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1. Introduction 
 

To enhance the autonomous capability, a system must be equipped with adequate numbers 
of the sensors responsible for the detection of system’s input/output states, operating status, 
environment conditions, etc.  However, more sensors may introduce other problems – the 
certainty, reliability, and robustness.  Therefore, the reliable detection of sensor faults 
becomes extremely critical in order to assure system certainty, reliability, stability, and 
robustness.  In general, the raw data obtained from the sensors of the complex systems 
have high dimensionalities and severe nonlinearity. High-dimensional raw data typically 
bear considerable redundancies and correlations hiding important relationships. It is, 
therefore, highly desirable to obtain more descriptive, informative, and useful data 
representations for the subsequent operations by eliminating the redundancies from the raw 
data.  This process is referred to as dimensionality reduction.  Dimensionality reduction 
can be achieved by creating a set of low-dimensional data representation with new features 
based on the transformations and/or combinations of the original data features.  This 
operation is often referred to as “feature extraction”.  
By far, the most frequently-used feature extraction method is Principle Component Analysis 
(PCA), which was proposed by Pearson in 1901[1] when he was studying regression analysis, 
and was mathematically developed by Hotelling in 1933[2]PCA has been wildly used in 
pattern recognition and machine learning. However, early dimensionality reduction 
methods were developed to primarily target the linear data systems [3][4]. When data system 
is high-dimensional and severely non-linear, these methods become ineffective.  
In 1984 Hastie proposed concept of the principle curves[5], which extended the PCA analysis 
to nonlinear fields. The principle curves can more accurately represent the nonlinear 
structures of data in linear dimensions.  In 2000, Roweis proposed a manifold learning 
algorithm called Local Linear Embedding (LLE), which is an unsupervised non-linear 
technique that analyzes the high-dimensional data sets and reduces their dimensionalities 
with preserved local topology[6]. Today, LLE has been widely used in cluster analysis, 
image processing, biological informatics, etc.  
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2. Locally Linear Embedding Algorithm 
 

The basic concept of LLE is to find a weight vector between a sample and its neighbors, and 
to keep this relationship in a feature space[6]. It assumes that even if the manifold 
embedded in a high-dimensional space is nonlinear, it still can be considered locally linear if 
each data point and its neighbors lie on or close to a locally linear patch of the manifold, i.e., 
the manifold can be covered with a set of locally linear patches which, when analyzed 
together, can yield information about the global geometry of the manifold.  The weight 
vector expressing the intrinsic geometrical properties of the local patch can be obtained in 
three steps: (a) to find the neighbors of every sample in the high-dimensional space, (b) to 
obtain the reconstruction weight and a sparse matrix of the weight vectors, and (c) to 
compute the low dimensional embedding -- the bottom nonzero eigenvectors of the sparse 
matrix are the low dimensional embeddings of high dimensional samples. 

Firstly, given a dataset d
n RxxxX  },,{ 1  , assuming the data lies on a nonlinear 

manifold which locally can be approximated linearly, the cost function can be written as: 
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In practice, a regularization parameter r  will have to be used for iQ  before inversion: 

 rIQQ ii                       (6) 

Secondly, the weights w are fixed and new m-dimensional vectors iy  are sought which 
minimize the criterion: 

2

1 1

)(min  
 


n

i

k

j
ijiji ywyY                (7) 

Re-writing eqn.6 gives  
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where M is a nn  positive semidefinite matrix found as )()( WIWIM T  , and 

Y contains the syi
'  as its columns.  

To be able to solve this problem, the covariance matrix of the sy '  can be constrained to be 

identity. Finding Y then becomes a well-known problem: minimize )( TYMYtr  with 
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0)(  TYM , where   is the diagonal Lagrange multiplier matrix. Clearly, this is 
an eigenvalue problem. All eigenvectors of M are solutions, but the eigenvectors 
corresponding to the smallest eigenvalues minimize )(Y .  
The eigenvector with the smallest eigenvalue corresponds to the mean of Y and can be 
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3. Extended Locally Linear Embedding Algorithm 
 

3.1. Neighbor Selection Based on Tangent Space Distance 
From the definition of LLE we can see that the point and its neighbors must lie on or close to 
a locally linear patch of the manifold. Usually the correlation of data is computed after 
neighbors have been decided in Euclidean distance, but sometimes the nearest neighbors in 
Euclidean distance do not lie on the approximate linear curved face, as shown in figure 1, 
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3. Extended Locally Linear Embedding Algorithm 
 

3.1. Neighbor Selection Based on Tangent Space Distance 
From the definition of LLE we can see that the point and its neighbors must lie on or close to 
a locally linear patch of the manifold. Usually the correlation of data is computed after 
neighbors have been decided in Euclidean distance, but sometimes the nearest neighbors in 
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Fig 1. Euclidean distance and tangent space distance from neighbors to point 
 
Where X0 is the point and lies on a curved face, X1 and X2 are its neighbors. TV1 and TV2 are 
tangent vectors of X0, and construct the tangent space. d1，d2 are Euclidean distance from 
neighbors to X0, and D1,D2 are distance from neighbors to tangent space of X0. According to 
the definition of LLE we know that shorter D means better of the locally linear quality of 
point and its neighbors. From figure 1 we can see that although X1 is the nearest neighbor of 
point X0 in Euclidean distance sense, but in fact X2 is more suitable to be the nearest 
neighbor in locally linear sense. 
So we introduce tangent space into the algorithm. Firstly, determine tangent space of every 
point, and then compute distance from neighbors to these tangent spaces, so we can get 
nearest neighbors which satisfy the hypothesis of a locally linear patch better. 
To compute tangent space, we must know differential of the explicit formulation of the 
function. But in reality problem, there is no explicit formulation of original dataset, but only 
some discrete samples, so how to compute the tangent space is a question. Fortunately, a 
step in tangent space alignment method provides a resolvent[7]. For every data in higher 
dimensional space, it can get the approximate tangent space through local PCA, or a set of 
orthogonal basis. 
Suppose F is a d dimensional manifold in m dimensional space mapped by an unknown 
function dRf  ),( , and data m

in RxxxxX  ),,( ,21   is the image of the unknown 
function nifx ii ,,2,1),(   . To get the tangent space of ix , it is equivalent to get the 
differential of function )(f at i . Suppose f  is smooth enough, and we can get the first 
Taylor expansion at some  , 
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so we can not compute the distance directly. Firstly we consider three dimensional 
condition. 

M(x, y, z)

x

y

X

O

Z

Y

z

 
Fig. 2. Distance from point to plain 
 
From figure 2 we can see that, the distance from point M to plain XOY is the coordinate of M 
in Z axis, and we extend it to higher dimensional space. Suppose data set is m dimension, 

and eigenvectors of )1( T
i ee

k
IX  is ),,( 2,1 meeeE  , so a set of orthogonal basis of 

tangent space of point is ),,,( 21 deeeQ  , then the distance of neighbors to the tangent 

space can be written as 22
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dataset to each point, and then nearest neighbors in tangent space can be arrived. 
To evaluate the performance of dimension reduction, some researchers propose residual 
variance according to Input/Output mapping quality, and that is the description 
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effectiveness of the original data in higher dimensional space. It is defined as 21
yxDD , 

where   is the standard linear correlation coefficient, taken over all entries of 

xD and yD  , where xD and yD are the matrices of Euclidean distances (between pairs of 
points) in the high-dimensional and corresponding low-dimensional spaces, respectively. 
According to the definition, we can see that the lower the residual variance is, the better 
high-dimensional data is represented in the embedded space. S-curve dataset is uniform 
sampled from noiseless three dimensional S-curve curved face. We will reduce the 
dimension of these two datasets, and compare the effectiveness by residual variance in 
Euclidean distance and tangent space distance respectively. 
S-curve dataset is shown in figure 3. We choose 30 neighbors, and the nearest 30 neighbors 
of the first point distribution are shown in figure 4. Where the yellow points are neighbors 
in tangent space distance and green points are neighbors in Euclidean distance, and the red 
line is the tangent space of the first point. According to the character of S-curve, we can see 
from the figure that yellow points are distributed in tangent space of the point, and green 
points are distributed in curve face in relative sense. 
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Fig. 3. S-curve dataset 
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Fig. 4. Neighbors in Euclidean distance and tangent space distance 
 
To test the performance of the algorithm, we compute residual variances under 1 to 50 
neighbors, and the result is shown in figure 5, 

Fig. 5. S-curve dataset residual variance 
 
It can be seen from the figure that when there are few neighbors, the locally structure can 
not be expressed well, so the residual variance is much big. With more neighbors, 
performances of two methods both increase, but with more and more neighbors, the method 
in Euclidean distances can not guarantee the local linear characteristic, so the result is not 
good as in tangent space distance method obviously. 
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effectiveness of the original data in higher dimensional space. It is defined as 21
yxDD , 

where   is the standard linear correlation coefficient, taken over all entries of 

xD and yD  , where xD and yD are the matrices of Euclidean distances (between pairs of 
points) in the high-dimensional and corresponding low-dimensional spaces, respectively. 
According to the definition, we can see that the lower the residual variance is, the better 
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To test the performance of the algorithm, we compute residual variances under 1 to 50 
neighbors, and the result is shown in figure 5, 

Fig. 5. S-curve dataset residual variance 
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)(lim)( rCrC n0r
 .  If the limit exists, the correlation dimension corD of is equal to  

)log(
)(loglim

0 r
rCD

rcor 
                           (12) 

It has been proven that for a finite sample, the zero limit cannot be achieved.  Thus, the 
original estimate procedure proposed by Grassberger and Procaccia involves plotting 

)(log rC versus rlog and then measuring the slope of the linear region of the curve[9][10]. 
The correlation dimension of the finite data set   can then be expressed as  

)log()log(
)(log)(log

12

12
cor rr

rCrCD



                        (13) 

The algorithm for computing ID can be summarized in the following steps: (a) to select a 
series of r with different scales, (b) to compute the corresponding correlation integrals, (c) to 
identify the linear part of the curve and then to measure the slope of the identified linear 
region, and (d) to compute the correlation dimension of  .  Among these steps, the 
selection of the linear part is the most crucial.  
Given a countable data set  n1 xx ,,  and different scales of distance  m1 rr ,, , 

we can obtain a series of corresponding correlation integrals )}(log,),({log m1 rCrC  and 

plot )(log rC versus rlog  curves.  The objective is to identify the linear region of this 

curve.  To do so, a third order linear fit is applied to the data series ( )(log irC ， irlog ) 

)( m1i  to yield: 
3 2

1 2 3 4 ( log )iy a x a x a x a x r                    (14) 
 
From Taylor Expansion, in order to make eqn.14 linear, the high order terms must approach 
to zero, that is, .0)( 2

2
3

1  xaxaxf  Hence, the linear approximation of eqn.13 can be 
achieved. In other words, the linear part of the curve can be identified and then the 
correlation dimension can be obtained by computing the slope of linear part of the curve. 
Tennessee Eastman (TE) process is a standard test process proposed by J. J. Downs and E. F. 
Vogel[11]. Here we use Tennessee Eastman Process(TEP) data to test the algorithm, which 
involves selecting a series of r with different scales and computing the corresponding 
correlation integrals. TEP has been a well-known benchmark process for comparing various 
process monitoring methods. The details on the process description can be found in Ref[12]. 
The curve is plotted in figure 6-1. Applying the third order linear fit to the curve yields 
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i1 raraF )(log)(log  , the absolute value of F is plotted in figure 6-2.  

 
Fig. 6-1. og ( ) logL C r r curve 

 
Fig. 6-2. Nonlinear part of fitting curve 
 
Given a threshold h, the bonds of r can be obtained. The intrinsic dimension of the data set 
can be obtained by computing the slope of the linear part of this curve. 

 
4. Feature Extraction Comparison 
To test the performance of LLE to feature extraction, we considered the classification 
problem. Iris data set is a standard database for classification, which consists of three classes, 
with each class containing m=4 measurements and n=50 observations (see table 1). Here 
PCA and LLE feature extraction techniques are compared via theoretical and graphical 
analysis. 
The projections of the experimental data onto the first two PCA loading vectors are shown 
in Figure 7. From which we can see that, separation degree between class 1 and class 2 is 
small, but aggregation degree of each class is low. And the projections of Iris data by LLE 
are shown in Figure 8. It can be seen that the separation degree between class 1 and class 2 is 
much bigger than PCA and the aggregation degree of class 3 is much bigger. 
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Class 1 : Iris Virginica Mean Std. Deviation Range 

Sepal length 
Sepal width 
Petal length 
Petal width 

6.59 
2.98 
5.55 
2.03 

0.64 
0.32 
0.55 
0.27 

4.9-7.9 
2.2-3.8 
4.5-6.9 
1.4-2.5 

Class 2 : Iris Versicolor Mean Std. Deviation Range 

Sepal length 
Sepal width 
Petal length 
Petal width 

5.94 
2.77 
4.29 
1.33 

0.52 
0.31 
0.47 
0.20 

4.9-7.0 
2.0-3.4 
3.0-5.1 
1.0-1.8 

Class 3 : Iris Setosa Mean Std. Deviation Range 

Sepal length 
Sepal width 
Petal length 
Petal width 

5.01 
3.43 
1.46 
0.30 

0.35 
0.38 
0.17 
0.40 

4.3-5.8 
2.3-4.4 
1.0-1.9 
0.1-3.0 

Table 1. Statistics of Iris data 
 

 
Fig. 7. Projection of Iris data onto the first two PCA loading vectors 

 
Fig. 8. Two dimension projection of Iris data by LLE 
 
Figure 9 and Figure 10 give the projection of Iris data onto the first three PCA loading 
vectors and the three dimensional projection by LLE. According to separability criterion, the 
LLE projection performance of inner-class distance and intra-class distance is much better 
than PCA. It indicates that LLE algorithm has good description performance and 
consistency with the data feature.  

 
Fig. 9. Projection of Iris data onto the first two PCA loading vectors 
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Fig. 10. Three dimensional projections of Iris data by LLE 
 
Table 2 gives the quantitative analysis of inner-class distance and intra-class distance of the 
two methods, where wS is inner-class distance; bS  is intra-class distance and wbd SSJ / . 
The table demonstrates that compared with PCA, LLE can capture the data feature more 
effectively. 

 Sb Sw Jd 

PCA 11.8152 75.4084 0.157 

LLE 2.8005 9.9729 0.281 

Table 2. Performance comparison of PCA and LLE 
 
5. Fault detection 
 

LLE cannot compare the projection data with the original data like PCA. But after the 
projection, LLE can keep the topological structure of the original data as well as the 
similarity of normal data and illed data. Therefore, we can perform fault detection by 
computing the inter-class distance between the testing data and the training data[13][14]. 
Inter-class distance is an important index in pattern recognition.  For a multi-class 

estimation, suppose )(i
kx  and )( j

lx are vectors of class iw and class jw , respectively, 

and ),( )()( j
l

i
k xx is the distance between the two vectors. The average distance between all 
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where c is the number of classes, in is the number of samples of class iw , and jn is the 

number of samples of class .jw  iP and jP are prior probabilities of the corresponding 

classes, respectively.  Here, we assume cPP ji
1 . 

After have been projected to the feature space, the distance between the testing data and 
training data can be computed.  Thus, we can get the similarity of the testing data and 
training data. 

Suppose },{ 21 nk xxxx  is the training data and jx is the testing data. eqn.16 can be 

simplified as 
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The fault will be alerted if hJ d  , where h is a threshold. 
 

 
Table 3. Process faults for the Tennessee Eastman process 
 
To validate the fault detection performance of LLE method, Tennessee Eastman process data 
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is used. A set of programmed faults (Fault 1–21) is listed in Table 3. In addition, one training 
data set (Fault 0) consisting of 500 samples is generated with no fault. Twenty-one testing 
data sets corresponding to the twenty-one classes of faults in Table 3 are generated, and 
each set consists of 960 samples. The fault in each testing data set is introduced from sample 
160 and the number of variables is m = 52.  
Figures 11-13 show fault detection results of Tennessee Eastman Process in case of fault 4, 
fault 10 and fault 16, respectively. The confidence limits are also shown in these figures. 
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Fig. 11. Fault detection results of Tennessee Eastman process in case of fault 4: (a) PCA and 
(b) LLE 
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Fig. 12. Fault detection results of Tennessee Eastman process in case of fault 10: (a) PCA and 
(b) LLE 
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Fig. 13. Fault detection results of Tennessee Eastman process in case of fault 16: (a) PCA and 
(b) LLE 
 
The false positive(FP) rate and false negative(FN) rate of figures 11-13 are listed in table 4. 
From table 4, it can be concluded that the FP rate of LLE is a little higher than PCA, which is 
mostly because the PCA is insensitivity to the change of data. But the FN rate of LLE is 
much lower than PCA, which is 4.498% in average. On the other hand, the FN rate of PCA 
achieves 77.53% in average, which means that the approach based on LLE can detect each 
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Fig. 11. Fault detection results of Tennessee Eastman process in case of fault 4: (a) PCA and 
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Fig. 12. Fault detection results of Tennessee Eastman process in case of fault 10: (a) PCA and 
(b) LLE 
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Fig. 13. Fault detection results of Tennessee Eastman process in case of fault 16: (a) PCA and 
(b) LLE 
 
The false positive(FP) rate and false negative(FN) rate of figures 11-13 are listed in table 4. 
From table 4, it can be concluded that the FP rate of LLE is a little higher than PCA, which is 
mostly because the PCA is insensitivity to the change of data. But the FN rate of LLE is 
much lower than PCA, which is 4.498% in average. On the other hand, the FN rate of PCA 
achieves 77.53% in average, which means that the approach based on LLE can detect each 
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type of the faults, but PCA fails to alert these faults.   

Table 4. FN and FP of fault 4、10 and 16 
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 False Positive False Negative 
Fault 4 PCA 1．25 ％ 99．25％ 

LLE 8．75％ 0 
Fault 10 PCA 1．25％ 60．25％ 

LLE 7．75％ 7．75％ 
Fault 16 PCA 0 81．75％ 

LLE 5．63％ 7．62％ 
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