Skip to main content

A Scalable Framework for Distributed Virtual Reality Using Heterogeneous Processors

  • Conference paper
Book cover Advances in Artificial Reality and Tele-Existence (ICAT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4282))

Included in the following conference series:

  • 2150 Accesses

Abstract

We propose a scalable framework for virtual reality systems in a distributed environment. As the application scope of and member participation in a virtual environment increase, information sharing among geographically distributed users becomes critical and challenging. In the proposed framework, we partition the virtual environment into a group of cells and upload them to a number of heterogeneous Internet nodes. When a user sends a request to explore the distant virtual environment, visible cells will be identified and processed in parallel to produce a minimal amount of imagery results for remote transmission. To ensure scalability, we extend our scalable occlusion culling scheme using Plenoptic Opacity Function to speed up the identification process of visible cells in a virtual environment. We perform effective occlusion culling in two passes based on a non-binary opacity definition. Our experimental results justify both the efficiency and scalability of our framework in exploring large-scale virtual environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Joslin, C., Molet, T., Magnenat-Thalmann, N.: Distributed Virtual Reality Systems, citeseer.ist.psu.edu/534042.html

  2. Ng, B., Lau, R.W.H., Si, A., Li, F.W.B.: Multi-Server Support for Large Scale Distributed Virtual Environment. IEEE Transactions on Multimedia 7(6), 1054–1065 (2005)

    Article  Google Scholar 

  3. Beck, M., Moore, T., Plank, J.S.: An End-to-end Approach to Globally Scalable Network Storage. In: Proc. of ACM SIGCOMM (2002)

    Google Scholar 

  4. Lum, E., Ma, K., Clyne, J.: A Hardware-Assisted Scalable Solution for Interactive Volume Rendering of Time-varying Data. IEEE Trans. on Visualization and Computer Graphics 8(3), 286–301 (2002)

    Article  Google Scholar 

  5. PlanetLab, http://www.planet-lab.org/

  6. Gao, J., Shen, H.-W.: Parallel View-dependent Isosurface Extraction Using Multi-pass Occlusion Culling. In: Proc. IEEE Symposium in Parallel and Large Data Visualization and Graphics, pp. 67–74 (2001)

    Google Scholar 

  7. Gao, J., Huang, J., Shen, H.-W., Kohl, J.: Visibility Culling Using Plenoptic Opacity Functions for Large Volume Visualization. In: Proc. IEEE Visualization 2003, pp. 341–348 (2003)

    Google Scholar 

  8. Huang, J., Shareef, N., Crawfis, R., Sadayappan, P., Mueller, K.: A Parallel Splatting Algorithm with Occlusion Culling. In: Proc. 3rd Eurographics Workshop on Parallel Graphics and Visualization, pp. 125–132 (2000)

    Google Scholar 

  9. Zhang, H., Manocha, D., Hudson, T., Hoff III, K.E.: Visibility Culling Using Hierarchical Occlusion Maps. In: Proc. ACM SIGGRAPH 1997, pp. 77–88 (1997)

    Google Scholar 

  10. Klosowski, J., Silva, C.: Efficient Conservative Visibility Culling Using the Prioritizedlayered Projection Algorithm. IEEE Trans. on Visualization and Computer Graphics 7(4), 365–379 (2001)

    Article  Google Scholar 

  11. Greene, N.: Hierarchical Polygon Tiling with Coverage Masks. In: Proc. SIGGRAPH 1996, pp. 65–74 (1996)

    Google Scholar 

  12. Coorg, S., Teller, S.: Temporally Coherence Conservative Visibility. In: Proc. Twelfth Annual Symposium on Computational Geometry, pp. 78–87 (1996)

    Google Scholar 

  13. Liu, Z., Finkelstein, A., Li, K.: Progressive view-dependent isosurface propagation. In: Proc. Vissym 2001 (2001)

    Google Scholar 

  14. Molnar, S., Cox, M., Ellsworth, D., Fuchs, H.: A sorting classification of parallel rendering. IEEE Computer Graphics and Applications 14(4), 23–32 (1994)

    Article  Google Scholar 

  15. Samanta, R., Funkhouser, T., Li, K., Singh, J.P.: Hybrid sort-first and sort-last parallel rendering with a cluster of PCs. In: Eurographics Workshop on Graphics Hardware (2000)

    Google Scholar 

  16. Zhang, E., Turk, G.: Visibility-Guided Simplification. In: Proc. IEEE Visualization 2002, pp. 267–274 (2002)

    Google Scholar 

  17. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C: The art of scientific computing (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Q., Gao, J., Zhu, M. (2006). A Scalable Framework for Distributed Virtual Reality Using Heterogeneous Processors. In: Pan, Z., Cheok, A., Haller, M., Lau, R.W.H., Saito, H., Liang, R. (eds) Advances in Artificial Reality and Tele-Existence. ICAT 2006. Lecture Notes in Computer Science, vol 4282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941354_32

Download citation

  • DOI: https://doi.org/10.1007/11941354_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49776-9

  • Online ISBN: 978-3-540-49779-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics