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Abstract. Formalising nearness has been the subject of extensive work, result-
ing in many membership functions based on absolute distancemetrics, relative
distance metrics, and combinations of those. The possible strengths and weak-
nesses of these functions have been discussed and argued at length, but strangely
enough, no experiment seems to have been conducted to assessthe merits and
shortcomings of competing approaches. Conducting such experiments can be ex-
pected not only to provide an objective evaluation of the various measures that
have been proposed, but also to suggest new measures that outperform all those
being analysed. This paper fulfills these expectations, andgives further evidence
that fuzzy logic provides fruitful and powerful methods to formalise qualitative
reasoning and capture fundamental qualitative notions. The proposed fuzzy mem-
bership functions can be directly used in qualitative reasoning about spatial prox-
imity in Geographic Information Systems, which are becoming more and more
important in software development for diverse purposes such as Tourist Informa-
tion Systems or property development.

1 Introduction

Love it or loathe it, fuzzy logic is, albeit its unfortunate choice of name, a very practi-
cal Artificial Intelligence technique that is used in applications such as control systems
in washing machines, elevators, cars, etc. It is quite a valuable method that can gen-
erate precise solutions from approximate data, and can be ofgreat use for developing
computational models for vague concepts such as those described by natural language
expressions. In this paper, we propose and evaluate fuzzy membership functions suit-
able to implement the notion of spatial proximity, generally represented by linguistic
terms such asnear or close, within Geographic Information Systems (GIS).

After a brief review of previous work, this paper will reporton studies conducted to
evaluate proximity membership functions against a data setof a distance network and
predefined nearness information. We will conclude with recommendations for appro-
priate functions in the context of reachability across a distance network.

2 Factors that influence Spatial Proximity Perception

Several fuzzy approaches have been devised to represent spatial proximity based on dis-
tance. In order to determine what exactly influences the perception of spatial nearness
within GIS data, Gahegan [3] conducted psycho-metric experiments. The objective of



his experiments was to examine when or how people decide whether objects are near
a chosen reference object on a GIS map. The pseudo-metric tests were conducted on
a group of 50 subjects, who have all had some practical exposure to Geographic In-
formation Systems. The subjects were asked to rate objects in diagrams representing
geographic features on a map, according to how close they were to a given reference
object. While Gahegan [3] pointed out that his tests were notnecessarily conclusive,
he could obtain some interesting results and make several observations that could be
helpful in modelling spatial proximity. A first observationis that if a scene is devoid
of additional objects, namely if only the reference object and the object to be located
inhabit the scene, geometrical reasoning is applied. However, in the presence of other
objects of the same type, proximity is partially defined by relative distance. Another
observation is that proximity perception is impacted by thescale of the scene, which
directly depends on the size of the area being considered. This paper is set out to define
membership functions that address all of these points.

On the basis of his observations, Gahegan [3] suggested a contextual model of near-
ness relations in order to account for different influencingfactors. Three kinds of met-
rics are considered in Gahegan’s model: an absolute distance metric, a relative distance
metric, and a combination of both. Using the absolute distance metric amounts to as-
suming that proximity is directly proportional to the Euclidian distance between the
reference object and the object to be localised. As the scaleof the area viewed by the
user of a GIS map also seems to have an impact on the perceptionof proximity, Gahegan
[3] further suggested that the bounding boxes of the area in the GIS can be used as scale
indicator, the opposite corners of the bounding boxes providing the maximum distance.
If the maximum possible distance between objects in the scene is used to normalise the
distance between two objectsA andB, it is then possible to represent the proximity be-
tweenA andB by a fuzzy value. Similarly, but not exclusively, we will usethe maximal
distance between objects on the map of a country or state. This will enable proximity
evaluations across several GIS maps if needed. In this paper, the maximal distance will
be the largest distance between any two places in the countryor state being considered.
Absolute distance metrics result in continuous proximity with, for example,very close
> close > far, but relations such asclosest or farthest cannot be represented. For this
and other reasons, Gahegan [3] proposed to treat proximity in terms of a relative dis-
tant metrics, in addition to the absolute distance metrics.More precisely, he suggested
an ordinal approach to represent relative distance, by ranking the objects in the scene
with respect to their distance to the reference object and the total number of objects.
He pointed out that this approach could cause objects to be considered close to a given
reference objectA, even though such objects might be separated fromA by a large dis-
tance. As the objects are ranked on the basis of their distance toA, this approach seems
to be more absolute than relative in nature. Worboys [6] dealt with this problem in a
more efficient way by calculating for each place the mean distance to all other places in
the scene.

Gahegan [3] suggested to combine both the absolute and the relative distance. As
both metrics offer fuzzy representations, he defined the membership function for ab-
solute distance metrics and assumed a distribution function for nearness based on rel-
ative distance, and then combined these functions with the fuzzy union operator. This



resulted in an object being consideredclose just in case it is geometrically OR relatively
close.

Motivated by Gahegan’s work, Guesgen and Albrecht [4] suggested to associate
spatial binary relations such asfar from or close to, or unary relations such asdown-
town, with fuzzy membership grades that could be calculated fromthe Euclidian dis-
tance between objects on a map. They did not test their suggestions against any data
and did not provide any membership function for relative distance metrics. Guesgen
[5] proposed to define proximity without any measure of distance by using the notion
of fuzzy sets previously defined in Guesgen and Albrecht [4].These fuzzy sets were
used to reason about the relationship between proximity notions by means of transitive
closure on ternary proximity relations such as “ifB is closer toA thanC is to A, and
if C is closer toA thanD is to A, thenB is closer toA thanD is to A.” This is very
similar to van Benthem’s [1] approach in his logic of space.

There is no experimental data to give evidence that Gahegan’s [3] or Guesgen and
Albrecht’s [4] fuzyy membership functions can be of practical use. None of their ap-
proaches bases fuzzy membership functions on truly relative distance. We therefore find
it essential to evaluate Gahegan’s [3] absolute distance metrics and Worboys’ [6] rela-
tive distance metrics before considering whether and how tocombine them using fuzzy
logic operators.

Worboys [6] did some interesting studies on the qualitativelocation of cities and the
relative distances between them. His definition of relativedistance is not based on the
comparative concept without Euclidean distance, but it does nonetheless incorporate
the context of all places under consideration. He used the road distances between 48
cities in Great Britain, which he called objective distances, and determined their rela-
tive distances to each other by first calculating for each centre the mean of the distances
to all remaining centres. The relative distance between a centreA and a centreB was
then determined by dividing the objective distance betweenA andB by A’s mean. This
notion of relative distance is actually asymmetric: this method will most likely produce
a different relative distance betweenA andB than betweenB andA. The relative dis-
tance can then be used to calculate fuzzy nearness values using the following definition:
nearness(x, y) = (relative distance(x, y) + 1)−1.

Places having high nearness values are therefore very closeand low ones are not
close. The greatest nearness is between a place and itself, with a value of 1. This ap-
proach does not suffer from the same restriction as Gahegan’s approach. The objects
do not need to be fairly evenly distributed. In his more recent work on environmental
space, Worboys [7] used the number of subjects and the numberof yes or no votes to
calculate fuzzy membership values for nearness. This is a very interesting approach
given his experimental data. However it is not practically applicable to do such a kind
of data collection for every geographic area that GIS-usersmight need to work with.

A serious shortcoming of all the approaches that have been described is that none of
them does actually evaluate the membership functions against any real data, in order to
see how useful these functions are. As has been discussed in this section, we have been
conducting experiments with several membership functionsand evaluated them against
proximity data. The following section introduces the functions we used.



3 Various Distance metrics

As previously mentioned, in order to address all of the observations that Gahegan [3]
made in the context of GIS users perceiving proximity, we will evaluate several spatial
proximity functions based on absolute distance, relative distance, and combinations of
both. Table 1 shows the fuzzy membership functions we evaluated in terms of their
usefulness within GIS settings.

Absolute Distance Metrics: µabs(A, B) = 1 −

Dist(A,B)
Max

Relative Distance Metrics: µrel(A,B) = 1
(reldis(A,B)+1)

Fuzzy Union: µcomb u(A,B) = MAX(µabs(A, B), µrel(A, B))

Fuzzy Intersection: µcomb i(A,B) = MIN(µabs(A, B), µrel(A, B))

Table 1.Fuzzy Membership Functions

The fuzzy membership function based on absolute distance metrics is a derivation
of Gahegan’s [3] function with the maximum valueMax being the maximum dis-
tance between all of the places in our data set; andDist being the distance between
placesA andB. For the fuzzy membership function based on relative distance met-
rics, we borrowed Worboy’s [6] membership function, as we found that Gahegan’s or-
dinal ranking approach is insufficient. Relative distance is calculated using the mean
of each placeA in the data set, calculated from then placesOPi, 1 ≤ i ≤ n,
distinct fromA and available in the set:mean(A) = 1

n
Σn

i=1
Dist(A, OPi). The re-

sult of this is then used to calculate the relative distance between each two places:
reldis(A, B) = Dist(A, B) ∗mean(A)−1. While Gahegan [3] only suggested to com-
bine the membership functions based on absolute and relative distance by applying the
fuzzy union, we also investigated the application of the fuzzy intersection operator,
which yielded interesting results. The fuzzy union operator will by definition always
return the maximum membership function value for each data entry. While the fuzzy
intersection operator will by definition always return the minimum membership func-
tion value for each data entry. We applied these functions tothe data set described in
the following section.

4 Data Set and Experiments

We encoded 34 places in the Australian state of New South Wales and the distances
between them1. For each of the given places, we define the tourist region, the region
and the regional area they are located in. For Sydney, a list of regions that are easily
accessible for short trips is also supplied, thereby givingsome indication of what is
perceived and generally accepted as near to Sydney. This data set was collected from
theTourism New South Wales site2. We will be able to use this information to evaluate
our membership functions to see how well they suit the data and “nearness” information
for the given places.

1 as given by “The Official Road Directory of New South Wales” bythe Land Information
Centre in Bathurst, The New South Wales Government

2 www.visitnsw.com.au



5 Results and Evaluation

The membership function based on absolute distance as illustrated in the left graph in
Figure 1 shows a linear distribution, as expected from the function used. The maximum
distance in the dataset is 1710 km. However, the relative membership function as il-
lustrated in the right graph in Figure 1 shows quite a varied distribution, which is very
different to Gahegan’s more or less linear proposal of ordinal ranking. The issue arising
from his kind of approach, that objects could possibly stillbe considered close to one
another even when they are separated by a very large distance, is not a problem for the
membership function we used, because ours is a function of the distance between the
two places being considered.

Fig. 1. Fuzzy Distribution Functions for Absolute and Relative Distance Metrics

The two combined membership functions give quite interesting results. On one hand
they do support Gahegan’s [3] suggestion that absolute measures are more appropriate
for non-clustered objects, and relative measures for objects within clusters of same
“kinded” objects. On the other hand, the results do contradict Gahegan’s suggestion to
use the union fuzzy operator for an efficient combined function. Because, when com-
bining absolute and relative distance metrics functions byunion we do get a linear
distribution for distances until about 800km, where it changes into a more clustered
distribution (see left graph in Figure 3).

This is even contradicting Gahegan’s own terms that absolute distance metrics i.e.,
linear distributions in his case, are more suited for proximity assignments between ob-
jects that are located in virtually devoid areas. Figure 2 shows that the greater the dis-
tances between the places, the fewer places are within the area; which can be explained
by the fairly isolated character of the Australian non-metropolitan areas. In order to
comply with Gahegan’s suggestion to use absolute distance metrics for only lightly and
relative distance metrics for heavily populated areas, themembership function distribu-
tion should be the reverse of the result we obtained for the combined function using the
fuzzy union operator.

When we applied the fuzzy intersection operator to our data set, we attained pre-
cisely such a distribution. The fuzzy intersection changesfrom a clustered to a linear
distribution between 1000 and 1200 km. The right graph in Figure 3 shows this clearly.
This is even contradicting Gahegan’s own terms that absolute distance metrics i.e., lin-
ear distributions in his case, are more suited for proximityassignments between objects
that are located in virtually devoid areas. Figure 2 shows that the greater the distances



Fig. 2. Distance Distribution in the Data Set

between the places, the fewer places are within the area; which can be explained by the
fairly isolated character of the Australian non-metropolitan areas. In order to comply
with Gahegan’s suggestion to use absolute distance metricsfor only lightly and rela-
tive distance metrics for heavily populated areas, the membership function distribution
should be the reverse of the result we obtained for the combined function using the
fuzzy union operator.

When we applied the fuzzy intersection operator to our data set, we attained pre-
cisely such a distribution. The fuzzy intersection changesfrom a clustered to a linear
distribution between 1000 and 1200 km. The right graph in Figure 3 shows this clearly.
The clustered distribution is more appropriate for smallerdistances, as there are more

Fig. 3. Combined Fuzzy Distribution Functions using Union and Intersection Operator

places within a smaller area, and the linear distribution will suit areas with fewer ob-
jects, which are to be found at greater distances in the givendata set. This is perfectly
consistent with Gahegan’s [3] observations, although it isa different combination oper-
ator that gives the desired result.

We evaluated our membership distribution function values against the proximity
information, namelySydney Surrounds and regions, to appraise the usefulness of the
functions and their combinations in the context of reachability within a road network.

For all the places that are within regions which are generally accepted to be in the
Sydney surrounding area, all membership function values were not only well above the
usual crossover point of 0.5, but also above 0.7. We tested the distances between all
places in our dataset that are in the same region using this value as the crossover point.



As geographic regions are generally defined with the perception of “everything” within
a region being close to “everything” within this region. 16 out of 94 matches had two
membership values that were below 0.7. These membership values were always the re-
sult of the membership function based on relative distance metrics and the combined
function that returned the former one. When the threshold was lowered to the normal
crossover point (0.5), all matches complied. This is a good indication that the investi-
gated membership functions are useful in the context of a road distance network and
the associated reachability of the places within it.

6 Conclusions and Future Work

In this paper, we have shown that while the membership functions based on absolute
distance metrics and relative distance metrics, as proposed by Gahegan [3] and Wor-
boys [6] respectively, do evaluate well against distance data, the combined membership
function that proves useful in this context is the fuzzy intersection of the two former,
and not their union as Gahegan [3] suggested. We will implement these proposed mem-
bership functions as part of our already existing qualitative reasoning extension to the
Geographic Information SystemAccuGlobe, to further assess the benefits of fuzzy logic
as a descriptor for spatial proximity notions.

We also plan to extend our data by including more informationabout regions and
places within the regions that surround major places in the data set. This will allow to
analyse further membership functions and to get more conclusive results for asymmetric
relative distance relations. Moreover, we will use the expanded data set to automatically
learn appropriate membership functions and then evaluate them against a data collection
of another geographic area, such as another Australian state or a state within another
country of a similar spatial distribution of places.
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