
Approximation Scheme for Lowest Outdegree
Orientation and Graph Density Measures

Łukasz Kowalik?1,2

1 Institute of Informatics, Warsaw University, Warsaw, Poland
2 Max-Planck-Institute für Informatik, Saarbrücken, Germany

kowalik@mimuw.edu.pl

Abstract. We deal with the problem of finding such an orientation of a given
graph that the largest number of edges leaving a vertex (called the outdegree of
the orientation) is small.
For any ε ∈ (0, 1) we show an Õ(|E(G)|/ε) time algorithm3 which finds an
orientation of an input graph G with outdegree at most d(1 + ε)d∗e, where d∗ is
the maximum density of a subgraph of G. It is known that the optimal value of
orientation outdegree is dd∗e.
Our algorithm has applications in constructing labeling schemes, introduced by
Kannan et al. in [18] and in approximating such graph density measures as ar-
boricity, pseudoarboricity and maximum density. Our results improve over the
previous, 2-approximation algorithms by Aichholzer et al. [1] (for orientation /
pseudoarboricity), by Arikati et al. [3] (for arboricity) and by Charikar [5] (for
maximum density).

1 Introduction

In this paper we deal with approximating lowest outdegree orientation, pseudoarboric-
ity, arboricity and maximum density. Let us define these notions as they are not so
widely used.

Let G = (V, E) be a graph. An orientation of G is a digraph
−→
G = (V,

−→
E) that is

obtained from G by replacing every undirected edge uv by an arc, i.e., (u, v) or (v, u).
The outdegree of an orientation is the largest of its vertices’ outdegrees. In this paper
we focus on the problem of finding for a given graph its orientation with minimum
outdegree. We will call it a lowest outdegree orientation. This problem is closely related
to computing pseudoarboricity and maximum density of graphs.

Density of a graph G = (V, E), denoted by d(G), is defined as d(G) = |E|/|V |,
i.e., it is half of its average degree. In the Densest Subgraph Problem, given graph G
one has to find its subgraph G∗ such that any nonempty subgraph H of G satisfies
d(H) ≤ d(G∗). The number d(G∗) will be called maximum density of graph G, and
we will denote it by d∗(G). As it was shown by Charikar [5], the linear program for
Densest Subgraph Problem is dual to the relaxation of the integer program for finding
the lowest outdegree orientation. Moreover, it follows from a theorem by Frank and

? Supported in part by KBN grant 4T11C04425.
3 The Õ(·) notation ignores logarithmic factors.

Gyárfás [11] that dd∗(G)e equals the outdegree of the lowest outdegree orientation of
G.

A pseudotree is a connected graph containing at most one cycle. Pseudoforest is a
union of vertex disjoint pseudotrees. Pseudoarboricity of graph G, denoted as P (G), is
the smallest number of pseudoforests needed to cover all edges of G. As it was noticed
by Picard and Queyranne [22], P (G) = dd∗(G)e, which combined with the theorem
of Frank and Gyárfás implies that pseudoarboricity equals the outdegree of the lowest
outdegree orientation. This can be also easily proved directly (see Section 2).

Arboricity of graph G, denoted as arb(G), is the smallest number of forests needed
to cover all edges of G. A classic theorem by Nash-Williams [21] says that arboricity is
equal to maxJd|E(J)|/(|V (J)| − 1)e where J is any subgraph of G with |V (J)| ≥ 2
vertices and |E(J)| edges. Using this fact it is easy to show (see [22]) that P (G) ≤
arb(G) ≤ P (G) + 1.

Applications Arboricity is the most often used measure of graph sparsity. Complexity
of many graph algorithms depends heavily on the arboricity of the input graph – see
e.g. [6, 4, 8].

Kannan et al. [18] noticed that for any n-vertex graph of arboricity k one can label
its vertices using at most (k + 1) logn bits for each label in such a way that adjacency
of any pair of vertices can be verified using merely their labels. They call it a (k + 1)-
labeling scheme. It is achieved as follows: (1) number the vertices from 1 to n, (2) find
a partition of the graph into k forests, (3) in each tree in each forest choose a root, and
(4) assign each vertex a label containing its number and the numbers of its parents in
the at most k trees it belongs to. Then to test adjacency of vertices u and v it suffices to
check whether u is the parent of v in some tree or vice versa.

Chrobak and Eppstein [7] observed that in order to get the labeling schemes one can
use orientations instead the partition into forests. Then each vertex v stores in its label
the numbers of endpoints of the arcs leaving v. As for any graph G, P (G) ≤ arb(G)
this is a little bit more efficient approach. Then the problem of building a (P (G) + 1)-
labeling scheme reduces to the problem of finding a lowest degree orientation.

It should be noted that low outdegree orientations are used as a handy tool in many
algorithms, see e.g., [2, 19, 9].

Related Work Throughout the whole paper m and n denote the number of edges and
vertices of the input graph, respectively.

The problem of computing pseudoarboricity and the related decomposition was
first raised by Picard and Queyranne [22] who applied network flows and obtained
O(nm log3 n) algorithm by using the maximum flow algorithm by Galil and Naa-
mad [14]. It was improved by Gallo, Grigoriadis and Tarjan [15] to O(nm log(n2/m))
by using parametric maximum flow. Next Gabow and Westermann [13] applied their
matroid partitioning algorithm for the k-pseudoforest problem – the problem of finding
in a given graph k edge-disjoint forests containing as many edges as possible. Their
algorithm works in O(min{(kn′)3/2, k(n′)5/3}) time where n′ = min{n, m/k}. As
pseudoarboricity is at least m/n it gives an O(m min{m1/2, n2/3})-time algorithm
which verifies whether a given graph has pseudoarboricity at most k and if the an-
swer is yes computes the relevant pseudoforest partition. Using binary search pseu-
doarboricity p can be computed in O(m min{m1/2, n2/3} log p) time. However, if

the pseudoforest partition is not needed, they show also that this value can be found
in O(m min{(m logn)1/2, (n log n)2/3}) time. For the related problem of finding ar-
boricity and the relevant forest partition they describe an O(m3/2

√
log n) algorithm.

Finally, Aichholzer et al. [1] claimed (without giving details) that one can solve
the equivalent lowest outdegree orientation problem in O(m3/2 log p) time by using
Dinic’s algorithm.

Since the problem seems to be closely related with network flows and matroid par-
titions it can be hard to get a near-linear algorithm for it. Hence one can consider ap-
proximation algorithms. Arikati et al. [3] showed a simple linear-time 2-approximation
algorithm for computing arboricity and the corresponding partition into forests. Inde-
pendently, Aichholzer et al. [1] showed a 2-approximation algorithm for the problem
of finding lowest outdegree orientation (and hence also pseudoarboricity). In fact, these
two algorithms are the same. Both can be viewed as finding for a given graph G its
acyclic orientation of outdegree at most 2P (G).

Recently, Gabow [12] considered a related problem of orienting as many edges as
possible subject to upper bounds on the indegree and outdegree of each vertex. He
proves that the problem is MAXSNP-hard and shows a 3/4-approximation algorithm.

For the densest subgraph problem the state of art is very similar to computing pseu-
doarboricity. A paper of Goldberg [16] contains a reduction to a network flow problem,
which combined with the algorithm by Goldberg and Rao [17] gives an algorithm with
time complexity Õ(m min{n2/3, m1/2}). On the other hand, Charikar [5] showed a
simple linear-time 2-approximation algorithm.

Our Results We show an algorithm which, given a number ε > 0 and a graph with
maximum density d∗, finds a d-orientation so that d ≤ d(1 + ε)d∗e. In other words,
it is an approximation scheme with additional additive error (caused by rounding up)
bounded by 1. For 0 < ε < 1 the algorithm works in O(m log n max{log d∗, 1}ε−1)
time.

As P (G) ≤ arb(G) ≤ P (G) + 1 and P (G) = dd∗(G)e it is not surprising that
our algorithm can be also used for efficient approximating arboricity and maximum
density – for both these problems we get an approximation scheme with an additional
small additive error (2 for arboricity, 1 for maximum density). In Section 2 we also
note that finding a partition of edges of a graph into d pseudoforests is equivalent to the
problem of finding an orientation with outdegree d. Thus our algorithms apply also to
the pseudoforest partition problem.

In the particular case of sparse graphs, i.e., graphs of bounded arboricity, the run-
ning time of our algorithm is O((n log n)/ε), as then d∗ = O(1) and m = O(n).
It is worth noting that for sparse graphs our algorithm can be used to efficiently find
an orientation with outdegree dd∗ + δe, for δ > 0. Alternatively, we can use it for
approximating arboricity (additive error 1 + dδe) and maximum density (additive er-
ror 1 + δ). This can be done in O(m log n max{log d∗, 1}max{d∗

δ , 1}) time, which is
O(n log n max{δ−1, 1}) for sparse graphs. In particular, for sparse graphs this gives
O(n log n) time approximation algorithms with additive error 1 (for lowest outdegree
orientation / pseudoarboricity), or 2 (for arboricity and maximum density).

The idea of our approximation algorithms is very simple. We start Dinic’s maximum
flow algorithm in some network which depends on the input graph and some parameter

d. We stop it when augmenting paths grow too long. If d is greater, but not very close to
the maximum density d∗ we show that the augmenting paths will never grow too long
and then we obtain a d-orientation. Otherwise we know d is too close to d∗ — closer
than we need. In order to find the smallest value of d such that the augmenting paths are
always short we use binary search.

2 Preliminaries

We say that
−→
G is a d-orientation when vertex outdegrees in

−→
G do not exceed d. We

assume that the reader is familiar with basic concepts concerning network flow algo-
rithms. For details see e.g. [20]. Let us recall here only some basic notions.

Let G = (V, E) be a directed graph with two special vertices s (called source) and
t (called sink). Each arc of G is assigned a number called capacity. More precisely,
capacity is a function c : V 2 → R≥0 such that for (v, w) 6∈ E, c(v, w) = 0. Graph G
with the capacity function c is called a network. Flow in a network G is any function
f : V 2 → R such that for any u, v ∈ V (1) f(u, v) ≤ c(u, v), (2) f(u, v) = −f(v, u),
(3) if v 6= s, t,

∑
x∈V f(v, x) = 0. The value of flow f , denoted by |f |, is the value

of
∑

x∈V f(s, x). A maximum flow is a flow with largest possible value. For network
G and flow f the residual capacity is a function cf : V 2 → R≥0 such that cf (u, v) =
c(u, v) − f(u, v). The graph with vertex set V containing edge (u, v) if and only if
cf (u, v) > 0 is denoted as Gf . Graph Gf with cf as capacity function is called a
residual network. An augmenting path is any path from s to t in the residual network.
Edge (u, v) of graph G is called augmented when f(u, v) = c(u, v).

Below we show an important relation between partitions into pseudoforests and
orientations.

Proposition 1. The problems of finding p-orientation and partition into p pseudoforests
are equivalent, i.e., from a given p-orientation of some graph one can find a partition
of edges of this graph into p pseudoforests and vice versa. Both conversions take time
linear in the number of edges.

Proof. Every pseudotree has a 1-orientation, as it suffices to remove any edge of the
cycle (if there is one), choose one of its ends as the root, orient all edges toward the root
and finally add the removed edge oriented from the root to the other endpoint. Thus
given a decomposition of a graph into p pseudoforests we can find its p-orientation in
linear time.

Conversely, consider a connected graph G with a 1-orientation. We will show that G
is a pseudotree. G has at least |V (G)|−1 edges since it is connected, and at most |V (G)|
edges since it has 1-orientation. If it has |V (G)| − 1 then it is a tree. If it has |V (G)
edges it contains a cycle. After removing any edge of this cycle we get a connected
graph G′ with |V (G′)|−1 edges. Hence G′ is a tree which implies that G has precisely
one cycle. It follows that a graph with a 1-orientation is a pseudoforest.

Now, given a p-orientation, for each vertex we remove any of the edges leaving it.
Then we obtain a (p−1)-orientation and the removed edges form a 1-orientation, which
is a pseudoforest when we forget about edge orientations. After repeating this step p
times we obtain the desired decomposition into p pseudoforests. The whole process
also takes linear time. ut

The above proposition implies that finding pseudoarboricity and the corresponding
partition of edges into pseudoforests is equivalent to finding the lowest degree orienta-
tion.

3 Reduction to a Flow Problem

Here we present a reduction of finding a d-orientation of a given graph (if it exists) to
finding a maximum flow in some network. Other reductions are used in [22, 1].

Let G = (V, E) be a graph and let d be a positive integer. Let
−→
G be an arbitrary

orientation of G (we will call it the initial orientation). We build a network G̃d =
(Ṽ , Ẽ) with capacity function cd as follows. Set Ṽ contains all vertices from V and

two new vertices s (source) and t (sink). Set Ẽ contains all edges from E(
−→
G), each

with capacity 1, an edge (s, v) with capacity outdeg(v) − d for each vertex v with

outdegree in
−→
G greater than d and an edge (v, t) with capacity d − outdeg(v) for each

vertex v with outdegree in
−→
G smaller than d. Let G̃d

f denote the residual network for
flow f . Note the following proposition.

Proposition 2. For any integral flow f in network G̃d, the subgraph of the residual
network G̃d

f induced by set V is an orientation of graph G. ut

Let us denote the subgraph described above by
−→
Gf . From now on we assume that

flows in G̃d are integral.

Lemma 1. Let f be any flow in network G̃d. There is an edge (s, v) in G̃d
f if and only if

outdeg−→
Gf

(v) > d. Also, there is an edge (v, t) in G̃d
f if and only if outdeg−→

Gf
(v) < d.

Proof. Let
−→
G be the initial orientation of G and let v be an arbitrary vertex in V . Clearly,

outdeg−→
Gf

(v) = outdeg−→
G

(v) +
∑

w∈V f(w, v). As f is a flow, 0 =
∑

w∈Ṽ f(w, v) =
∑

w∈V f(w, v) + f(s, v) + f(t, v). Hence,

outdeg−→
Gf

(v) = outdeg−→
G

(v) − f(s, v) + f(v, t). (1)

Now, if c(s, v) = c(v, t) = 0 then f(s, v) = f(v, t) = 0 and we see that both (s, v)
and (v, t) are not in G̃d

f and outdeg−→
Gf

(v) = d.

If c(s, v) > 0 then c(v, t) = 0 and further f(v, t) = 0. Hence, by (1), we have
c(s, v) − f(s, v) = outdeg−→

G
(v) − d − f(s, v) = outdeg−→

Gf
(v) − d. Then c(s, v) −

f(s, v) > 0 if and only if outdeg−→
Gf

(v)− d > 0, which is equivalent to the first part of

the lemma. Also, since c(v, t) = 0 and c(t, v) = 0 we get (v, t) 6∈ E(G̃d
f). Moreover,

0 ≤ c(s, v) − f(s, v) = outdeg−→
Gf

(v) − d which implies that the second part of the

lemma also holds in this case. The case c(s, v) < 0 can be verified analogously. ut

Corollary 1. There is an augmenting path sv1v2 . . . vkt in the residual network G̃d
f iff

there is a path v1v2 . . . vk in
−→
Gf such that outdeg−→

Gf
(v1) > d, outdeg−→

Gf
(vk) < d.

Let cd(s, V − s) denote the capacity of the ({s}, V \ {s}) cut, i.e., cd(s, V − s) =∑
v∈V cd(s, v).

Theorem 1. Let G be a graph and let f be a maximum flow in network G̃d. There exists
a d-orientation of G if and only if |f | = cd(s, V −s). Moreover, when |f | = cd(s, V −s)

then
−→
Gf is a d-orientation of G.

Proof. Assume that there is a d-orientation of G and the maximum flow f in G̃d is
smaller than cd(s, V −s). Then at least one edge leaving s, say (s, v) is not augmented.
Then from Lemma 1 outdeg−→

Gf
(v) > d. Let W ⊆ V denote the set of vertices reach-

able from v in
−→
Gf . Since there is a d-orientation of G, graph G[W] contains at most

d|W | edges. If W contained no vertex of outdegree smaller than d then graph G[W]
would contain more than d|W | edges, which would be a contradiction. Hence W con-
tains a vertex w such that outdeg−→

Gf
(w) < d and by Corollary 1 there is an augmenting

path which contradicts the maximality of flow f .
Conversely, if f is a flow in G̃d of value cd(s, V −s) there are no edges leaving s in

the residual network and Lemma 1 implies that outdegrees in
−→
Gf do not exceed d. ut

In order to analyze our approximation algorithm we will use the following lemma.
The lemma and its proof is analogous to Lemma 2 in [4] (however, our Lemma 2 implies
Lemma 2 in [4] and not vice-versa, hence we include the proof for completeness).

Lemma 2. Let
−→
G be a d-orientation of some n-vertex graph G of maximum density

d∗ and let d > d∗. Then for any vertex v the distance in
−→
G to a vertex with outdegree

smaller than d does not exceed logd/d∗ n.

Proof. Let v be an arbitrary vertex and let k be the distance from v to a vertex with
outdegree smaller than d. For every i = 0, . . . , k let Vi be the set of vertices at distance
at most i from v. We will show by induction that for each i = 0, . . . , k, |Vi| ≥ (d

d∗
)i.

We see that this inequality holds for i = 0. For the induction step assume that i < k. Let
Ei+1 be the set of edges with both ends in Vi+1. We see that exactly d|Vi| edges leave
Vi. Since all these edges belong to Ei+1 it gives us |Ei+1| ≥ d|Vi|. As |Ei+1|

|Vi+1|
≤ d∗

we get |Vi+1| ≥ d
d∗
|Vi|. After applying the induction hypothesis we get the desired

inequality. Then since |Vk| ≤ n we get (d
d∗

)k ≤ n which ends the proof. ut

As an immediate consequence of Corollary 1 and Lemma 2 we get the following
corollary.

Corollary 2. Let G be an n-vertex graph of maximum density d∗ and let for some
integer d > d∗, G̃d be the corresponding network with some flow f . If G̃d contains an
augmenting path then it contains an augmenting path of length at most 2 + logd/d∗ n.

4 Approximation Algorithm

Let us now briefly recall Dinic’s algorithm. Details can be found in many textbooks,
e.g. [20]. Dinic’s algorithm begins with the empty flow f . It consists of a sequence of

phases. In the beginning of each phase it builds a layered network, i.e., a subgraph of
the residual network containing only edges of shortest paths from source s to sink t.
The goal of each phase is to find a blocking flow in the layered network, i.e., such flow
that each s, t-path in the layered network contains an augmented edge. In the end of
each phase the blocking flow is added to flow f .

Dinic’s algorithm finds the blocking flow by finding a number of augmenting paths,
each time sending maximal amount of flow through the path. To find such path it uses
the following method. Start from the empty path. Let v be the end of the path p found
so far. If v = t an augmenting path is found. If there is an edge leaving v add it to path
p (this step is called advance). Otherwise remove the last edge of path p from both the
layered network and p (this step is called retreat).

It is known that Dinic’s algorithm finds a blocking flow in unit capacity networks
in linear time (see e.g. [10]). It is not surprising that it is similarly fast in network G̃d,
which is “almost unit capacity”. For completeness, below we give a proof.

Proposition 3. For any graph G with m edges the Dinic’s algorithm finds a blocking
flow in network G̃d in O(m) time.

Proof. The number of advance steps after which the sink t is reached is equal to
the number of augmenting paths found, which is bounded by the value of maximum
flow, which in turn is bounded by m. The total number of other advance steps is
bounded by the sum of relevant edge capacities, i.e.,

∑
v cd(s, v)+

∑
v,w∈V cd(v, w) ≤

∑
v outdeg(v) +

∑
v,w∈V cd(v, w) = 2m. The number of retreat steps is bounded by

the number of edges. We see that the total number of advance and retreat steps is at
most 4m. ut

Let us also recall another crucial property of Dinic’s algorithm (see e.g. [20]):

Proposition 4. After each phase of Dinic’s algorithm the length of the shortest aug-
menting path increases.

Now let us describe our main result, algorithm ORIENT(ε) which finds orientation
of a given graph with outdegree close to optimal.

Algorithm 4.1 TEST(k,d)

1: Build G̃d

2: while distG̃d
f
(s, t) ≤ k do

3: Run another phase of Dinic’s algorithm

4: if |f | = cd(s, V − s) then return
−→
Gf else return “FAIL”

We will use a subroutine TEST(k,d). It builds network G̃d, and runs the Dinic’s
algorithm until it finishes (i.e. when there is no augmenting path) or the augmenting
paths become longer than k. If the resulting flow has value cd(s, V − s), it returns an

orientation
−→
Gf . Otherwise it returns “FAIL” message. As an immediate consequence

of propositions 3 and 4 we get the following proposition.

Proposition 5. Algorithm TEST(k,d) works in O(km) time. ut

Lemma 3. Let G be a graph with maximum density d∗ and let d ≥ d(1 + ε)d∗e for
some ε > 0. Then TEST(2 + log1+ε n, d) returns a d-orientation of G.

Proof. As ε > 0 it follows that d > d∗ and by Corollary 2 if there is an augmenting
path, there is an augmenting path of length at most 2 + logd/d∗ n, which is not greater
than 2 + log1+ε n. Hence the while loop is stopped when there is no augmenting path,
i.e., distG̃d

f
(s, t) = ∞, which implies that a maximum flow f is found. As d ≥ d(1 +

ε)d∗e ≥ dd∗e = P (G), there exists a d-orientation of G, so by Theorem 1, |f | =

cd(s, V − s) and
−→
Gf is a d-orientation. It establishes the proof. ut

Algorithm 4.2 ORIENT(ε)
1: d1 ← 0; d2 ← 1
2: while TEST (2 + log1+ε n,d2) = “FAIL” do
3: d1 ← d2; d2 ← 2d2

4: while d1 < d2 do
5: d′ = d d1+d2

2
e

6: if TEST (2 + log1+ε n,d′) = “FAIL” then d1 ← d′ else d2 ← d′

7: return the orientation returned by the last call of TEST

Algorithm ORIENT(ε) uses binary search to find an integer d such that TEST(2 +
log1+ε n, d− 1) returns “FAIL” message, while TEST(2+ log1+ε n, d) does not. (Note
that it may happen that d < d(1 + ε)d∗e). It returns the d-orientation returned by the
relevant call of TEST. Now we state the main result of the paper.

Theorem 2. Let G be any graph of maximum density d∗. For any ε > 0 algorithm
ORIENT(ε) finds a d-orientation of G such that d ≤ d(1 + ε)d∗e. Its time complexity is
O(m log n max{log d∗, 1}max{ε−1, 1}).

Proof. Correctness of the algorithm is an immediate consequence of Lemma 3. By
Proposition 5 each call of TEST(2 + log1+ε n,d) subroutine takes O(m log1+ε n) =
O(m(log n)(log(1 + ε))−1) time. By Taylor expansion, for ε < 1, ln(1 + ε) =
ε+O(ε2). Hence each call of TEST routine in algorithm ORIENT takes time bounded by
O(m(log n) max{ε−1, 1}). Theorem 2 implies that ORIENT(ε) makes at most
O(dlogd(1 + ε)d∗ee) = O(max{log d∗, 1}) calls of subroutine TEST. Hence we get
the claimed time bound. ut

4.1 Approximating Graph Density Measures

Using our algorithm one can approximate efficiently graph density measures. The de-
tails are given in the following theorem.

Theorem 3. Let G be any graph of maximum density d∗. For any ε > 0 there are algo-
rithms with time complexity O(m log n max{log d∗, 1}max{ε−1, 1}) for the following
problems:

(i) (pseudoarboricity approximation) Finding a partition of G into d̃ pseudoforests so
that d̃ ≤ d(1 + ε)d∗e ≤ (1 + ε)P (G) + 1.

(ii) (arboricity approximation) finding a number ã such that there exists a partition of
G into ã forests so that ã ≤ (1 + ε)arb(G) + 2.

(iii) (densest subgraph approximation) finding a number d̃∗ such that G contains a sub-
graph of density at least d̃∗ so that d̃∗ ≥ (1 − ε)d∗ − 1.

Proof. Part (i) follows immediately from Proposition 1 and Theorem 2.
To construct the algorithm described in (ii) it suffices to find the numberd̃ using

part (i) and report ã = d̃ + 1. Since P (G) ≤ arb(G), the claimed bound follows. The
relevant partition into forests exists because ã ≥ P (G) + 1 ≥ arb(G).

Similarly, for part (iii) we also apply algorithm from part (i), but using different
value of ε, namely using ε′ = ε/(1− ε). Since max{(ε′)−1, 1} = max{ε−1 − 1, 1} ≤
max{ε−1, 1}, the algorithm works in the claimed time. Then we report d̃∗ = (d̃ −
1)/(1 + ε′). Since d̃ ≤ d(1 + ε′)d∗e, we see that d̃∗ ≤ d∗, hence there is a subgraph
of density at least d̃∗. Finally, because d̃ ≥ P (G) ≥ d∗, we get d̃∗ ≥ d∗

1+ε′
− 1

1+ε′
=

(1 − ε)d∗ − (1 − ε) > (1 − ε)d∗ − 1. ut

4.2 Approximation with Additive Error

Now we observe that for sparse graphs our algorithm can be used to efficiently find an
orientation with outdegree dd∗ + δe, for δ > 0. To this end one finds a d′-orientation,
d∗ < d′ < 3

2
d∗ using algorithm ORIENT(3

2
). If δ ≥ d′ the algorithm stops and returns

the d′-orientation found. Otherwise it calls algorithm ORIENT(δ
d′

). Clearly the second
call returns an orientation with outdegree d(1 + δ

d′
)d∗e ≤ d(1 + δ

d∗
)d∗e = dd∗ + δe.

Time complexity is O(m log n max{log d∗, 1}max{d∗

δ , 1}), which for sparse graphs
can be rewritten as O(n log n max{δ−1, 1}). Similarly as in Theorem 3 we obtain also
algorithms with the same time complexity for approximating pseudoarboricity (additive
error dδe), arboricity (additive error 1 + dδe), and maximum density (additive error
1 + δ).

5 Further Research

We showed how to efficiently approximate the values of arboricity and maximum den-
sity. It is very natural to ask for near-linear algorithms for finding the relevant decom-
position into forests and the relevant dense subgraph. In the context of the first problem
it is particularly interesting whether there is a fast algorithm which transforms a decom-
position of a graph into d pseudoforests to a decomposition into d+1 forests (or, if this
is infeasible, then into α · d forests, for some α < 2).

References

1. O. Aichholzer, F. Aurenhammer, and G. Rote. Optimal graph orientation with storage appli-
cations. SFB-Report F003-51, SFB ’Optimierung und Kontrolle’, TU Graz, Austria, 1995.

2. N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

3. S. R. Arikati, A. Maheshwari, and C. D. Zaroliagis. Efficient computation of implicit repre-
sentations of sparse graphs. Discrete Appl. Math., 78(1-3):1–16, 1997.

4. G. S. Brodal and R. Fagerberg. Dynamic representations of sparse graphs. In Proc. 6th
Int. Workshop on Algorithms and Data Structures (WADS’99), volume 1663 of LNCS, pages
342–351, 1999.

5. M. Charikar. Greedy approximation algorithms for finding dense components in a graph.
In Proc. 13th Int. Workshop on Approximation Algorithms for Combinatorial Optimization
(APPROX’00), volume 1913 of LNCS, pages 84–95, 2000.

6. N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J. Comput.,
14(1):210–223, 1985.

7. M. Chrobak and D. Eppstein. Planar orientations with low out-degree and compaction of
adjacency matrices. Theoretical Computer Science, 86(2):243–266, 1991.

8. D. Eppstein. Arboricity and bipartite subgraph listing algorithms. Inf. Process. Lett.,
51(4):207–211, 1994.

9. D. Eppstein. All maximal independent sets and dynamic dominance for sparse graphs. In
Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’05), pages 451–
459, 2005.

10. S. Even and R. E. Tarjan. Network flow and testing graph connectivity. SIAM J. Comput.,
4(4):507–518, 1975.

11. A. Frank and A. Gy árf ás. How to orient the edges of a graph? In Combinatorics Volume I
(Proc. of the Fifth Hungarian Colloquium on Combinatorics, Keszthely, 1976, A. Hajnal, V.
T. Sós, eds.), pages 353–364, Amsterdam, 1976. North-Holland.

12. H. Gabow. Upper degree-constrained partial orientations. In Proc. 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’06), 2006.

13. H. Gabow and H. Westermann. Forests, frames, and games: algorithms for matroid sums and
applications. In Proc. of the 20th Annual ACM Symposium on Theory of Computing (STOC
’88), pages 407–421, New York, NY, USA, 1988. ACM Press.

14. Z. Galil and A. Naamad. An O(EV log2 V) algorithm for the maximal flow problem. J.
Comput. System Sci., 21:203–217, 1980.

15. G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm
and applications. SIAM J. Comput., 18(1):30–55, 1989.

16. A. V. Goldberg. Finding a maximum density subgraph. Technical Report UCB/CSD-84-171,
EECS Department, University of California, Berkeley, 1984.

17. A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. In Proc. of the 38th
Annual Symposium on Foundations of Computer Science (FOCS ’97), page 2, Washington,
DC, USA, 1997. IEEE Computer Society.

18. S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. In Proc. of the 20th
Annual ACM Symposium on Theory of Computing (STOC ’88), pages 334–343, New York,
NY, USA, 1988. ACM Press.

19. Ł. Kowalik and M. Kurowski. Shortest path queries in planar graphs in constant time. In
Proc. 35th Symposium on Theory of Computing (STOC’03), pages 143–148. ACM, June
2003.

20. D. C. Kozen. The design and analysis of algorithms. Springer-Verlag New York, Inc., New
York, NY, USA, 1992.

21. C. S. J. A. Nash-Williams. Decomposition of finite graphs into forests. Journal of the London
Mathematical Society, 39:12, 1964.

22. J.-C. Picard and M. Queyranne. A network flow solution to some nonlinear 0-1 programming
problems with application to graph theory. Networks, 12:141–159, 1982.

