
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008 1683

HCH: A New Tweakable Enciphering Scheme Using
the Hash-Counter-Hash Approach

Debrup Chakraborty and Palash Sarkar

Abstract—The notion of tweakable block ciphers was formally
introduced by Liskov–Rivest–Wagner at Crypto 2002 (the 2002
Annual International Cryptology Conference). The extension and
the first construction, called CMC, of this notion to tweakable
enciphering schemes which can handle variable length messages
was given by Halevi–Rogaway at Crypto 2003. In this paper, we
present HCH, which is a new construction of such a scheme. The
construction uses two universal hash computations with a counter
mode of encryption in-between. This approach was first proposed
by McGrew–Viega to build a scheme called XCB and later used
by Wang–Feng–Wu, to obtain a scheme called HCTR. A unique
feature of HCH compared to all known tweakable enciphering
schemes is that HCH uses a single key, can handle arbitrary length
messages, and has a quadratic security bound. An important
application of a tweakable enciphering scheme is disk encryption.
HCH is well suited for this application. We also describe a variant,
which can utilize precomputation and makes one less block cipher
call. This compares favorably to other hash-encrypt-hash-type
constructions, supports better key agility and requires less key
material.

Index Terms—Disk encryption, modes of operations, strong
pseudorandom permutation, tweakable encryption.

I. INTRODUCTION

ABLOCK cipher is one of the basic primitives used in
cryptography. Depending upon application goals, there

are many uses of a block cipher. A particular method of using
a block cipher is called a mode of operation. The literature
describes different modes of operations of a block cipher
achieving goals such as confidentiality, authentication, au-
thenticated encryption, etcetera. For several years, National
Institute of Standards and Technology (NIST) of USA [1] has
been running an open domain process to standardize modes
of operations for achieving various functionalities. Currently,
there are around 20 different modes of operations proposals for
different tasks.

One particular interesting functionality is a tweakable enci-
phering scheme [6]. (We note that this functionality is currently
not covered by NIST’s standardization efforts.) This is based
on the notion of tweakable block ciphers introduced in [8]. A

Manuscript received January 27, 2007; revised November 28, 2007. An
abridged version of this paper appeared in Lecture Notes in Computer Science
(Berlin, Germany: Springer-Verlag, 2006, vol. 4329, pp. 287–302).

D. Chakraborty is with the Computer Science Department, CINVESTAV-
IPN, Mexico, D.F. 07360, Mexico (e-mail: debrup@cs.cinvestav.mx).

P. Sarkar is with the Applied Statistics Unit, Indian Statistical Institute,
Kolkata 700 108, India (e-mail: palash@isical.ac.in).

Communicated by E. Okamoto, Associate Editor for Complexity and Cryp-
tography.

Digital Object Identifier 10.1109/TIT.2008.917623

tweakable enciphering scheme is a length preserving encryp-
tion protocol which can encrypt messages of varying lengths.
The security goal is to satisfy the notion of the tweakable strong
pseudorandom permutation (SPRP). As pointed out in [6], one
of the most important applications of a tweakable enciphering
scheme is disk encryption.

Like other modes of operations, a tweakable enciphering
scheme is constructed out of a block cipher. A block cipher can
encrypt only fixed length strings (say -bit strings). One of the
goals is to be able to extend the domain to handle message of
all possible lengths. On the other hand, for applications such as
disk encryption, the requirement is to separately encrypt each
sector, which is of fixed length and the value of the length is
usually a power of two.

For practical applications, efficiency of the construction is
very important. In particular, the times for encryption and de-
cryption should be as small as possible. The other efficiency
issue is of space, i.e., the size of hardware implementation and
the amount of secure storage space required. The amount of se-
cure storage space is determined by the amount of key material
and also by the size of precomputed tables and key schedules
which may be required to speed up actual encryption and de-
cryption. From this point of view, it is desirable not to increase
the size of the secret key, i.e., to use the secret key of the block
cipher as the only secret and nothing else.

The main security goal is to obtain a “quadratic” security
bound. In other words, if the adversary uses blocks (where
each block is an -bit string) in all its queries, then its advan-
tage of distinguishing the output of the tweakable enciphering
scheme from random strings should be upper bounded by some
constant times . This is a natural security goal, since this
goal is also expected of the underlying block cipher.

A. A Brief History of Known Constructions.

The first work to present a strong pseudorandom permuta-
tion is by Naor–Reingold [13]. They did not provide tweakable
SPRPs because their work predates this notion.

The first construction of variable length tweakable SPRP was
provided by Halevi–Rogaway and was called CMC [6]. Paral-
lelizable constructions called EME [7] and EME [4] were later
presented. These three constructions use two layers of encryp-
tion with an intermediate mixing layer. In CMC, the encryp-
tion layers are of cipher block chaining (CBC) type, whereas in
EME and EME , the encryption layers are of electronic code-
book (ECB) type.

In contrast, the earlier construction of Naor–Reingold con-
sisted of a single encryption layer sandwiched between two in-
vertible universal hash computations. Encryption consisted of

0018-9448/$25.00 © 2008 IEEE

1684 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

Fig. 1. Encryption using XCB. Here, the five keys K ; . . . ; K are derived
from a single keyK using five block cipher invocations in the following manner:
K = E (0);K = E (0 k1);K = E (0 k1k0);K =
E (0 k1);K = E (0 k1k0). The keys K ;K , and K are used
as block cipher keys, whereas, the keys K and K are used as keys for the
universal hash function computations.

one layer of ECB. Later constructions of the hash-ECB-hash
type are PEP [3] and the more recent construction TET [5].

A different class of constructions consists of two layers of
universal hash functions (noninvertible) with a counter mode
of encryption in between. One advantage of using the counter
mode of encryption is that it becomes easy to tackle variable
length messages. The first construction of the hash-counter-hash
type was XCB [10]. A later construction was HCTR [15]. An-
other construction which has a structure similar to XCB was
ABL [12]. Even though the structure is similar to that of XCB,
ABL is significantly slower—it consists of essentially three
counter layers and two polynomial hash layers.

In the Naor–Reingold approach, both the universal hash and
the ECB layers are invertible. On the other hand, in the counter-
based approach, the universal hash function is noninvertible and
this can be considered to be closer to the Luby–Rackoff [9] ap-
proach, where noninvertible pseudorandom functions are used
to construct an invertible map.

The construction we present is also of the hash-CTR-hash
type. To understand our contribution, it might be helpful to
have a brief idea of the previous two constructions—XCB and
HCTR. (We do not consider ABL, because it is significantly
slower than XCB.) The schematic diagrams for encryption
using XCB and HCTR are given in Figs. 1 and 2. For the exact
details of XCB and HCTR, we refer the reader to the respective
papers.

XCB: From the single key for the block cipher, XCB
derives five keys . The keys and are used
as keys for the universal hash functions, i.e., the polynomials
formed from the data are evaluated at and . The keys

Fig. 2. Encryption using HCTR. Here,K is the key for the block cipherE ()
and h is the key for the universal hash function H ().

and are used for a single encryption and decryption
operation, respectively, of the underlying block cipher. The
key is used as a key to the counter mode of operation. This
means that is also used as a key for the underlying block
cipher.

Viewed in this fashion, XCB has one limitation. Since an
output of the block cipher is to be used as a key, this means that
the length of the key and the block length should be the same.
It will not be possible to use XCB when the key length is dif-
ferent from the block length, as for example in Rijndael with
192-bit key and 128-bit block lengths. Viewed differently, one
can consider XCB as if it uses five keys . Then, this
problem of key-length block-length mismatch does not arise. On
the other hand, a five-key protocol is not very attractive, which
is perhaps why the designers chose to derive the five keys from
a single one.

The tweak in XCB can be of arbitrary length. The message
is padded with zeros to make it a multiple of the block length.
Similarly, the tweak is also padded and appended to the mes-
sage. Then, the lengths of the message and the tweak are ap-
pended. The entire string now has a length which is a multiple
of the block length. This string is hashed using the universal
hash function.

In the original proposal [10], a security proof for XCB had
been sketched but no concrete security bound was provided. In
a recent work [11], appearing subsequently to the conference
version of this paper, a quadratic security bound for XCB has
been obtained.

HCTR: This work took place later than XCB and there are
a few differences. It uses a single key for the block cipher and
a single key for the both layers of the universal hash function.
The tweak and length are handled in a manner similar to that of
XCB. On the other hand, the first block is handled differently.
In particular, the decryption call during XCB encryption is no
longer required. HCTR provides a security proof and a concrete
security bound. The adversary’s advantage is upper bounded by
a constant multiple of , where is the number of -bit
blocks provided by the adversary in all its queries. This is higher
than the usual quadratic bound which is of the type .

CHAKRABORTY AND SARKAR: HCH: A NEW TWEAKABLE ENCIPHERING SCHEME USING THE HASH-COUNTER-HASH APPROACH 1685

Fig. 3. Encryption using HCH. Here, R = E (T) and Q = E (R �
(l)). In the figure, we show only full blocks and soM computed in Step

2 of the encryption algorithm given in Table II is equal to P .

B. Our Contributions

In this paper, we present HCH, which is a construction of a
new tweakable enciphering scheme. HCH is also of the hash-
counter-hash type. A schematic diagram is shown in Fig. 3.

Compared to XCB and HCTR, we introduce an extra block
cipher call before initializing the counter mode. This block ci-
pher call plays an important role in obtaining a quadratic secu-
rity bound. Without this block cipher call, the counter mode is
initialized with XOR of the input and the output of a block ci-
pher invocation. In the combinatorial analysis, this turns out to
be the output of a universal hash function. As a result, the in-
puts of all the block cipher calls as part of the counter mode are
minor modifications of the universal hash output. In the collision
analysis in HCTR, it is this feature which leads to a cubic secu-
rity bound. On the other hand, in HCH, the extra block cipher
call ensures that the counter mode is initialized with a “random”
quantity. It is due to this that the collision analysis in HCH leads
to a quadratic security bound.

The tweak and the length are also handled differently from
both XCB and HCTR. HCH handles -bit tweaks. The encryp-
tion of the tweak (called) is XOR-ed to the binary expansion
of the message length and the quantity is encrypted once more
to obtain . The key for the universal hash function is taken to
be . This method of handling the tweak and the length is taken
from PEP. As a result of using this method, we do not require a
separate key for the universal hash function.

More details on the comparison of HCH to the other modes of
operations are given in Section III. From the viewpoint of effi-
ciency, the encrypt-mix-encrypt constructions (CMC, EME, and
EME) use approximately two block cipher calls per message
block while the hash-encrypt-hash constructions (XCB, HCTR,
HCH, and TET) use approximately one block cipher call and
two multiplications per message block. The second ap-
proach is faster if one block cipher call takes more time than two

multiplications. Thus, this is actually a comparison be-
tween the two approaches.

One desirable goal is to obtain a tweakable enciphering
scheme which uses a single key, can encrypt arbitrary length

messages, and has a quadratic security bound. HCH achieves
this combination of properties while none of the other known
constructions satisfy all three of these properties (see Table III).

One drawback of HCH compared to XCB and TET is that it
is not possible to use precomputation to speed up the polyno-
mial hash computation. We note, however, that secure storage
for precomputed tables can be a problem for multikey envi-
ronments and hardware implementations. Nevertheless, we de-
scribe a simple variant of HCH called HCHp for which it is pos-
sible to utilize precomputation. HCHp uses a separate hashing
key. Though HCHp uses more key material than HCH, this
amount is still lower than the other proposals of the hash-en-
crypt-hash-type constructions.

Disk encryption is an important application of tweakable
SPRPs. For this application, the number of blocks in the mes-
sage is fixed. We describe a variant HCHfp which works for
fixed length messages, can utilize precomputation, and reduces
the number of block cipher calls by one. The efficiency (time
for encryption and decryption) of this construction is similar
to other known hash-encrypt-hash-type constructions; on the
other hand, HCHfp requires less key material and provides
better key agility.

II. SPECIFICATION OF HCH

We construct the tweakable enciphering scheme HCH from a
block cipher and call it HCH . The
key space of HCH is the same as that of the underlying block
cipher and the tweak space is . The message
space consists of all binary strings of length greater than or equal
to .

An -bit string can be viewed as an element of .
We will consider each -bit string in the specification of HCH
as a polynomial over of degree less than , and multi-
plication will be done modulo a fixed irreducible polynomial

of degree . Thus, if and are -bit strings, then by
we will mean the -bit string representing the product

. Also, the notation denotes the -bit
string representing . The operation denotes
addition over .

For an -bit string , by , we denote the string
and by , we denote the prefix of obtained by drop-
ping the last bits of . For , by , we
denote the -bit binary representation of the integer .

Let be -bit strings. We define

(1)

The previous operations are over , i.e., denotes
addition over and terms of the form denote
the product . The final value of

is an element of given by its -bit
string representation with respect to . From the definition
of , we have the following simple property, which is
required for proper decryption

If

then (2)

1686 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

TABLE I
FORMATTING OF THE MESSAGE

TABLE II
ENCRYPTION AND DECRYPTION USING HCH. THE TWEAK IS T AND THE KEY IS K

In the conference version [2] of this paper, the function
was defined as . This is in the
reverse order compared to (1). The present definition of is
useful in evaluating the hash function in the order of the message
blocks using Horner’s rule. The orderings of the message blocks
do not affect the security proof since with both orderings we
obtain polynomials of degree and in the proof we are
interested in whether is a root of such a polynomial. We note
that XCB and HCTR also use the same ordering as (1), a fact
which we had overlooked while writing the conference version.

HCH requires a counter mode of operation. Given an -bit
string , we define a sequence , where each de-
pends on . Given such a sequence and a key , we define the
counter mode as follows:

(3)
In XCB, is defined from in the following manner. The
rightmost 32 bits of are treated as a nonnegative integer
with the least significant bit on the right; then, this value is incre-
mented modulo to obtain . This method limits the number
of blocks in the message to at most .

For our proof, we will require the sequence to satisfy two
properties. To define these, we introduce a notation. For ,
let , where each is a function from to

. Then, we need to satisfy the following two proper-
ties: for each and for and for random and independent

and

(4)

One simple way of defining so as to satisfy (4) is to set
as has been done for HCTR. Both methods

of XCB and HCTR require the use of an adder. On the other
hand, for nonzero , we can also have , where is
the th state of a maximal length linear feedback shift register
(LFSR) initialized by . With this definition, it is not too diffi-
cult to prove that the sequence satisfies (4). Using an LFSR

might be more efficient than using an adder for hardware im-
plementation. In the following, we will work with keeping in
mind the properties in (4). Any efficient method for generating

’s from such that the ’s satisfy (4) will serve our purpose.
Details on message parsing are given in Table I.
The complete encryption and decryption algorithm of HCH

is given in Table II. A schematic diagram of encryption is given
in Fig. 3.

Note: The two hashing layers are called with slightly dif-
ferent hashing keys. For the first hashing layer (in encryption),
the key is , while for the second hashing layer, the key
is . The reason for this choice is to avoid certain kinds
of collisions that arise in the security proof. To explain this, we
consider the internal variables , and in the encryption
algorithm given in Table II (see also Table III). These variables
can be written in terms of the plaintext and the ciphertext blocks
in the following manner:

where and
. If the same hashing key were used for both layers,

then would not depend on and consequently also would
not depend on the length of the message. The final analysis
of the security proof allows the adversary to control both the
plaintext and the ciphertext. Such an adversary can easily find
two plaintext–ciphertext pairs of different lengths for which the

-values are equal. This would invalidate the collision analysis
in the security proof. It turns out that using the slightly different
hashing key for the second hashing layer avoids this
problem.

A. Messages of Length

We have excluded the case of from the previous spec-
ification. This is because if , then there is only a single
block message and the counter part becomes vacuous. As a re-
sult, the block cipher call to produce is no longer required.

CHAKRABORTY AND SARKAR: HCH: A NEW TWEAKABLE ENCIPHERING SCHEME USING THE HASH-COUNTER-HASH APPROACH 1687

TABLE III
COMPARISON OF SPRPS FOR VARIABLE LENGTH MESSAGES USING AN n-BIT BLOCK CIPHER AND AN n-BIT TWEAK. HERE, m DENOTES THE NUMBER OF

MESSAGE BLOCKS (FULL OR PARTIAL). FOR HCH, WE ASSUME THE MODIFICATION IN SECTION II-A. FOR PEP, WE ASSUME m � 3. FOR TET, m IS THE

NUMBER OF FULL BLOCKS AND i IS A VALUE WHICH DEPENDS ON m (AND K). WE IGNORE CONSTANTS FOR THE SECURITY BOUNDS. BC: BLOCK CIPHER

INVOCATION; M: GF (2) MULTIPLICATION; I: GF (2) INVERSION; R: READ A BLOCK; W: WRITE A BLOCK; BCK: BLOCK CIPHER KEY; AK: AUXILLIARY

n-BIT KEY MATERIAL; � : TOTAL NUMBER OF n-BIT BLOCKS IN ALL THE QUERIES. THE CONSTRUCTION TYPES ARE THE FOLLOWING. I: ENC-MIX-ENC;
II: HASH-ECB-HASH; III: HASH-CTR-HASH

(The quantity is still required.) Thus, this case needs to be
tackled separately. The extension is the following:

If use HCH to encrypt

If

In the case , there is a single message block and a cor-
responding ciphertext block defined previously. Decryption
is simple. This requires a total of three block cipher calls (two
to produce and one for producing).

The security of the previous modification cannot be gener-
ically derived from that of HCH. We need to have a separate
proof for it. On the other hand, this proof is very similar to that
of HCH, with the only difference that we will have to take care
of the possibilities of domain and range collisions due to single
block adversarial queries. We do not actually present this sep-
arate proof. Instead, we present the complete proof for HCH
with , from which a reader can easily obtain a proof for
the modified protocol.

The intuition behind this is quite easy. While considering in-
ternal collisions, the quantity will be considered for pos-
sible collisions with other elements in the domain of the block
cipher, while the quantity will have to be considered
for possible collisions with other elements in the range of the
block cipher. The value of depends on both the tweak and
the length. Thus, for different length queries, the values of
will be equal with probability . This takes care of possible
collisions between single block queries and queries with more
blocks. Among single block queries, if the tweaks are different,
then again the values of the corresponding ’s are different and
so the probability of a collision is . The values of will
be the same only for those blocks which have the same tweak.
However, in this case, the corresponding plaintext must be dif-
ferent (as otherwise the adversary has provided the same query
twice) and hence the probability of a collision is zero.

III. DISCUSSION AND COMPARISON

The differences between HCH, XCB, and HCTR were men-
tioned earlier. All three can handle arbitrary length strings.

One limitation of XCB is that it might not be possible to use it
with a block cipher whose key length is different from the block
length (unless one adopts a multikey version of XCB as sug-
gested earlier). Also, the upper bound on the maximum length of
a message is possibly determined by the definition of the counter
mode in XCB. HCTR uses one block cipher key plus one key
for the universal hash function. In contrast, HCH uses a single
block cipher key. The key for the universal hash function is de-
rived from the tweak.

TET is a recent construction, which is of the hash-ECB-hash
type, where the universal hash function is designed to be bi-
jective. The algorithm can handle arbitrary length tweaks and
arbitrary length messages. It uses two block cipher keys—one
for the ECB layer and the other for a pseudorandom function
to process the tweak and also for other computations. However,
even though TET can tackle arbitrary lengths, it is not very effi-
cient in such situations. For each query having blocks, TET
needs to compute (where is a pseu-
dorandom function with key) and
successively for until a nonzero is found. Then,
this needs to be inverted. (This is not to be confused with

, the total number of -bit blocks provided by the adversary
in all its queries.) These computations make TET unattractive
for variable length situations.

In Table III, we present a comparison of HCH with the
previous algorithms. We compare it with CMC, EME, and
EME , which are encrypt-mix-encrypt-type constructions.
XCB and HCTR are also included, because they are of the
hash-counter-hash type. We do not include ABL, because it is
significantly slower than the other proposals. PEP and TET are
hash-ECB-hash-type constructions with PEP being slower than
TET.

1688 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

EME tackles only strings of very specific lengths. From the
table, we see that EME , XCB, HCTR, HCH, and TET are the
algorithms that can tackle arbitrary length strings. (HCH can be
modified to also tackle strings of length ; see Section II-A.)
As discussed earlier, TET is not interesting for encrypting vari-
able length strings. EME has a quadratic security bound, and
uses one block cipher key plus two -bit strings as auxiliary key
material. XCB uses a single key with some restrictions. HCTR
uses two keys and has a cubic security bound. On the other hand,
HCH uses a single key and has a quadratic security bound.

The algorithms CMC and EME are based on the en-
crypt-mask-encrypt approach, while XCB, HCTR, and HCH
are based on the hash-encrypt-hash approach. The first approach
requires more block cipher calls while the second approach
requires more finite field multiplications. The comparison is
based on the relative cost of a block cipher call versus a finite
field multiplication. Roughly speaking, the hash-encrypt-hash
approach will be faster than the encrypt-mix-encrypt approach
if one block cipher invocation is slower than two finite field
multiplications. This is not true for software implementation
when the block cipher is AES. On the other hand, a mode
of operation is not intended to be used with only one block
cipher. It is conceivable that there are (possibly proprietary)
block ciphers for which this condition holds and using the
hash-counter-hash approach will improve.

The number of passes gives the number of times the entire
length of the message has to be read. In the encrypt-mix-en-
crypt-type constructions, the number of passes is two, while in
the hash-ECB-hash-type constructions, the number of passes is
three. In the hash-Ctr-hash-type constructions, the number of
passes is also two. This is because the second layer of universal
hash computation can be combined with the encryption layer by
rewriting the loop in a slightly different manner. (We note that
for HCH, this is due to the current definition of ; using
the definition of in the conference version [2] of this
paper will require three passes.)

Irrespective of whether the number of passes is two or three,
the important thing is that it is more than one. As a result, the
encryption cannot be online, i.e., the ciphertext cannot be pro-
duced without reading (or processing) the entire message. This
property is natural to be expected from a strong pseudorandom
permutation, because such a cryptographic primitive tries to
make each bit of the ciphertext depend on the entire message.

The number of memory accesses depends on the number of
passes and also on the details of the algorithm. Suppose there are

blocks in the message to be encrypted (the reasoning about
decryption is similar). A single pass algorithm will need to read
the message blocks and write the ciphertext blocks. The
behavior of a multipass algorithm depends on the nature of the
construction.

— Encrypt-Mix-Encrypt: For such constructions, the
message blocks are read; their encryptions are written;
these encryptions are read; and the ciphertext blocks are
written. Thus, blocks are read and blocks are
written.

— Hash-Ctr-Hash: For such constructions, the message
blocks are read and the output of the universal hash
function is computed; then, the encryption layer reads the

message blocks once more and simultaneously computes
the output of the second universal hash function and also
writes the ciphertext blocks. Thus, in this case blocks
are read but only blocks are written.

— Hash-ECB-Hash: These are three pass constructions. For
PEP, blocks are read and blocks are written, while
for TET, blocks are read and blocks are written.

These values are given in Table III. From the previous dis-
cussion, we see that the hash-Ctr-hash constructions require the
minimum number of writes. The total time required for encryp-
tion and decryption will be the time for computation as well as
the time for reading and writing the blocks. Depending on the
actual implementation, this value may vary quite a lot.

Parallelism: Some of the constructions in Table III are
marked as being partially parallel. This means that the encryp-
tion layer is parallel but the hash computations are not. The
hash computations can also be made parallel, but then Horner’s
rule cannot be applied for polynomial evaluation. For XCB,
HCTR, HCH, and TET, this increases the total number of

mutliplications by roughly a factor of two.
Arbitrary Length Tweaks: CMC, EME, EME , and HCH

support -bit tweaks. On the other hand, XCB and TET sup-
port arbitrary length tweaks, while HCTR supports arbitrary
but fixed length tweaks. For HCH, it is easy to obtain a variant
supporting arbitrary length tweaks by using a separate pseudo-
random function which uses an independent key. This PRF will
produce an -bit digest of the tweak, which will be used by the
usual HCH construction. This approach is used in TET. The dif-
ference is that for TET, one needs the PRF even for -bit tweaks.
We note that -bit tweaks are sufficient for disk encryption, be-
cause in this case, sector addresses are used as tweaks.

A. Precomputation

In certain situations, one can use precomputation to generate
tables and use these during the actual encryption to speed up the
computation. Two kinds of quantities may be precomputed.

— Block cipher key schedule. If the block cipher key is
fixed, then it is possible to precompute the entire key
schedule. This helps in reducing the time required for
encrypting each block. While this improves speed, it also
means secure storage for the precomputed key schedules.
Thus, a construction that uses more block cipher keys
requires more storage space. Let us consider XCB as an
example. The five keys that it requires do not depend on
the message or the tweak and hence these keys can be pre-
computed. Out of these keys, three are block cipher keys
and to obtain good speed one may need to precompute and
store the key schedule for all three of these keys. Similarly,
TET uses two block cipher keys and will require to store
the key schedule for both keys. In contrast to this, EME ,
HCTR, and HCH use a single block cipher key and hence
the storage space for the precomputed key schedule will
be smaller.

— Table for computing polynomial hash. If one of the
operands is fixed, then precomputation can be used to
speed up finite field multiplication [14]. XCB, HCTR,
and TET can use such precomputation to speed up the
computation of the polynomial hash. On the other hand,

CHAKRABORTY AND SARKAR: HCH: A NEW TWEAKABLE ENCIPHERING SCHEME USING THE HASH-COUNTER-HASH APPROACH 1689

TABLE IV
ENCRYPTION AND DECRYPTION USING HCHP. THE TWEAK IS T AND THE KEY IS (K;�), WHERE K IS THE BLOCK CIPHER KEY

AND � IS THE UNIVERSAL HASH KEY

because HCH evaluates the polynomial at a value that de-
pends on the tweak and the length, it is not possible to use
precomputation for speeding up polynomial arithmetic.

We note, however, that the general issue of precomputation
comes at a cost. One will require secure storage for the pre-
computed tables (whether for block cipher key schedules or for
polynomial evaluations), which can be a problem especially in
multikey situations or in hardware implementations. The related
issue is of key agility. If the key changes often, then changing
the tables each time can be problematic.

B. HCHp: A Variant Supporting Precomputation

Any construction of the hash-Ctr-hash type will basically re-
quire at least two keys—one for the block cipher and another one
for the universal hash function. In HCH, the universal hash key
is derived by encrypting the tweak, and hence precomputation
cannot be used. On the other hand, if one wants to utilize pre-
computation, then it is easy to modify HCH to obtain a variant
for which this is possible. This variant is called HCHp and is
described in Table IV.

The change to HCH is minimal. An -bit (also considered to
be an element of) key for the universal hash function
is used. This is chosen uniformly at random from the set of all

-bit strings and is independent of the block cipher key . The
invocations of the hash function is done using instead of

. Because is a fixed quantity, a table can be precomputed to
speed up multiplications using . Note that (which is com-
puted from) is used in the same manner as in HCH.

Security is not affected by the replacement of by in the
hash function computation. The intuitive argument for this is
the following. depends upon the tweak while does not.
Thus, a problem may arise if two different queries are made with
the same message but different tweaks. However, note that the

depends upon which in turn depends upon both the
tweak and the length. Hence, if the tweaks are different, then the
corresponding values of will be different, which will ensure
that there is no collision for the internal variables corresponding
to the two queries. More details on the collision analysis are pro-
vided in Section VI-E.

IV. FIXED LENGTH VARIANTS

One important application of tweakable enciphering scheme
is disk encryption. For such applications, the length of the mes-
sage is fixed and is some multiple of the block length. The tweak
is taken to be the sector address. For such applications, it is pos-
sible to simplify some of the constructions.

For XCB, as mentioned earlier, the three block cipher keys
and the two polynomial hash keys can be precomputed. (After
precomputing the keys, depending on the available secure
storage space, one may or may not choose to precompute the
key schedules and tables to speed up polynomial hash.) This
makes the number of block cipher calls for an -block message
to be . For TET, because the value of is now fixed,
the values of and can be precomputed and stored. Also,
TET requires the encryption of the message length which can
be precomputed and stored. This reduces the number of block
cipher calls by one and increases the storage requirement by
three -bit strings.

A. HCHfp: A Fixed Length Variant of HCHp

As mentioned earlier, in HCH, it is not possible to use pre-
computed tables to speed up the hash function computation. The
variant HCHp was introduced for this purpose. Next, we de-
scribe a fixed length variant HCHfp, which is a variant for fixed
length messages and it supports precomputation. This is given
in Table V

In HCHfp, the key for the universal hash function is chosen
uniformly at random and is independent of the block cipher key.
Moreover, this key is fixed for all messages and a table can be
precomputed to speed up the hash function computation. The
dependence of the hash value on the tweak is achieved by in-
voking the hash function as and . The collision
analysis of HCHfp is given in Section VI-F.

Remark: It is possible to derive using the block cipher key
by setting . This will make HCHfp a single
key algorithm where the hash key (and a corresponding table)
can be precomputed if required. This may be desirable for some
applications. The collision analysis of this variant is almost the
same as that of HCHfp and hence is not provided.

Note: The collision analysis for HCHfp will fail if vari-
able length messages are allowed. To see this, consider the
internal variable in Table V. This can be written in terms of

as follows:

The quantity is independent of the length of the message.
Now consider two messages and with the
same tweak . Here, is any -bit block. Let us denote the
quantities corresponding to the two messages by superscripts
and . For example, the corresponding values of will be de-
noted by and . Because the tweak is the same for both
messages, we have which we simply denote by .

1690 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

TABLE V
ENCRYPTION AND DECRYPTION USING HCHFP. THE TWEAK IS T AND THE KEY IS (K;�), WHERE K IS THE BLOCK CIPHER KEY AND � IS THE UNIVERSAL

HASH KEY. THE LENGTH OF THE MESSAGE AND HENCE THE NUMBER OF BLOCKS m IS FIXED

TABLE VI
COMPARISON OF DIFFERENT TWEAKABLE SPRPS FOR FIXED LENGTH INPUTS USING AN n-BIT BLOCK CIPHER AND AN n-BIT TWEAK. THE FIXED NUMBER OF

BLOCKS IS m > 1 AND EACH BLOCK IS OF LENGTH n BITS. BC: BLOCK CIPHER INVOCATION; M: GF (2) MULTIPLICATION; BCK: BLOCK CIPHER KEY;
AK: AUXILIARY n-BIT STRING (INCLUDING POLYNOMIAL HASH KEYS)

TABLE VII
EFFICIENCY OF KEY CHANGE. FOR TET, THE VALUE OF { DEPENDS ONLY ON K (BECAUSE THE NUMBER OF BLOCKS m IS FIXED). I: INVERSION

It is easy to see that . Consequently,
and . This means that the counter

gets initialized to the same value for both messages. As a result,
. In other words,

the second ciphertext blocks corresponding to the two messages
are equal. Consequently, HCHfp is not a pseudorandom permu-
tation for variable length messages. Basically, to tackle variable
length messages, we need to incorporate the length directly into
the encryption process. This is done in HCH and HCHp.

B. Comparison Among Fixed Length Variants

The comparison for fixed length inputs is given in Table VI.
As mentioned earlier, the comparison between encrypt-mix-en-
crypt and hash-encrypt-hash approaches depends on the relative
efficiency of a block cipher invocation to a finite field multipli-
cation. If a block cipher invocation is slower than two multipli-
cations, then the second approach is faster. Otherwise, the first
approach is faster.

Let us now consider the constructions in the hash-encrypt-
hash approaches. Table VI lists two other constructions of this
type —XCB and TET. XCB is of the hash-counter-hash type,
while TET is of the hash-ECB-hash type. We do not include
HCTR in the comparison table, because it has a cubic security
bound. The variant HCHfp is given for comparison. The dif-
ference between these two variants is that HCH uses a single
block cipher key but cannot use precomputation to speed up the
hash computations, while HCHfp uses a block cipher key and
an -bit hash key and can use precomputation to speed up the
hash computations. Also, HCHfp makes one less block cipher
call. The other features are the same.

The number of block cipher calls and the number of multi-
plications made by XCB, TET, and the two HCH variants are
roughly the same. If precomputation is used, then XCB, TET,
and HCHfp have similar efficiencies.

Key Agility: Table VII provides the costs for the different
algorithms when a key is changed. The first row gives the com-
putation cost, which includes block cipher invocations and finite
field operations. These costs are matched with Table VI in the
sense that if less is precomputed, then the computation costs in
Table VI will increase.

In terms of key agility, CMC, EME , and HCH are the best,
because only one block cipher key schedule has to be com-
puted on a key change. (EME requires two additional -bit
keys.) Next comes HCHfp, which requires computation of one
block cipher key schedule and one multiplication table. From
the viewpoint of key agility, XCB and TET are significantly
slower compared to the other four with XCB requiring the max-
imum amount of secure storage space. TET requires a finite field
inversion for every key change. This necessitates an inversion
circuit for hardware implementation, which is not required by
the other five modes.

V. SECURITY OF HCH AND THE VARIANTS

A. Definitions and Notation

The discussion in this section is based on [6]. An -bit block
cipher is a function , where is
the key space and for any is a permutation. We
write instead of .

CHAKRABORTY AND SARKAR: HCH: A NEW TWEAKABLE ENCIPHERING SCHEME USING THE HASH-COUNTER-HASH APPROACH 1691

An adversary is a probabilistic algorithm, which has access
to some oracles, and which outputs either or . Oracles are
written as superscripts. The notation denotes the
event that the adversary interacts with the oracles , and

finally outputs the bit . In what follows, by the notation ,
we will denote the event of choosing uniformly at random
from the set .

Let denote the set of all permutations on .
We require to be a strong pseudorandom permutation. The
advantage of an adversary in breaking the strong pseudoran-
domness of is defined in the following manner:

Formally, a tweakable enciphering scheme is a function
, where and are the key

space and the tweak space, respectively. The message and the
cipher spaces are . For HCH, we have .
We will write instead of . The inverse of an
enciphering scheme is , where if and
only if .

Let denote the set of all functions
, where is a length preserving permutation.

Such a is called a tweak indexed permutation.
For a tweakable enciphering scheme , we
define the advantage an adversary has in distinguishing ,
its inverse from a random tweak indexed permutation, and its
inverse in the following manner:

Pointless queries: We assume that an adversary never repeats
a query, i.e., it does not ask the encryption oracle with a partic-
ular value of more than once and neither does it ask the
decryption oracle with a particular value of more than
once. Furthermore, an adversary never queries its deciphering
oracle with if it got in response to an encipher query

for some . Similarly, the adversary never queries its
enciphering oracle with if it got as a response to a
decipher query of for some . These queries are called
pointless as the adversary knows what it would get as the re-
sponses for such queries.

Following [6], we define the query complexity of an ad-
versary as follows. A string contributes to the
query complexity. A tuple of strings contributes
the sum of the contributions from all oracle queries plus the
contribution from the adversary’s output. Suppose an adversary
makes queries where the number of -bit blocks in the th
query is . Then, . Let be a list
of resources used by the adversary and suppose
has been defined, where is either a block cipher or a tweakable
enciphering scheme. denotes the maximal value
of over all adversaries using resources at most

. Usual resources of interest are the running time of the ad-
versary, the number of oracle queries made by the adversary,
and the query complexity .

The notation HCH denotes a tweakable enciphering
scheme, where the -bit block cipher is used in the manner
specified by HCH. Our purpose is to show that HCH is
secure if is secure. The notation HCH denotes
a tweakable enciphering scheme obtained by plugging in a
random permutation from into the structure of HCH.
For an adversary attacking HCH , we do not put
any bound on the running time of the adversary, though we
still put a bound on the query complexity . We show the
information theoretic security of HCH by obtaining

an upper bound on . The upper bound is
obtained in terms of and . For a fixed block cipher , we

bound in terms of , where
. We will use the notation as a shorthand for

HCH and will denote the inverse of . Thus,
the notation will denote an adversary interacting with
the oracles and .

B. Statement of the Results

The following theorem specifies the security of HCH.

Theorem 1: Fix and to be the positive integers
and an -bit block cipher . Then

(5)

(6)

where . Equations (5) and (6) also hold when
HCH is replaced by its variants HCHp and HCHfp.

The previous result and its proof are similar to the previous
work (see, for example, [6], [7], and [3]). As mentioned in [6],
(6) embodies a standard way to pass from the information theo-
retic setting to the complexity theoretic setting. We briefly pro-
vide the argument. For any adversary , we have the following:

where

1692 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

The quantity represents an adversary’s advantage in distin-
guishing HCH from HCH , where is a randomly chosen
permutation from . Clearly, such an adversary can
also distinguish from a random permutation and hence

. This argument shows how (6) is obtained from
(5).

For proving (5), we need to consider an adversary’s advantage
in distinguishing a tweakable enciphering scheme from an
oracle which simply returns random bit strings. This advantage
is defined in the following manner:

where returns random bits of length .
The basic idea of proving (5) is as follows:

(7)

where is the number of queries made by the adversary. For a
proof of the last inequality, see [6].

The main task of the proof now reduces to obtaining an
upper bound on . This proof is provided
in Section VI, where we show [see (17)] that for any adversary
having query complexity , we have

Using this and (7), we obtain

The upper bound on is obtained by the
standard technique of sequence of games between an adversary
and the mode of operation HCH. The proof is similar to the cor-
responding proofs of CMC [6] and EME [7]. By a sequence
of games we show that if in response to any valid query of the
adversary random strings of appropriate lengths are returned,
then the internal computations of HCH can be performed consis-
tently under the assumption that the block cipher and its inverse
are random permutations. The crux of the proof lies in showing
that there would seldom be any collisions in the range and do-
main sets of the block cipher if the adversary queries HCH with
valid queries and HCH responds to them by producing random
strings. In a later part, we remove the randomness associated
with the adversary and the game runs on a fixed transcript con-
sisting of the queries and their responses. We show that in such
a situation also the internal computations of HCH can be per-
formed consistently.

VI. PROOF OF THEOREM 1

We describe the detailed proof for Theorem 1 for HCH. The
proofs for the variants are similar. At the end of the proof for
HCH, we provide the details of the variables, which arise for
each of the variants, and among which the collision analysis is
to be made.

We prove the upper bound on . Re-
call that this is the difference in the probabilities of the adver-
sary producing one when interacting with HCH instantiated by
a random permutation (and) and when interacting with
an oracle which returns random strings on any input.

We model the adversary’s interaction with the oracles and
as a game. In the usual game, which we call HCH1, the ad-

versary submits queries to and and gets appropriate an-
swers. Starting from this game, we modify it in successive steps
to obtain games where the adversary is provided with random
bit strings of appropriate lengths. This results in a sequence of
games: HCH1, RAND1, RAND2, RAND3, and NON. In the
final game, both the plaintext and the ciphertext are allowed to
be fixed by the adversary. The point is then to show that even
in this case, with high probability, it is possible to adjust the in-
ternal variables so as to ensure that these plaintext–ciphertext
pairs are consistent with the HCH mode of operation.

A. Overview

Before presenting the details of the games, we describe the
idea behind the games. This may help in understanding the de-
tails of each game.

Game HCH1: In this game, the adversary interacts with
HCH where the block cipher is instantiated by a random per-
mutation . For every invocation of (resp.,), we generate
a random string; if this string is already in the domain (resp.,
range) of , then we set a flag to true and randomly choose
a string which is not currently in the domain (resp., range) of .

Game RAND1: In this game, we do away with the explicit
domain and range checks (and as a result the adversary obtains
random strings in response to any query), so if is not set to
true, then games HCH1 and RAND1 are the same. The setting
of to true means that there is either a domain or a range
collision. The whole point of the rest of the proof is to upper
bound the probability of such collisions.

Game RAND2: In this game, in response to any query, we
explicitly return random strings to the adversary. Then, the in-
ternal variables are adjusted to ensure that whatever is returned
to the adversary is consistent with the mode of operation. If this
adjustment cannot be done, then is set to true. The proba-
bility of being set to true is the same for both games RAND1
and RAND2. Also, in this game, the adversary is effectively in-
teracting with an oracle, which provides random strings on any
input.

Game RAND3: In this game, we first return the random
strings to the adversary and then try to adjust the internal vari-
ables. Also, in this game, we maintain the current domain and
range of as multisets. If a value occurs twice in this multiset,
then there is a collision. The changes from RAND2 to RAND3
are technical in nature and do not affect the adversary’s view in
any manner.

CHAKRABORTY AND SARKAR: HCH: A NEW TWEAKABLE ENCIPHERING SCHEME USING THE HASH-COUNTER-HASH APPROACH 1693

TABLE VIII
ELEMENTS OF D AND R FOR HCH

TABLE IX
ELEMENTS OF D AND R FOR HCHP

TABLE X
ELEMENTS OF D AND R FOR HCHFP

Game NON: We first upper bound the probability that there is
a collision in the output of the counter mode over all the queries.
(This is also the probability that the quantities are all
distinct.) This probability is . The set of queries by the
adversary and the responses to them constitute a transcript of
the game. We now consider all transcripts such that the outputs
of the counter mode are distinct over all the queries. Such tran-
scripts are called allowed transcripts. To obtain the game NON
(for noninteractive), we fix a transcript which maximizes the ad-
vantage of the adversary. We then show that for such a transcript
the probability of being set to true is small. Structurally,
games RAND3 and NON are exactly the same though the inter-
pretation of the variables are somewhat different.

Combinatorial analysis: The task of showing the probability
of being set to true boils down to a combinatorial analysis.
We carefully identify the quantities in the domain and range sets
and then upper bound the probability that two elements in the
domain or two elements in the range are equal. Most of this is
routine except for the polynomial hash output. We discuss this
in more details.

Polynomial hash and the effect of the extra block cipher
invocation: In HCTR, the counter is initialized with the XOR

of the input and the output of the block cipher invocation for
the first block. In the game NON, where both the plaintext and
the ciphertext are fixed, this results in the counter being initial-
ized with the XOR of two polynomial hashes. Consequently, for

each query of length , there are quantities in the domain,
which are variants of these polynomial hashes. As a result, al-
most all the quantities in the domain are some kind of polyno-
mial hashes. A collision analysis of so many polynomial hash
quantities makes the bound cubic.

Let us now consider the situation of HCH. For each query, the
counter is initialized by the output of an encryption. In Game
NON, the XOR of the polynomial hashes of the plaintext and
ciphertext enters the domain once as input to the extra block ci-
pher invocation. Thus, in HCH, for each query, we have only
one polynomial hash quantity to take care of. This makes it pos-
sible to obtain a quadratic security bound.

B. The Games

By the abuse of notation, we will use to denote an
adversary ’s interaction with the oracles while playing game
HCH1. We will use similar notations for the other games.
The detailed pseudocodes for the different games are given in
Tables XI–XIII.

Game HCH1: We describe the attack scenario of the adver-
sary through a probabilistic game which we call HCH1. In
HCH1, the adversary interacts with and , where is
a randomly chosen permutation from . Instead of ini-
tially choosing , we build up in the following manner.

Initially, is assumed to be undefined everywhere. When
is needed, but the value of is not yet defined at , then a

1694 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

TABLE XI
GAME HCH1

random value is chosen among the available range values. Sim-
ilarly, when is required and there is no yet defined
for which , we choose a random value for
from the available domain values.

The domain and range of are maintained in two sets
and , and and are the com-

plements of and relative to . The game
HCH1 is shown in Table XI. The figure shows the subroutines
Ch- and Ch- , the initialization steps, and how the game
responds to the encipher/decipher query of the adversary. The
th query of the adversary depends on its previous queries, the

responses to those queries, and some coins of the adversary.
The game HCH1 accurately represents the attack scenario,

and by our choice of notation, we can write

(8)

Game RAND1: We modify HCH1 by deleting the boxed
entries in HCH1 and call the modified game as RAND1. By
deleting the boxed entries, it cannot be guaranteed that is a
permutation as though we do the consistency checks but we do
not reset the values of (in Ch-) and (in Ch-). Thus,
the games HCH1 and RAND1 are identical apart from what hap-
pens when the flag is set; so

(9)
Game RAND2: We make certain there are changes to the

game RAND1 which are invisible to the adversary. In RAND1,
as the permutation is not maintained, thus the subroutines
Ch- and Ch- are no more needed. Instead, we add a new
subroutine called Check–Domain–Range . In Check–Do-
main–Range is inserted into Domain and is in-

CHAKRABORTY AND SARKAR: HCH: A NEW TWEAKABLE ENCIPHERING SCHEME USING THE HASH-COUNTER-HASH APPROACH 1695

TABLE XII
GAME RAND2

serted into Range; also, if Domain or Range, then
the flag is set.

In this game, for an encryption query, we choose the cipher-
text blocks to be random -bit strings and return to the adver-
sary. Then, we adjust the internal variables so as to ensure that
the particular choice of ciphertext blocks is consistent as per the
protocol. Similarly, for a decryption query, we choose the plain-
text blocks to be random -bit strings and return to the adversary
and then adjust the internal variables. This does not alter the ad-
versary’s view of the game, because for each such change the
adversary obtains a random -bit string both before and after
the change. Thus

(10)

and also

(11)

In RAND2, the adversary is supplied with random bits as a re-
sponse to queries to both the encrypt and the decrypt oracles.
Hence

(12)

Now, from (8)–(12), we get

1696 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

(13)

Our task is thus to bound .
Game RAND3: We make two subtle changes to the game

RAND2. Here, instead of the Domain and Range sets, we use
multisets and , respectively. In the game RAND3, on either
an encryption or a decryption query by the adversary, a random
string is given as the output. Next, the internal variables are ad-
justed in the first phase of the finalization step. The flag
is set at the second phase of the finalization step by checking
whether a value occurs in either or more than once. The
game RAND3 is shown in Table XIII. RAND3 sets in ex-
actly the same conditions in which RAND2 sets , hence

(14)

Game NON: In game RAND3, consider the variable ,
which is defined as

For , the variable enters the range set and it
is always an -bit random quantity. When

, then for an encryption (resp., decryption) query, (resp.,
) is a randomly chosen -bit string. When , then for

an encryption (resp. decryption) query, (resp.) is a
randomly chosen -bit string. Thus, for

. The condition for some leads
to a collision in the range and results in being set to true.
The total probability of being set to true due to collisions of

this kind is at most . (Note that ,

where is the query complexity.) Let be the event that is
set to true in game RAND3 due to collisions of this kind. Then,
we have

Our next task is to upper bound . The
condition translates into the fact that we can assume all the

’s to be distinct. We consider the adversarial behavior under
this condition.

In the previous games, for an encipher query, the adversary
specified the tweak and the plaintext; and for a decipher query,
it specified the tweak and the ciphertext. We now consider the

stronger condition, whereby the adversary specifies the tweak,
the plaintext, and the ciphertext in both the encryption and the
decryption queries subject to the condition that the ’s are all
distinct. For and hence is
determined entirely by the transcript. On the other hand, the last
block can be partial and hence in this case is not entirely
determined by . There are two ways to tackle this
situation. In the first way, we allow the adversary to specify an
additional -bit string, which when appended to

forms . In the second way, we can generate this
-bit string within the game itself. We prefer the first way,

because it is notationally simpler. The effects of both methods
are the same, because we require that ’s are distinct for all
and .

We do this by modifying the game RAND3 into a new game
NON (noninteractive). NON depends on a fixed transcript

with
,

and , where

and each is a string of length such that
. If this fixed transcript does not

contain pointless queries and satisfies the condition that the
’s are all distinct, then the transcript is called allowed.
Now fix an allowed transcript , which maximizes the prob-

ability of being set. This transcript is hardwired into
the game NON. The syntax of NON is the same as the syntax
of RAND3, except that the part before the finalization step is
not present in NON. The main difference between NON and
RAND3 is in the interpretation of the variables. The tweaks,
plaintext, and ciphertext blocks in RAND3 are given by the ad-
versary, while in NON they are part of the transcript , which
is hardwired into the game. We denote this difference by using
the symbols , and to denote the tweaks, plaintext,
ciphertext, and the XOR blocks, respectively, in game NON. We
have

(15)

C. Useful Result

The analysis of NON requires a result, which we state and
prove here. Let be a list of vectors, with

for and where with each
is an -bit string considered to be an element of .

Let be the set of all such that . In other words, if
, then and have the same number of components.

For , define a polynomial as

We do not distinguish between and . The coef-
ficients of this polynomial are elements of . Let be
the following event. Choose a random element from
and evaluate : is the event . Define

(16)

CHAKRABORTY AND SARKAR: HCH: A NEW TWEAKABLE ENCIPHERING SCHEME USING THE HASH-COUNTER-HASH APPROACH 1697

TABLE XIII
GAME RAND3

The probability of is given by the following proposition.

Proposition 1: .
Proof: Suppose the different possible distinct lengths of the

’s are , for some . Further, let the number of
’s of length be . Then, we have .

All the ’s of length contribute pairs to .

Consider the polynomial . This is a nonzero polyno-
mial, because for , we have . The degree is at most

. Let for some in . Thus, has
at most distinct roots over . We have ,
if the randomly chosen is equal to one of the roots. The prob-
ability of this happening is at most . Because there

are pairs in corresponding to length , the contribu-

1698 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

tion of all tuples of length to is at most .

Hence

The previous bound can be improved by using
Cauchy–Schwartz inequality in a different manner.
(This was pointed out to us by M. Nandi.) However, this
improvement only improves the constant in the bound of
Theorem 1.

D. Analysis of NON

In the analysis, we consider the sets and to consist of the
formal variables instead of their values. For example, whenever
we set for some variable , we think of it as
setting `` '' , where “ ” is the name of that formal
variable. This is the same technique as used in [6]. Our goal is
to bound the probability that two formal variables in the sets
and take the same value. The formal variables that enter
and are shown in Table VIII.

Now let us consider the probability of being set under
the particular (allowed) transcript hardwired into NON. The
variable can be set either as a result of a collision in the
domain or as a result of a collision in the range. We consider
these two separately. The number of blocks in a particular ad-
versarial query is the length of the query. Suppose the distinct
lengths of the queries made by the adversary are and
the adversary makes queries of length . Then,

.

There are (unordered) pairs of distinct variables in

. We have to consider the probability that such a pair collides,
i.e., both variables of the pair get the same value. We identify the
following two types of pairs of variables and call them special
pairs.

1) , such that and .
2) , such that and .

The number of pairs of each kind is at most .

The total number of special pairs is at most .

First, let us consider the collision probability of the special
pairs. The total (over all and) probability of the pairs of
either the first or the second kind giving rise to a collision is
given by Proposition 1 in Section VI-C to be at most .
Note that because queries are not pointless, we will have

, when
. Also, in an allowed transcript, all the ’s

(for) are distinct. They ensure that we can
apply Proposition 1 to the aforementioned two cases.

For any nonspecial pair, the probability of collision is either
or equal to . The actual proof is a tedious case analysis,

but is based on a few observations.
• The value of is never repeated in . According to the

game, if a tweak is repeated, then it does not enter the
domain again. As a consequence, the earlier value of is
used.

• If a tweak is repeated and length is kept the same, then
the earlier value of is used. These two points ensure that
there is no collision due to repetition of the tweak and/or
length.

• The variables , and are always generated randomly.
Hence, when these appear as additive terms in some ex-
pression, they ensure that the corresponding quantity is a
random -bit string.

• By definition, the values ’s are all distinct, and therefore,
for . As and are independent

and random -bit strings, so , for
. See (4).

The total probability of a domain collision is the sum of the
probabilities of collision between special pairs and nonspecial

pairs. The total number of nonspecial pairs is at most .

Thus, the total probability of a domain collision is at most

Now consider pairs of elements from . First, leave out the pairs
, such that and . These are now

the special pairs and there are a total of of such

pairs. The total (over all and) probability of such pairs giving
rise to a collision is given by Proposition 1 to be at most .
Here, we use the fact that queries are not pointless to note that

. This
ensures that we can apply Proposition 1.

The probability of any nonspecial pair of elements from
colliding is either or is equal to . This analysis is again
similar to that for the domain. The additional thing to note is
that since the transcript is allowed, we have

for . In other words, the elements
are all distinct and so the probability of any two such elements
colliding is zero.

There are at most nonspecial pairs for . As in the

case of domain elements, we can now show that the probability
of a pair of elements in colliding is at most . (Note that
the corresponding value for has . We get here because
there is only one type of special pairs from .)

Combining the domain and range collision probabilities, we
obtain the probability of being set to true in NON to be at
most . Combining (13)–(15), we have

(17)

We now consider the variants of HCH. The game sequence
for each of the variants can be constructed in a manner similar
to that of HCH. The final collision analysis is based on the ele-
ments which enter the domain and range. In the following, we

CHAKRABORTY AND SARKAR: HCH: A NEW TWEAKABLE ENCIPHERING SCHEME USING THE HASH-COUNTER-HASH APPROACH 1699

provide the details of domain and range for the variants. In each
case, given the elements of the domain and the range, a collision
analysis similar to that of HCH provides the desired bounds on
the probability of domain and range collisions.

E. Case of HCHp

In this case, the hash is computed with a separate random key
, which is independent of the block cipher key. Compared to

HCH, in this case, the quantity is replaced by in the poly-
nomial expressions. Everything else remains unchanged. The
structure of the elements in and is shown in Table IX.

F. Case of HCHfp

All messages have the same fixed number of blocks denoted
by . In this case, the separate hashing key replaces in the
polynomial expression. Also, is no longer computed and so

does not enter the domain and does not enter the
range. Instead, the quantity plays the role of . The use of

introduces an extra source of randomness in the key. Because
the length is also fixed, we can eliminate the block cipher call to
produce . The structure of the elements in and is shown
in Table X.

VII. CONCLUSION

In this paper, we have presented HCH, which is a new tweak-
able enciphering scheme. Our approach to the construction is
based on the hash-encrypt-hash approach, where the encryption
layer consists of a counter mode of encryption. The important
features of HCH are the use of a single key, ability to encrypt ar-
bitrary length messages, and a quadratic security bound. To the
best of our knowledge, HCH is the only construction to simul-
taneously achieve all those three properties. We describe two
variants of HCH-HCHp that can use precomputation to speed up
multiplication, and HCHfp that works for fixed length messages
and can also utilize precomputation. An important application
of tweakable enciphering scheme is disk encryption. Both HCH
and HCHfp provide a designer of a practical disk encryption al-
gorithm with attractive alternatives.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their com-
ments which helped in improving this paper.

REFERENCES

[1] National Institute of Standards and Technology, Cryptographic Toolkit,
[Online]. Available: http://csrc.nist.gov/CryptoToolkit/modes/

[2] D. Chakraborty and P. Sarkar, “HCH: A new tweakable enciphering
scheme using the hash-encrypt-hash approach,” in Lecture Notes in
Computer Science, R. Barua and T. Lange, Eds. Berlin, Germany:
Springer-Verlag, 2006, vol. 4329, pp. 287–302.

[3] D. Chakraborty and P. Sarkar, “A new mode of encryption providing
a tweakable strong pseudo-random permutation,” in Lecture Notes in
Computer Science, J. B. Robshaw, Ed. Berlin, Germany: Springer-
Verlag, 2006, vol. 4047, pp. 293–309.

[4] S. Halevi, “Extending EME to handle arbitrary-length messages with
associated data,” in Lecture Notes in Computer Science, A. Canteaut
and K. Viswanathan, Eds. Berlin, Germany: Springer-Verlag, 2004,
vol. 3348, pp. 315–327.

[5] S. Halevi, “Invertible universal hashing and the TET encryption mode,”
in Lecture Notes in Computer Science, A. Menezes, Ed. Berlin, Ger-
many: Springer-Verlag, 2007, vol. 4622, pp. 412–429.

[6] S. Halevi and P. Rogaway, “A tweakable enciphering mode,” in Lec-
ture Notes in Computer Science, D. Boneh, Ed. Berlin, Germany:
Springer-Verlag, 2003, vol. 2729, pp. 482–499.

[7] S. Halevi and P. Rogaway, “A parallelizable enciphering mode,” in
Lecture Notes in Computer Science, T. Okamoto, Ed. Berlin, Ger-
many: Springer-Verlag, 2004, vol. 2964, pp. 292–304.

[8] M. Liskov, R. L. Rivest, and D. Wagner, “Tweakable block ciphers,” in
Lecture Notes in Computer Science, M. Yung, Ed. Berlin, Germany:
Springer-Verlag, 2002, vol. 2442, pp. 31–46.

[9] M. Luby and C. Rackoff, “How to construct pseudorandom permuta-
tions from pseudorandom functions,” SIAM J. Comput., vol. 17, no. 2,
pp. 373–386, 1988.

[10] D. A. McGrew and S. R. Fluhrer, “The extended codebook (XCB)
mode of operation,” Rep. 2004/278, 2004 [Online]. Available: http://
eprint.iacr.org/, Cryptology ePrint Archive

[11] D. A. McGrew and S. R. Fluhrer, “The security of the extended code-
book (XCB) mode of operation,” in Lecture Notes in Computer Sci-
ence, C. M. Adams, A. Miri, and M. J. Wiener, Eds. Berlin, Germany:
Springer-Verlag, 2007, vol. 4876, Selected Areas in Cryptography, pp.
311–327.

[12] D. A. McGrew and J. Viega, “Arbitrary block length mode,” 2004
[Online]. Available: http://grouper.ieee.org/groups/1619/email/
pdf00005.pdf

[13] M. Naor and O. Reingold, “A pseudo-random encryption mode,” [On-
line]. Available: www.wisdom.weizmann.ac.il/naor

[14] V. Shoup, “On fast and provably secure message authentication based
on universal hashing,” in Lecture Notes in Computer Science, N.
Koblitz, Ed. Berlin, Germany: Springer-Verlag, 1996, vol. 1109, pp.
313–328.

[15] P. Wang, D. Feng, and W. Wu, “A variable-input-length enciphering
mode,” in Lecture Notes in Computer Science, D. Feng, D. Lin, and M.
Yung, Eds. Berlin, Germany: Springer-Verlag, 2005, vol. 3822, pp.
175–188.

