theorem using several propositions and lemmas,

where we assume that the maximum degree of input trees are bounded by a constant.

In what follows, we may identify a directed edge (u, v), a node v and the corresponding

letter in ss(T) if there is no confusion.

10

Theorem 1 1
O(n3/4)

· EDT (T1, T2) ≤ EDS(ss(T1), ss(T2)) ≤ 6 · EDT (T1, T2).

5.1 Upper Bound of String Edit Distance

First, we prove the latter half of Theorem 1, which is easily done as in Lemma 1.

Lemma 3 EDS(ss(T1), ss(T2)) ≤ 6 · EDT (T1, T2).

Proof. As in the proof of Lemma 1, we associate each edit operation on T1 with two

edit operations on ss(T1). But, in this case, additional substitutions are required because

labels of some edges may change. From Proposition 3, it is seen that labels of at most two

edges change per edit operation, which correspond to substitutions of 4 letters in ss(T1).

�

It is to be noted that both Lemma 3 and Proposition 3 hold for any α ≥ 1. Therefore,

the above lemma holds even when EDT (T1, T2) is O(n). In order to prove the former half

of Theorem 1, it is enough to consider the case where |T1| and |T2| are Θ(n). Otherwise

||T1| − |T2|| > cn would hold for some constant c and thus the former half obviously

holds since EDS(ss(T1), ss(T2)) > cn holds. Therefore, we can assume w.l.o.g. that α is

Θ(|T1|1/2) = Θ(|T2|1/2).

5.2 Construction of Tree Mapping from String Alignment

In order to prove the rest half inequality, we show a procedure for obtaining a mapping

between T1 and T2 from an (not necessarily optimal) alignment ALS between ss(T1) and

ss(T2) with cost d. Before showing details of the procedure, we describe an outline.

We first create a mapping M1 that is induced by corresponding downward paths, where

downward (and upward) paths are to be defined later. Next, we modify M1 to M2 so that

labeling information on special edges is reflected (i.e., mapping pairs for right subtrees

rooted at special children are added to M1). However, such mappings (both M1 and M2)

may contain pairs violating ancestor-descendant relations. Thus, we delete inconsistent

pairs from M2 (the resulting mapping is denoted as M3). Finally, we add large subtrees

included in upward paths, then delete some inconsistent pairs from M3, and get the desired

mapping M4.

11

B

A

B

C

B A

C

C

A B

v2

v1

v3

v4

v5

v6

v7

v8

v9

v10
v11

B

A

B

C

B A

C

C

A D

u2

u1

u3

u4

u5

u8

u9

u10

u11 u12

A

u6

u7

B AB B AC B B AC C AC B C AAB
B AB B AC B AAB AC C AC B C AAD

ALS

v12

B

DC
B B B C

T1 T2

P1

P2

P3

P’1
P’2

P’3

p 1
1

p 2
1

p 2
2

p 1
2

Figure 5: Construction of M1 from ALS. Regions surrounded by dashed lines in
ALS correspond to maximal substring pairs. The path corresponding to p1

2 (resp.
p2

2) is divided into P2 and P3 (resp. P ′
2 and P ′

3), where P2 and P ′
2, and P3

and P ′
3 are twins respectively. The path corresponding to p1

1 (resp. p2
1) is di-

vided into P1 (resp. P ′
1) and an empty path. P1, P ′

1, P3 and P ′
3 are down-

ward paths, whereas P2 and P ′
2 are upward paths. P1 contains central edges of

(v1, v2), (v2, v5), (v5, v6), and P2 contains central edges of (v6, v5), (v5, v2), (v2, v1). M1 =
{(v2, u2), (v3, u3), (v4, u4), (v5, u5), (v6, u6), (v9, u10), (v10, u11)}.

5.2.1 Construction of M1

In this first phase, we create a mapping M1 from ALS. M1 acts as a backbone for the

whole mapping. In order to explain the construction of M1, we define downward paths

and related terms.

An edge (u, v) is called a downward edge if v is a child of u. Otherwise, (u, v) is called

an upward edge. For each downward edge e, e denotes the upward edge corresponding to

e (i.e., e = (v, u) if e = (u, v)). For each edge e = (u, v), we let src(e) = u and dst(e) = v.

Let {(p1
1, p

2
1), (p

1
2, p

2
2), . . .} be the set of maximal substring pairs (p1

i from ss(T1) and

p2
i from ss(T2)), each of which corresponds to a maximal consecutive region (with length

at least 2) in ALS without insertions, deletions or substitutions. Note that p1
i and p2

i

correspond to isomorphic paths in T1 and T2. We divide each path corresponding to pj
i

into two parts (see also Fig. 4 and Fig. 5): upward path and downward path, where

12

one path may be empty. Let p1
i [k] be the first letter corresponding to a downward edge

(u, v) such that a letter corresponding to (v, u) does not appear in p1
i . Then, (p1

i [1 . . . k −
1], p2

i [1 . . . k − 1]) and (p1
i [k . . .], p2

i [k . . .]) are the upward segment pair and the downward

segment pair, respectively. Two paths P in T1 and P ′ in T2 corresponding to an upward

segment pair are called upward paths, and P (resp. P ′) is called a twin of P ′ (resp.

P). Two paths corresponding to a downward segment pair are called downward paths,

and twins are defined in the same way as above. A subtree that is fully included in a

downward (resp. upward) path is called a left subtree (resp. right subtree). An edge (u, v)

in a downward (resp. upward) path is called a central edge if (v, u) does not appear in the

same path. Thus, central edges are the edges (in downward paths and upward paths) not

appearing in any left or right subtrees. For a downward path (resp. an upward path) P , a

downward central path (resp. upward central path) denotes the path consisting of central

edges in P and height(P) denotes the number of edges in this central path. It is possible

that there is no central edge in an upward path (i.e., height(P) = 0), where a downward

path must contain at least one central edge from the definition. In such a case, the path

consists of a large or small subtree. In the following, such a subtree is regarded as a left

subtree and the path corresponding to the subtree is regarded as a downward path. It is

to be noted that the roots of such subtrees are not included M1 since these roots are not

destinations of downward edges (see also P2 and P ′
2 in Fig. 9).

Suppose that ss(T1)[i] corresponds to ss(T2)[i
′] in any downward segment pair by

means of ALS, and downward edges (u, v) and (u′, v′) correspond to ss(T1)[i] and ss(T2)[i
′],

respectively. Then, we let M1 be the set of such (v, v′)’s defined as above (see Fig. 5 for an

example). If there exist pairs of twin downward paths consisting of only subtrees, pairs

of the roots of the corresponding subtrees are added to M1.

It should be noted that in our previous work [1], we construct a mapping between T1

and T2 from all corresponding pairs of left and right subtrees, which is shown to be a

valid mapping. From that result, it is seen that mapping pairs in M1 corresponding to

left subtrees are consistent with each other. Thus, the inconsistency will be caused by

central edges and (small and large) right subtrees that are to be added in constructions of

M2 and M4. The following proposition implies that we only need to take care of nodes in

downward edges, left subtrees and right subtrees since the order of approximation ratio

13

T1 u

v

A B C D

T2 u’

A’ B’ C’ D’

v’

w w’

downward
path

upward
path

M1

M2 - M1

large large

Figure 6: Addition of mapping pairs to M2. In this case, mapping pairs between C and C ′,
and between D and D′ are added to M2. Each cross means that there exist insertion(s),
deletion(s) or substitution(s) around the point.

does not change if we ignore the other O(d) nodes.

Proposition 4 The number of nodes not appearing in destinations (i.e., dst(e)) of down-

ward central edges, left or right subtrees is O(d).

Proof. Since there are O(d) insertions, deletions and substitutions, the number of edges

not appearing in downward paths or upward paths is O(d). The nodes not on these edges

must be on downward central edges or in left or right subtrees. �

5.2.2 Construction of M2

M1 gives a mapping for left subtrees and central edges, but does not give a mapping

for right subtrees. In the construction of M2, mapping pairs for small right subtrees are

added, whereas mapping pairs for large right subtrees are added in the construction of

M4.

Let e = (u, v) and e′ = (u′, v′) be a pair of corresponding central special edges in M1

(i.e., (v, v′) ∈ M1). Suppose that there exists a node w in T1 satisfying the following

conditions (see Fig. 6):

(i) (u, v) and (v, w) belong to the same downward path, (v, u) and (w, v) belong to the

same upward path,

14

(ii) the subtree rooted at w is large.

Then, there must exist a node w′ in T2 satisfying analogous conditions because (u, v) and

(u′, v′) are special edges having the same label. It is to be noted that from condition (i),

there must exist insertion(s), deletion(s) or substitution(s) in the large subtree rooted at

w. We add mapping pairs to M1 that are induced by the small right subtrees rooted

at the special children of v and v′, where the correspondence between right subtrees in

T1 and T2 are given by id’s of the special children. Since we assume that the maximum

degree is bounded, detection of corresponding special children can be done in a constant

time per special edge. We let the resulting mapping be M2.

Some examples explaining the above conditions are given in Fig. 7. In case (a) and

case (b), mapping pairs are added. In case (c), mapping pairs are not added because w is

a root of a small subtree. In case (d), mapping pairs are not added because (w1, v) and

(v, u) belong to different upward paths and (u, v) and (v, w2) belong to different downward

paths. As shown below, the number of central edges such as in (c) and (d) is not so large.

Proposition 5 The number of central edges which do not satisfy the condition in the

construction of M2 is O(d).

Proof. We prove the proposition for central edges in T1. The proposition can be proven

for central edges in T2 in an analogous way and thus the total number should still be

O(d).

First, we consider the case that condition (i) is violated for a central edge (u, v) (see

also Fig. 7 (d)). Then, v must have at least two subtrees in each of which there exist

insertion(s), deletion(s) or substitution(s). Since the total number of insertions, deletions

and substitutions is O(d), we can have O(d) central edges that do not satisfy condition

(i) (recall that a tree such that every internal node has at least two children can have at

most 2l − 1 nodes where l is the number of leaves).

Next, we consider condition (ii). For a central edge (u, v) that violates condition (ii),

we associate the small (left or right) subtree rooted at a special child of v in which there

exist insertion(s), deletion(s) or substitution(s) (see also Fig. 7 (c)). This small subtree

can be associated with at most one central edge. Since the total number of insertions,

deletions and substitutions is O(d), we can have O(d) central edges that do not satisfy

condition (ii). �

15

(a) (b)

(c)

u

v

large large

w

u

v

large

w

u

v

large

w

u

v

large large

(d)

w1 w2

Figure 7: Examples for explaining the conditions used in the construction of M2. Mapping
pairs for right subtrees are added to M2 in case (a) and case (b), whereas these are not
added in case (c) or case (d).

5.2.3 Construction of M3

In the construction of M3, we delete inconsistent pairs. Since M1 is constructed from

downward paths obtained from string alignment, which preserve left-right relationships,

and M2 is constructed from central special edges, left-right relationships between mapping

pairs are preserved. Thus, we focus on violation of ancestor-descendant relationships.

Let (v, v′) ∈ M1 be a pair of the highest nodes in a pair of twin downward paths,

where the highest node in any downward path is determined uniquely. Let P̂v (resp. P̂v′)

be the set of nodes in the path from the root to v (resp. v′). We delete any (u, u′) ∈ M1

from M2 if either (u ∈ P̂v and u′ /∈ P̂v′) or (u /∈ P̂v and u′ ∈ P̂v′) holds. We also delete

16

T1

u

v

r
T2

u’

v’

r’

p p’

q q’

M2

Figure 8: Deletion of inconsistent mapings from M2 in the construction of M3. Bold lines
correspond to P̂v and P̂v′ .

small right subtrees rooted at children of u and u′ (see Fig. 8). In this paper, deletion of

a subtree (resp. a region or a node) means that all mapping pairs containing nodes in the

subtree are deleted from the current mapping set, but does not mean that the subtree

is deleted from the tree. Addition of a subtree is defined analogously. We execute this

deletion procedure for all downward segment pairs in an arbitrary order, where we allow

that the same mapping pairs are deleted multiple times. Then, the resulting mapping M3

is determined uniquely. M3 is a valid mapping as shown below.

Proposition 6 M3 is a valid mapping between T1 and T2.

Proof. Since mapping pairs between small right subtrees are obtained from central special

edges, these are consistent with other mapping pairs if the corresponding central special

edges are consistent. Therefore, in the following, we focus on inconsistency caused by M1.

Mapping pairs created by a single pair of twin downward paths are consistent with

each other since twin downward paths are isomorphic. Therefore, inconsistency is caused

by (u, u′) ∈ M1 and (w, w′) ∈ M1 belonging to different pairs of twin downward paths.

Suppose that u is an ancestor of w but u′ is not an ancestor of w′. Then, u must be

an ancestor of the node v which corresponds to the highest node of the downward path

containing w, but u′ cannot be an ancestor of the node v′ which corresponds to the highest

17

T1 T2

u2

u1

u3

P’1
P’2

A

A

B

B

v1

A

P1 A

B

B

v2

v3

v4
P2

A A B B
A A B

ALS A A B
B
B

B
B

A A

p1
1

p2
1

p1
2

p2
2

u5

u4

v5

Figure 9: An example of construction of M3. P1 and P ′
1 are downward paths ob-

tained from (p1
1, p

2
1), and P2 and P ′

2 are downward paths obtained from (p1
2, p

2
2). M1 =

M2 = {(v2, u2), (v3, u3), (v4, u4), (v5, u5)} is shown by bold dotted lines, from which
M3 = {(v4, u4), (v5, u5)} is obtained by deleting (v2, u2), (v3, u3).

node of the downward path containing w′ (see also Fig. 8). Therefore, it is enough to

examine consistency between all pairs (u, u′) in M1 and all pairs (v, v′) of highest nodes

in twin downward paths. Since the other cases can be proven in an analogous way, the

proposition holds. �

It should be noted that left subtrees are never deleted since any node in a left subtree

cannot be an ancestor of nodes not in the subtree. Mapping pairs between left subtrees

will be consistent with other pairs in M3 (and in M4).

Fig. 9 gives an example of construction of M3. In this case, (v2, u2) is deleted from

M2 since v2 ∈ P̂v4 but u2 /∈ P̂u4 . Similarly, (v3, u3) is deleted from M2. The readers

may think that too many mapping pairs are deleted if the paths corresponding to AA are

much longer than the paths corresponding to BB. However, in such a case, ALS should

18

have many unaligned A’s and thus d should have been so large that d ·O(n4/3) = O(n) is

satisfied (recall that the tree edit distance is always O(n)). This intuition is to be proven

concretely in Lemma 10.

5.2.4 Construction of M4

Finally, we add all large subtrees (i.e., subtrees with more than n1/2 nodes) that are fully

included in upward paths, and then delete inconsistent mapping pairs.

In the following, we assume that the number of large subtrees attached to a node is

at most one. If multiple large subtrees are attached to a node, we can regard these large

subtrees as one large subtree. In this final phase, we consider the following two cases (see

Fig. 10):

(A) the number of edges in an upward path is at most 2d,

(B) the number of edges in an upward path is greater than 2d, where we assume w.l.o.g.

that all the central edges of an upward path are shared by the central edges in a

downward path (otherwise, we can cut the upward path into multiple upward paths

without affecting the order of the approximation ratio since the total number of

upward paths remains O(d)).

As to be shown later, there is some periodicity in case (B), which plays an important

role in both construction and analysis of M4. In all cases, mapping pairs between large

right subtrees, which are induced by twin upward paths, are added to M4. None of these

added pairs is deleted. Instead, mapping pairs between some nodes in central paths and

small right subtrees are deleted. Therefore, we only describe deletion procedures in the

following.

For case (A), we only show the procedure for the case where only one large subtree

is included in an upward path (see Fig. 11). This procedure is referred as the cleanup

procedure. Extension to the other cases is straight-forward since it is enough to repeat the

same procedure. Let z . . . z (resp. z′ . . . z′) be the sequence of directed edges corresponding

to the large subtree of T1 (resp. T2). Let x = (u, v) ∈ EE(T1) be a parent of z, and let

y′ = (u′, v′) ∈ EE(T2) be a parent of z′ (recall that EE(T) denotes the set of directed

edges in the Euler tour of T). Let x′ and y correspond to x and y′ in downward paths,

19

A

B

A

B

A

B

A

B

x x

A

B

A

B

A

B

A

B

top
block

x’

y’

(A) (B-1)
T1 T2 T1

A

B

A

B

A

B

A

B

T2

A

B

A

B

A

B

A

B

(B-2)
T1

x

y

z
z

T2

y’

x’

z’
z’

bottom
block

A

B

A

B

Figure 10: Construction of M4. Gray triangles denote large subtrees, and thin dashed
lines denote (parts of) M3. (A) Gray regions are deleted. (B-1) Gray regions and central
edges (shown by bold lines) are deleted, and mappings between small right subtrees are
modified. (B-2) For each pair of large right subtrees, gray regions are deleted as in case
(A). Different from case (A), the size of each deleted region is O(dn1/4).

respectively. We assume w.l.o.g. that y′ is a descendant of x′. Then, we delete v′ and ith

ancestors of v′ for i = 1, 2, . . . , d along with attached small right subtrees (see Fig. 11).

Though the cleanup procedure is very simple, analysis is a bit involved. In the following,

we show the correctness of the procedure.

For two strings s1 and s2, s1 · s2 denotes the concatenation of s1 and s2. For a string

s, #0(s) and #1(s) denote the number of letters corresponding to downward edges and

upward edges, respectively. Let Δ(s) = #1(s) − #0(s).

Proposition 7 EDS(s1, s2) ≥ |Δ(s1) − Δ(s2)|.

Lemma 4 Let s2 = s1
2 · s2

2. Suppose that Δ(s1
2) = h > 0 holds, and Δ(s1

1) ≤ 0 holds for

any prefix s1
1 of s1. Then, EDS(s1, s2) ≥ h holds.

Proof. From the definition of string edit distance,

EDS(s1, s2) = min{EDS(s1
1, s

1
2) + EDS(s2

1, s
2
2)}

20

T1

x

y

T2

y’

x’

M3

z

z

z’
z’

u’

v’

u

v

T1

x

y

T2

y’

x’

M4

Figure 11: Details of case (A) in M4. In this case, mapping pairs between large checked
triangles are added and mapping pairs between nodes in central edges and small right
subtrees are deleted.

where the minimum is taken over all partitions s1 = s1
1 · s2

1 of s1. Since EDS(s1
1, s

1
2) ≥ h

holds for any partition s1 = s1
1 · s2

1 from the assumption and Proposition 7, we have

EDS(s1, s2) ≥ h + EDS(s2
1, s

2
2) ≥ h.

�

Lemma 5 Suppose that only a pair of identical large subtrees is added in the construction

of M4 and the cleanup operation is performed. Then, the resulting mapping is valid.

Proof. It is to be noted that mapping pairs corresponding to left subtrees and large

right subtree are consistent with each other [1]. Thus, inconsistency is caused only when

ancestors of v (resp. v′) (along with attached small right subtrees) are mapped to non-

ancestors of v′ (resp. v). In this proof, we consider mapping pairs only for ancestors of

v. Mapping pairs for ancestors of v′ can be treated in an analogous way. We need to

consider two cases (see also Fig. 12): (A-1) ancestors of v are mapped to descendants of

v′, (A-2) ancestors of v are mapped to non-descendants of v′.

First we consider the case of (A-1). Let p and q be the (d + 1)th and dth ancestors of

v, respectively. Suppose that p is mapped to v′ in M3. Suppose also that q is mapped to

21

T1

x

T2

z

d
z’

z’

u
v

v’
u’

z

y’

s1 s2

T1

x

T2

z

d

u
v

z

s1 s2

z’

z’

(A-1) (A-2)

x’

p

w’

v’

u’

q

p

p’
q’

q’

Figure 12: Illustration of the proof of Lemma 5.

a child q′ of v′ in M3. Modification of the proof for the other cases (e.g., p is mapped to

a descendant of v′) is straight-forward.

Let s1 be a substring of ss(T1) starting from (p, q) and ending just before z. Let s2 be a

substring of ss(T2) starting from (v′, q′) and ending just before z′. Then, Δ(s1) = −(d+1)

and Δ(s2) = 0 hold. Since (p, q) and z correspond to (v′, q′) and z′ respectively in ALS,

we have from Proposition 7:

d ≥ EDS(s1, s2) ≥ | − (d + 1) − 0| = d + 1.

This is a contradiction. Thus, p cannot be mapped to v′ (or its descendant). Since at most

d ancestors of v can be mapped to v′ or its descendants, the cleanup operation removes

the inconsistency in the case of (A-1).

Next we consider the case of (A-2). In this case, we assume w.l.o.g. that v is mapped

to w′ which is not an ancestor or descendant of v′, or v′. Let x′ be the incoming edge to

w′. Let p be the (d + 1)th ancestor of v. Suppose that p is mapped to a node p′ which is

an ancestor w′ but is not an ancestor of v′. Modification of the proof for the other cases

is straight-forward.

Let q′ be the parent of p′. Let s1 be a substring of ss(T1) starting just after x and

ending just before z. Let s2 be a substring of ss(T2) starting just after x′ and ending just

22

before z′. Let s1
2 be the prefix of s2 ending at (p′, q′). Then, Δ(s1

1) ≤ 0 holds for all prefix

s1
1 of s1, and Δ(s1

2) ≥ d + 1 holds. Since x and z correspond to x′ and z′ respectively in

ALS, we have from Lemma 4:

d ≥ EDS(s1, s2) ≥ d + 1.

This is a contradiction. Thus, p cannot be mapped to a non-ancestor of v′. Therefore,

the cleanup operation removes the inconsistency also in the case of (A-2). �

Before considering case (B), we need the following proposition (see also Fig. 10 (B-1)),

which can be shown by counting the numbers of downward edges and upward edges in

ALS, where depth(e) denotes the depth of v for a downward edge e = (u, v) (resp. an

upward edge e = (v, u)).

Proposition 8 Suppose that a downward edge x ∈ EE(T1) corresponds to a downward

edge x′ ∈ EE(T2) in ALS. Then, |depth(x)− depth(x′)| ≤ d holds. Furthermore, suppose

that x corresponds to an upward edge y′ ∈ EE(T2) in ALS. Then,

|depth(x′) − depth(y′)| ≤ d

holds.

For case (B), central paths should have periodicity because upward central paths match

with identical downward central paths at different positions. From Proposition 8, we can

see that the length of a period is at most d. That is, central paths are repetitions of a chain

of length at most d. Suppose that x and x correspond to x′ and y′ in ALS, respectively

(see also Fig. 10). We assume w.l.o.g. that the downward paths begin with x and x′ in

T1 and T2 respectively, and y′ is a descendant of x′. Then, the subtree consisting of the

nodes in the central path between dst(x′) and dst(y′) and the nodes in their small right

subtrees is called a block. A subtree isomorphic to the block is also called a block. It can

be seen that blocks appear repeatedly in the vertical direction in both T1 and T2. We

consider the following two cases:

(B-1) the size of a block is greater than β, where β = dn1/4.

In this case, the number of the central edges in an upward path is O(n3/4) because

23

M3 M4
T1

x

T2

x’

A

B

A

B

A

B

A

B

T1

x

T2

x’

A

B

A

B

A

B

A

B

Figure 13: Details of case (B1) in M4, where the upper half part is only shown in this
figure. Bold dotted lines denote mappings, and gray triangles denote large right subtrees.
Gray regions and central edges are deleted. Furthermore, mappings between small right
subtrees are modified.

the height of each block is at most d, the height of an upward path is at most n,

and

β · #(central edges in the upward path)

d
≤ n

holds from the definition of the block. We delete the top block from T2, the bottom

block from T1, the central edges in the current downward paths from T1 and T2,

small right subtrees attached to the top node in the top block of T1 and small

right subtrees attached to the bottom node in the bottom block of T2 (see Fig. 13).

Furthermore, we modify the mapping between the remaining small right subtrees so

that mapping pairs between small right subtrees are consistent with those between

large right subtrees. In other wards, mapping pairs between left subtrees are induced

by the twin downward paths, whereas mapping pairs between right subtrees are

induced by the twin upward paths. It is to be noted that in Fig. 13, the left subtree

attached to the top ‘A’ in T1 is mapped to the left subtree attached to the top ‘A’

in T2, whereas the small right subtree attached to the top ‘A’ in T1 is mapped to

the small right subtree attached to the second top ‘A’ in T2. However, there is no

inconsistency because central edges are deleted.

24

(B-2) the size of a block is at most β.

In this case, for each pair of corresponding large right subtrees, we perform the

cleanup procedure as in case (A). However, different from case (A), O(β) = O(dn1/4)

nodes are deleted per pair since the nodes in at most two consecutive blocks are

deleted per large right subtree.

As in the case of (A), we can see that the resulting mapping is valid. Therefore, we

have:

Proposition 9 M4 is a valid mapping between T1 and T2.

5.3 Analysis of Lower Bound of String Edit Distance

Now we analyze the lower bound of EDS(ss(T1), ss(T2)). We estimate the cost (i.e.,

the number of corresponding edit operations) of M4, assuming that the cost of ALS is

d = EDS(ss(T1), ss(T2)). For that purpose, we estimate the number of mapping pairs

deleted or ignored in the construction. For two edges x = (u, u′) and y = (v, v′), dist(x, y)

denotes the length of the shortest path between u and v. For two nodes u and v, dist(u, v)

denotes the length of the shortest path between u and v.

It is straight-forward to see the following propositions (see also Proposition 4).

Proposition 10 The number of nodes not appearing in any downward or upward path is

O(d).

Proposition 11 The number of downward (resp. upward) paths is O(d).

Proposition 12 The total number of nodes in downward paths that do not appear in M1

is O(d).

Due to the above propositions, we only need to consider hereafter upward paths and

deleted mapping pairs.

25

d+1x

d+1

x x’

v
T1 T2

x’

Figure 14: Explanation of Lemma 7. y′ should be located in the gray region.

Lemma 6 The number of nodes in the small subtrees in the upward paths that are not

included in M2 is O(dn1/2).

Proof. It is seen from Proposition 5 that the number of central special edges that are not

taken into account for M2 is O(d). Since we assume that the maximum degree is bounded

by a constant, the number of nodes in the small right subtrees rooted at special children

of a special edge is O(n1/2). There may exist small subtrees that are fully included in

the upward paths but are not attached to special edges. But, the total size of such small

subtrees per upward path is O(n1/2). �

Next, we estimate the number of deleted mapping pairs in constructing M3. For that

purpose, we show using some lemmas that not so many nodes are deleted from central

edges of each downward path.

Lemma 7 Suppose that a downward edge x ∈ EE(T1) corresponds to a downward edge

x′ ∈ EE(T2) in ALS . Suppose also that an upward edge x ∈ EE(T1) corresponds to an

upward edge y′ ∈ EE(T2). Then, dist(x′, y′) ≤ 3d + 3.

Proof. From Proposition 8, |depth(x) − depth(y′)| ≤ d holds. Let v be the ancestor of

src(x′) such that dist(v, src(x′)) = d + 1 (If there does not exist such a node, we let v

be the root). From the above fact, it is seen that y′ is in the subtree rooted at v and

depth(y′)− depth(v) ≤ 2d + 2 holds (see Fig. 14). Since dist(v, src(x′)) ≤ d + 1 holds, we

have the lemma. �

26

Lemma 8 Let x ∈ EE(T1) and y ∈ EE(T1) be downward edges belonging to the same

downward central path where x is an ancestor of y. Suppose that x and y belong to the

same upward central path. Let x′, y′, z′ and w′ in EE(T2) correspond in ALS to x, y, y

and x, respectively. Moreover, suppose that depth(y) − depth(x) > 100d. Then, at most

20d nodes are deleted from the downward central (sub)path beginning from x and ending

at y in the construction of M3.

Proof. From Lemma 7, we see that the central upward path from z′ to w′ must have

an overlap with the central downward path from x′ to y′ with the amount of at least

dist(x, y) − 20d nodes (see Fig. 15).

Let v′ be the lowest common ancestor of y′ and z′. Let v be the node in T1 such that

(v, v′) ∈ M2, which also means (v, v′) ∈ M1 since these nodes belong to central edges.

Let (u, u′) ∈ M1 be a pair of beginning nodes of twin downward paths such that u is a

descendant of dst(y). Then, u′ must be a descendant of v′ because u′ is in the part of

Euler path beginning from y′ and ending at z′. Therefore, (u, u′) cannot delete any node

in the consecutive part of a downward central path beginning from dst(x) and ending at

v.

Since w′ and z′ belong to the same upward central path, both src(w′) and dst(w′) are

ancestors of dst(z′). Thus, we consider two cases: (i) dst(w′) is a descendant of dst(x′),

(ii) dsp(w′) is a ancestor of dst(x′) or w′ coincides with x′. We let t′ = src(w′) in case of

(i), otherwise we let t′ = dst(x′). Let t be the node in T1 such that (t, t′) ∈ M1. Then, any

downward path in T1 (resp. T2) begins either from a descendant of dst(y) (resp. v′) or

from a non-descendant of dst(x) (resp. t′). In the former case, any central edge between t

and v (resp. between t′ and v′) cannot be deleted as explained before. In the latter case,

neither t or t′ is an ancestor of the beginning node of a downward path. Therefore, any

node in the central edges between t and v (resp. between t′ and v′) cannot be deleted.

Since the number of nodes between t and v (resp. t′ and v′) is at least dist(x, y)−20d,

the lemma holds. �

It should be noted that 100d and −20d are determined with large margin since we

discuss in this paper the order of the approximation ratio.

Next, we bound the number of nodes appearing in M1 which may be deleted in the

construction of M3. Let P = (vi1 , vi2, . . . , vik) be a consecutive part of a downward central

27

T1 T2x x

y y

x’

y’ z’

w’

v’

> dist(x,y)-20d

t’t

v

Figure 15: Explanation of Lemma 8.

path in T1. Let P ′ = (ui1 , ui2, . . . , uik) be the corresponding part of a downward central

path in T2. P (resp. P ′) is called a maximal central subpath if (P, P ′) is maximal (i.e.,

cannot be extended) under the condition that (vik , vik−1
, . . . , vi1) is a consecutive part of

an upward central path of T1 and (uik , uik−1
, . . . , ui1) is a consecutive part of an upward

central path of T2. Furthermore, P (resp. P ′) is called a maximal conserved central subpath

if P (resp. P ′) is a maximal central subpath and (vik , vik−1
, . . . , vi1) and (uik , uik−1

, . . . , ui1)

are in twin upward central paths. It is to be noted that (vih , vih−1
) and (uih, uih−1

) do not

necessarily correspond to each other in ALS. See Fig. 16 for an example.

Lemma 9 The number of nodes that appear in central downward paths but do not belong

to maximal conserved central subpaths of length greater than 100d is O(d2).

Proof. Since there are O(d) downward paths and O(d) upward paths, the number of

maximal central subpaths is O(d). The number of edges in central downward paths but

not in maximal central subpaths is also O(d).

The number of nodes in maximal central subpaths whose length is at most 100d is

O(d)×O(d) = O(d2). The number of nodes in maximal central paths but not in maximal

conserved central subpaths is O(d)×O(d) = O(d2) because the total number of downward

central subpaths for which corresponding upward central paths are not twins is O(d) and

the length of such a subpath is O(d).

28

T1 T2

Figure 16: Explanation of a maximal conserved central subpath. Each of the light-
gray regions is a maximal conserved central subpath. Each of the dark-gray regions is a
maximal central subpath but is not a maximal conserved central subpath since upward
paths in these regions are not twins. It should be noted that the lines of the same type
correspond to twins.

By summing up all of the above, we have the lemma. �

Lemma 10 The number of deleted mapping pairs in the construction of M3 is O(d2n1/2).

Proof. From Lemma 9, it is seen that O(d2) nodes in downward paths are deleted. For

each deleted node, O(n1/2) nodes in the attached small subtrees may also be deleted (recall

that the maximum degree is bounded by a constant). Therefore, O(d2n1/2) mapping pairs

are deleted in total. �

Then, we estimate the number of deleted mapping pairs in constructing M4.

Lemma 11 The number of deleted mapping pairs in the construction of M4 is O(d2n1/2+

dn3/4).

Proof. The total number of deleted nodes for upward paths of type (A) is

O(d) · O(dn1/2) = O(d2n1/2)

29

because the length of each upward path is at most 2d and thus O(dn1/2) nodes are deleted

per upward path, and there exist O(d) upward paths of type (A).

The total number of deleted nodes for upward paths of type (B-1) is

O(d) ·
{
O(n3/4) + O(dn1/2)

}
= O(dn3/4 + d2n1/2)

because O(n3/4) central edges and O(dn1/2) nodes in the top and bottom blocks are

deleted, and there exist O(d) upward paths of type (B-1).

The total number of deleted nodes for upward paths of type (B-2) is

O(dn1/4) · O(n1/2) = O(dn3/4)

because there exist O(n1/2) large subtrees in total and at most O(dn1/4) nodes are deleted

per large subtree in this case.

�

Here, we can assume d = O(n1/4), otherwise 1
O(n3/4)

·EDT (T1, T2) ≤ EDS(ss(T1), ss(T2))

is always satisfied since EDT (T1, T2) is at most 2n. Therefore, by summing up all the

costs, we can see that the cost of M4 is

O(d) + O(dn1/2) + O(d2n1/2) + O(d2n1/2 + dn3/4) = O(dn3/4),

which completes the proof of Theorem 1.

Finally, we consider the time complexity. Transformation of trees to the modified

Euler strings can be done in O(n) time since all id’s can be computed in O(n) time

and we assume that the maximum degree is bounded by a constant. The string edit

distance can be computed in O(n2) time using a simple dynamic programming algorithm.

Construction of M1 can be clearly done in O(n) time. Construction of M2 can be done in

O(n) time since the total number of nodes in small right subtrees is O(n) and we assume

that the maximum degree is bounded by a constant. Construction of M3 can be done in

O(dn) time because we only need to examine O(d) pairs of the highest nodes for each of

which O(n) time is enough. Construction of M4 can also be done in O(dn) time since

the period of a string can be computed in linear time even for a general alphabet [8] and

thus O(dn) time is enough for classifying all upward paths and for identifying periods,

and O(dn3/4) time is enough for deleting nodes. Therefore, we have:

30

Corollary 1 The unit cost edit distance for trees of bounded degree can be approximated

within a factor of O(n3/4) in O(n2) time.

6 Concluding Remarks

In this paper, we have presented an algorithm for approximating the tree edit distance

efficiently using the string edit distance. Though we have modified the Euler strings in

order to guarantee the worst case distortion bound, simple use of the Euler strings may

work well in practice. Furthermore, string embedding techniques [3, 17] would be directly

applied if we simply use the Euler strings. However, the modified Euler strings cannot

be directly combined with string embedding techniques because id’s depend on two input

trees. Thus, development of algorithms for low-distortion embedding for tree edit distance

is left as an open problem.

We have assumed that the labels of nodes in trees come from a finite alphabet (i.e.,

|ΣT | is assumed to be a constant). However, this property was only used to guarantee

that id(v)’s can be computed in O(n) time. If a general alphabet is used, id(v)’s can be

computed in O(n log n) time [11]. Thus, even for the case of a general alphabet, we can

obtain the same results except that the time complexity of transformation of trees into

strings increases from O(n) to O(n log n).

We have also assumed that the maximum degree is bounded by a constant. However,

it seems difficult to remove this assumption. Thus, removal of this assumption is left as

an open problem as well as improvement of the approximation ratio for bounded degree

trees.

Acknowledgements

We would like to thank Tetsuji Kuboyama in the University of Tokyo for suggestions of

several references and for helpful discussions. We also thank anonymous reviewers for

helpful comments that improved the presentation of the paper.

31

References

[1] T. Akutsu, A relation between edit distance for ordered trees and edit distance for

Euler strings, Information Processing Letters, 100 (2006), 105–109.

[2] Z. Bar-Yossef, T. Jayram, R. Krauthgamer, and R. Kumar, Approximating edit

distance efficiently, Proc. 45th IEEE Symp. Foundations on Computer Science (2004),

pp. 550–559.

[3] T. Batu, F. Ergun, and S. C. Sahinalp, Oblivious string embeddings and edit distance

approximations, Proc. 17th ACM-SIAM Symp. Discrete Algorithms (2006), pp. 792–

801.

[4] P. Bille, A survey on tree edit distance and related problem, Theoretical Computer

Science, 337 (2005), 217–239.

[5] W. Chen, New algorithm for ordered tree-to-tree correction problem, Journal of

Algorithms, 40 (2001), 135–158.

[6] G. Cormode and S. Muthukrishnan, The string edit distance matching problem with

moves, Proc. 13th ACM-SIAM Symp. Discrete Algorithms (2002), pp. 667–676.

[7] G. Cormode, M. Paterson, S. C. Sahinalp and U. Vishkin, Communication complexity

of document exchange, Proc. 11st ACM-SIAM Symp. Discrete Algorithms (2000), pp.

197–206.

[8] A. Czumaj and L. Gasieniec, On the complexity of determining the period of a string,

Proc. 11th Symp. Combinatorial Pattern Matching (2000), pp. 412–422.

[9] E. Demaine, S. Mozes, B. Rossman, and O. Weimann, An optimal decomposition

algorithm for tree edit distance, Proc. 34th International Colloquium on Automata,

Languages and Programming (2007), pp. 146–157.

[10] M. Garofalakis and A. Kumar, XML stream processing using tree-edit distance em-

bedding, ACM Trans. Database Systems, 30 (2005), 279–332.

32

[11] R. Grossi, On finding common subtrees, Theoretical Computer Science, 108 (1993),

345–256.

[12] S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava, and T. Yu, Approximate XML

joins, Proc. ACM SIGMOD (2002), pp. 287–298.

[13] S. Khot and A. Naor, Nonembeddability theorems via Fourier analysis, Proc. 46th

IEEE Symp. Foundations on Computer Science (2005), pp. 101–110.

[14] P. N. Klein, Computing the edit-distance between unrooted ordered trees, Proc. 6th

European Symp. Algorithms (1998), pp. 91–102.

[15] R. Krauthgamer and Y. Rabani, Improved lower bounds for embeddings into L1,

Proc. 17th ACM-SIAM Symp. Discrete Algorithms (2006), pp. 1010–1017.

[16] S. Muthukrishnan, S. C. Sahinalp, Approximate nearest neighbors and sequence

comparison with block operations, Proc. 32nd ACM Symp. Theory of Computing

(2000), pp. 416–412.

[17] R. Ostrovsky and Y. Rabani, Low distortion embeddings for edit distance, Proc. 37th

ACM Symp. Theory of Computing (2005), pp. 218–224.

[18] K-C. Tai, The tree-to-tree correction problem, J. ACM, 26 (1979), 422–433.

[19] G. Valiente, Algorithms on Trees and Graphs, Springer-Verlag, Berlin Heidelberg,

2002.

[20] R. Yang, P. Kalnis, and A. K. H. Tung, Similarity evaluation on tree-structured data,

Proc. ACM SIGMOD (2005), pp. 754–765.

[21] K. Zhang and D. Shasha, Simple fast algorithms for the editing distance between

trees and related problems, SIAM J. Computing, 18 (1989), 1245–1262.

33

