System Support for Cross-layering in Sensor Network
Stack

Rajnish Kumar', Santashil PalChaudhuri*, Umakishore Ramachandran’

1 Department of Computer Science, Rice University, Houston, TX,
t College of Computing, Georgia Institute of Technology, Atlanta, GA.

Abstract. Wireless Sensor Networks are deployed in demanding environments,
where application requirements as well as network conditions may change dy-
namically. Thus the protocol stack in each node of the sensor network has to be
able to adapt to these changing conditions. Historically, protocol stacks have been
designed with strict layering and strong interface between the layers leading to
a robust design. However, cross-layer information sharing could help the proto-
col modules to make informed decisions and adapt to changing environmental
conditions. There have been ad hoc approaches to facilitating cross-layer coop-
eration for adaptability. However, there has been no concerted effort at providing
a uniform framework for cross-layer adaptability that preserves the modularity
of a conventional protocol stack. This paper presents a novel service, informa-
tion exchange service (IES), as a framework for cross-module information ex-
change. IES is a centrally controlled bulletin-board where different modules can
post available data, or request for useful information, and get notified when the
information becomes available. IES is integrated into the proposed SensorStack
architecture that preserves the benefits of layering while facilitating adaptability.
IES has been implemented in TinyOS and Linux, to show both the feasibility of
the design as well as demonstrate the utility of cross-layering to increase applica-
tion longevity.

1 Introduction

The explosive growth of the Internet has been spurred to a great extent by the modular-
ity of the network protocol stack influenced by the OSI model. Adherence to the strict
interfaces in the different layers, has enabled the independent development of robust
protocols and their validation. While the focus on modularity (in the OSI model) has
been a useful design guideline for Internet protocols, it is becoming clear that the deci-
sions taken at runtime in the different layers could be better optimized with cross layer
information. This is particularly true in dynamic settings when the network conditions
can change quite dramatically. For example, researchers have shown the utility of ex-
plicit congestion notification from the routers to the transport layer [16], and link status
information to the IP layer in a wireless setting [20].

While modularity is a key to protocol development and deployment, adaptability
is emerging as a key determinant of performance, especially in a wireless setting. The
design decisions in the protocol stack have to adapt to changing network conditions
to maintain high performance. Such adaptability would be facilitated by the use of in-
formation available in different layers. Wireless Sensor Networks (WSN) amplify the

need for sharing cross-layer information even further. In addition to the vagaries of the
wireless network itself, the inherent resource constrained nature of the nodes pose ad-
ditional challenges for the protocol stack. Nodes may join or leave the network to save
their individual battery power, or environment conditions may vary, thus resulting in
dynamic changes to the network topology. To allow for adaptability in the face of such
dynamism, many WSN protocols have proposed piecemeal use of cross-layer informa-
tion. For example, information from link layer may be used by the routing layer, and
routing table information may be used by the application layer. However, it is difficult
to foresee all the adaptation needs. Hence it is a challenge to standardize protocol inter-
faces that expose all useful cross-layer information. Optimizing energy, the single most
important resource for WSN nodes, requires a holistic view of the stack instead of a
layer-specific view available with such piecemeal solutions.

It is interesting to note that in spite of the increasing importance of cross-layering, it
is still viewed with skepticism by the system community [12]. There are good reasons
for this skepticism. Without careful system support, cross-layering may result in min-
imal benefits, may be misused, and may lead to unintended problems in the long run.
There are three main reasons that point to the need for a careful design of cross-layering.
First, without standard interfaces for information sharing, cross-layering could lead to
inefficiencies. Often different modules may collect the same information to adapt their
behavior, leading to wastage of computation, memory, and energy resources. For exam-
ple, neighborhood information is useful for both network level routing and application
level role assignment; hence uncoordinated information gathering will result in sig-
nificant resource wastage (see Table I). Second, piecemeal evolution of cross-layering
would lead to a spaghetti design of the protocol stack that is hard to maintain and verify
due to the complex interactions among the different modules. Third, without a holistic
approach to information sharing and event notification different protocol modules may
make sub-optimal decisions leading to poor adaptability. For example, unless the appli-
cation layer is notified of a sudden change in a link quality by the network layer, its role
assignment decisions will be sub-optimal thus affecting application longevity.

The question being addressed in this paper is the following: How can we facilitate
holistic adaptability without losing modularity? The main issue boils down to over-
coming the inherent tension between adaptability and modularity: adaptability needs
cross-layer information that seems difficult to obtain without affecting modularity. In
other words, how can we structure cross-layer information sharing that does not com-
promise the robustness and maintainability of the protocol stack? This problem can be
solved by decoupling the adaptability needs (that are cross-layer data oriented) from
the modularity needs (that are functionality oriented). We use this intuition of decou-
pling cross-layer data from functionality to achieve an adaptable and modular protocol
stack called SensorStack. At the heart of this stack is a novel Information Exchange Ser-
vice (IES) that is available to all the layers. Through a publish/subscribe interface, IES
provides a predicate-based event notification service that can be used by the protocol
modules for information sharing and for making adaptive decisions. By absorbing the
onus of managing the cross-layer data for adaptability, IES allows the protocol modules
to focus on the functionalities to preserve modularity.

We have implemented IES in TinyOS [8], and assembled a representative Sen-
sorStack using heterogeneous sensor network (HSN) routing layer from shareware [10]

and an application level data fusion layer called DFuse [13]. Through the implemen-
tation and evaluation we demonstrate the utility of SensorStack with IES both qual-
itatively and quantitatively. First, there is a qualitative benefit in that the component
diagram of SensorStack with IES is simpler, with less interaction among the protocol
modules for accessing cross-layer data. From a software engineering perspective, this
design lends itself to maintainability and robustness of the protocol stack. Second, we
show through micro-measurements that the code-path overhead of using IES to access
cross-layer information is minimal. Third, we show that resource wastage (network,
memory, and CPU) is minimized by aggregating the collection of neighborhood infor-
mation that is shared by all the layers via IES.
This paper highlights several contributions:

1. By decoupling cross-layer information gathering and sharing from layer function-
ality, we facilitate adaptability without sacrificing modularity. The design and eval-
uation of IES is the primary contribution. There are two main nuggets in the design
of IES:

— Data management module provides a declarative publish/subscribe interface
for protocols to share information facilitating a modular design. Further, it takes
care of efficient use of the available limited node memory for information rep-
resentation, eviction, and access.

— Event management module provides a condition-based event notification mech-
anism to alert protocol modules of any changes in the environment thus facili-
tating adaptability.

2. Representative implementations of SensorStack with IES on TinyOS and Linux
showing feasibility of the IES design to promote modularity and adaptability.

3. A simple taxonomy for cross-layer information sharing that provides transparency
without affecting modularity.

The rest of the paper is organized as follows. Section 2 proposes a taxonomy for
sharable information in the SensorStack. IES design is presented in Section 3. The
implementation and evaluation of IES are presented in Sections 4 and 5, respectively.
Related work is discussed in Section 6. Section 7 concludes the paper with summary
and future work.

2 Organization and Information Taxonomy

It is clear from the dynamic nature of WSN environment that decisions in the different
layers of the protocol architecture can benefit from cross-layer information sharing. To
this end, we first identify the different cross-layer information. Table 1 presents a snap-
shot of such information commensurate with the functionality provided by a particular
layer. For example, the link layer (such as SP [15]) uses the physical condition of the
environment as input to produce “link status” information as output that may be useful
to other modules. This table is not meant to be exhaustive, but simply serves as a boiler
plate for the taxonomy to be presented in this section.

One way to facilitate efficient decision making in each layer is to query the other
layers for relevant information. Direct querying of peer modules, however, will result
in breaking the modularity of the protocol architecture and lead to an unstructured and

Table 1. Cross-layer Information Produced by Different Protocol Layers

Protocol Layer Sample Implementa-|Produced information |Consumed informa-
tions tion

Application DFuse [13], Surge, TAG|Resource requirement, |Resource availabil-
[14] Sensed data, Transmis-|ity, Neighborhood,

sion schedule Topology

Routing Directed diffusion [9],|Routing metric values,|Neighborhood, Appli-
GPSR [11], SPEED [7],|topology information |cation requirement
TAG tree routing

Medium access|SMAC [19], Z-MAC,|Duty cycle, Neighbor-|Application re-

control, Duty cycle| T-MAC [17], ASCENT hood information quirement, Link

control [1], SPAN [2] information

Link layer SP (sensornetwork pro-|Link status Physical condition
tocol) [15]

Application Application Logic
Data Fusion Layer In-stack fusion Locali-
Information Helper ——— . Attribute- zation,
Data Service Layer Exchange Service Szrslrg;a ,‘\?:xtfj:g‘g:c'g:n Value publish/ | | Synchro-
Service Layer . subscribe nization
Medium Access Layer Medium Access, Error Service
Coontrol, Radio Control

Radio Connection

(A) Layered Architecture (B) Functionalities

Fig. 1. SensorStack: A proposed WSN stack.

hard to maintain code base. The fundamental challenge is in developing a layered soft-
ware architecture that preserves the modularity while allowing cross-layer information
sharing. This raises several important research issues:

1. Organization: How do we organize the layered software architecture? One promis-
ing approach is to decouple the data needed for such information exchange from
the functionality of the layered architecture.

2. Taxonomy: How do we develop a useful taxonomy for the kinds of information that
will be needed by the different layers?

3. Information Sharing: How do we facilitate information sharing across the layers
that is efficient and non-intrusive on the functionality provided by each layer?

Organization and Information Sharing We propose a layered software architecture,
called SensorStack (see Figure 1). At the heart of the SensorStack is Information Ex-
change Service (IES) that serves as an information broker among the different modules
of the layered architecture and the application to facilitate cross-layer optimizations.
Our approach is to decouple the data needed for such information exchange from the
functionality of the stack. To this end, we first identify the different cross-layer data and

develop a taxonomy for grouping them. Table 1 presents a snapshot of such data com-
mensurate with the functionality provided by a particular layer. For example, the link
layer (such as SP) uses the physical condition of the environment as input to produce
“link status” information as output that may be useful to other modules. This table is
not meant to be exhaustive, but simply serves as a boiler plate for the taxonomy being
presented in this section.

Taxonomy For the purpose of extensibility and documentation, we represent the at-
tributes in the taxonomy in XML format. Clearly, it will be too inefficient to access
information across layers by parsing the XML representation of each attribute. Rather,
every attribute in the taxonomy is given a unique identifier known to all the layers, and
the identifier is used to refer an attribute, thus avoiding the need of the XML parsing.
We discuss the assignment of unique identifiers in Section 3.

The information produced and consumed by each layer to facilitate cross-layering
can be grouped into four broad categories: local resources, neighborhood, application
requirements, and wildcard.

1. Local resources: The application layer working in concert with the system monitor-
ing module may produce information about the available node resources. Important
resources to identify include details regarding available energy, CPU, memory, ra-
dio, and sensors.

2. Application requirements: An application may produce information that would be
of use in the decision making at the routing and MAC layers.

3. Neighborhood: For scalability and load balancing reasons, WSN protocols take
many decisions locally, and information about neighboring nodes play a very im-
portant role. Link layer protocols can produce link qualities of the neighboring
nodes. Routing layer can collect routing metric based information, e.g., energy, lo-
cation, and availability. Using this information, a link layer protocol can use the
timeOn and the timeOff fields to minimize idle listening. The listen attribute can be
used to inform the link layer to expect transmission from a neighbor, and it can be
used for bi-directional low power communication [15].

4. Wildcard: There may be other information produced by a particular protocol layer
that may not fall into the categories we have identified so far. Examples include
abstract region specification for node cooperation [18], area abstraction in SPEED
for multicast groups [7], path abstraction for energy-aware routing, and role ab-
straction for load balancing [13, 6]. We group them as wildcard in our taxonomy.

3 Information Exchange Service Design

IES is an information repository for data that helps in cross-layer optimization. Such
data may come from one of the modules of the SensorStack or even from the applica-
tion itself. The taxonomy presented in Section 2 allows grouping the data into different
categories irrespective of where it came from and enables easy access by a requesting
module. Also, by centralizing all the information in this repository, SensorStack exer-
cises control over access/update rights in a centralized manner.

Design Goals

1.

Efficient use of limited memory: Memory is a scarce resource in embedded devices,
therefore it has to be used prudently. It is quite easy to populate the repository with
any and all information that may be useful for cross-layer optimization. However,
only a fraction of this information may actually get used by the layers for adaptabil-
ity. Therefore, IES must filter out unnecessary information and allow the protocol
modules to share the memory efficiently.

. Simple interface for information sharing: To ensure that the SensorStack remains

modular, cross-module information sharing for adaptability should not lead to cou-
pling of functionalities across layers. Towards this requirement, modules should be
able to share data without concerns of synchronization and consistency. Further, the
information access should be transparent to producers and consumers (i.e., produc-
ers do not know who the consumers are and vice versa). Therefore, IES should pro-
vide a simple interface that allows the modules to be implemented independently
and efficiently.

. Extensibility: IES should facilitate new information that is outside its repertoire of

taxonomy to be added without any change in either the interface or in the under-
lying architecture. For example, if a new routing protocol is added to the stack, it
should be able to publish any new metric into IES that may not be currently in the
taxonomy.

. Asynchronous access to information: Producers and consumers of data should not

be burdened with unnecessary work. This goal translates to IES providing an asyn-
chronous interface for information from publishers to be pulled into the repository,
or information to consumers to be pushed from the repository, obviating the need
for polling on the part of the producers and consumers.

. Complex event notification: To make SensorStack adaptable, protocol modules should

be notified of changes reactively. This goal translates to protocol modules being
able to register events of interest (which may be a composite of several attributes)
with the IES, and receive asynchronous notification when the condition becomes
true.

The main objective of IES is to ensure that the SensorStack remains modular (goals

1-3) while supporting adaptability (goals 4 and 5). Access control, security, and protec-
tion are also important for IES, but they are outside the scope of this paper.

IES Architecture

As shown in Figure 2, IES comprises of two main components: Data Management
Module (DMM) and Event Management Module (EMM). DMM is responsible for help-
ing achieve modularity, while EMM is responsible for helping achieve adaptability.
DMM is designed as a shared memory abstraction augmented with a fully-associative
cache for efficient access; it offers a publish-subscribe interface for sharing information
across layers. EMM is designed as a rule-based event notification engine such that pro-
tocol modules can be notified as requested, allowing them to adapt to the changes in the
environment.

Publisher Subs_criber
List List
Shared
Memory
A
.Date put -~ get -
Publisher Jg— { Jo om0 vl D [—— I _w\Subscriber
) DRE DAE A
Cache
7
DMM periodicGet IDAE
1
EMM] Subsc
le Event
Execqtion == Subscriber
Engine

Fig. 2. IES architecture. Top half of the diagram shows the Data Management Module (DMM),
while the bottom half shows the Event Management Module (EMM). Note that EMM acts as a
subscriber to DMM component.

IES API consists of interfaces to publish, subscribe, and notify of any changes.
DMM controls access to the data repository, and thus provides the publisher and sub-
scriber interfaces. DMM maintains the publisher and subscriber list to support asyn-
chronous exchange of information, especially to support the periodic get method. EMM
is responsible for rule registration, execution, and notification to the subscribers. It pro-
vides a watchdog interface. Based upon the periodicity requirements of registered rules,
EMM accesses the data published in DMM component using periodicGet call.

Below we elaborate on the design elements of IES that match the five goals identi-
fied in Section 3.

Efficient use of limited memory There are two aspects to efficiency in this context:
firstly, prudent use of limited memory; secondly, fast access to the stored information.
IES uses a block of pre-allocated memory as the information repository. The size of pre-
allocation depends on the availability; however, in general it is the case that the amount
of information that needs to be stored far exceeds the size. IES uses an LRU eviction
policy when information has to be retired from it. There is a possibility that data may
be retired from the memory before anyone requests it. For this reason, IES allows the
producer to tag the data with a sticky bit to over-ride the LRU policy. Alternatively, IES
also has the ability to asynchronously “pull” the data from a producer upon a request
from a consumer.

For fast access to common data, IES uses a small fully-associative cache to keep the
frequently requested data. Motivation behind using the cache is that if some information
is requested by one module, it will likely be requested soon by other modules as well.

This is especially true in SensorStack because different modules cooperate to achieve
some common goal, e.g., energy optimization and hence may be querying some com-
mon attribute from IES (such as application’s data requirement or the remaining battery
level).

Simple interface for information sharing IES provides a publish/subscribe interface
to the shared memory for transparent sharing of information. Publishers can put infor-
mation in standard data format, and subscribers can get the same without knowing the
publishers. Since information is stored as attribute-value pairs, multiple publishers can
publish the same information with different attributes.

Protocol adaptation depends on the information provided by IES. Therefore, it is
essential to ensure the freshness of data provided by IES. Producers need to know how
frequently they need to update information published by them; consumers need to know
if the information they are getting from IES is fresh. Asynchronous access (to be de-
scribed shortly) deals with the former, while the latter is dealt with by the producers
tagging information with an “expiration date”.

Extensibility Extensibility is achieved by using standard interfaces and data formats.
IES is accessed using get/put over an attribute_id. get copies the value (if available)
and returns the number of bytes corresponding to the data value; a return value of zero
indicates that the data is currently unavailable. put writes the value into IES, and returns

success/failure of the write operation as a boolean value.
int get(int attribute.id, byte[] wvalue);
bool put(int attribute_id, byte[] value, int size);

Every attribute_id maps to a unique attribute description, an XML-based declarative
description of the attribute. The attribute description corresponds to a unique entry in a
standard ontology of information pertinent to the WSN.

Given a declaration, the attribute_id can be obtained by contacting an attribute name
server. The idea of attribute name server is similar to a DNS lookup for an IP address.
However, discussion of the name server design is outside the scope of this paper.

Asynchronous access With asynchronous access to IES through the publish/subscribe
interface, there are four possibilities for information sharing between publishers (P)
and subscribers (S) under the arbitration of IES: push-push, push-pull, pull-push, and
pull-pull.

Push-Push choice yields the best result from the point of freshness of information
but it has two downsides: There is a potential for wasted effort if there are no subscribers
to published data that is being frequently updated. There is a potential for duplication of
effort if multiple modules are publishing the same information. This may be a preferred
choice for sharing neighborhood information that is prone to change quite frequently.
There are similar pros and cons for the other three choices: Push-Pull, pull-push, and
pull-pull.

None of the above design choices serves best for exchange of cross-layer infor-
mation; rather, different attributes may be best shared in different ways. For example,
battery information may need to be shared in a reactive manner, while neighborhood

information may be shared in a proactive manner. This observation motivated us to ex-
plore how to support all of the above design choices with a simple interface. While
proactive communication can be handled by simple ger and put methods, we added
event based signaling in IES to support reactive communication.

A subscriber can request for reactive access to data either by setting up a periodicity
in the ger call, i.e., the subscriber gets data periodically, or by using complex event
notification service, where the subscriber gets notified whenever a specific condition
is met. For supporting periodic update, a get call expects periodicity, and a put call
expects expiration as extra parameters. IES uses two events for signaling an update:
Data Request Event (DRE) to request a publisher to put data when data is either expired
or unavailable in IES, and Data Available Event (DAE) to notify a subscriber of an
available update.

Subscriber Publisher

%

Subscriber

lg\et>
o |

Publisher

Il T

5. put(energy, 4

~~—_

Fig. 3. Use of asynchronous signaling in IES
when requested attribute is not available in
IES.

Fig. 4. Use of asynchronous signaling in IES
for handling periodic updates.

Figure 3 shows the use of asynchronous signaling to handle a failed get request be-
cause the requested attribute is not available in IES memory. This may happen because
either none of the publishers put the attribute or the attribute was evicted, possibly ex-
pired, from the IES memory. IES selects a publisher (if any) for the requested attribute,
and it raises DRE for that publisher. Once the publisher puts the attribute, IES notifies
the waiting subscriber using DAE with a data pointer. The subscriber gets the data from
IES. However, it may happen that before the subscriber handles the DAE event, the at-
tribute gets evicted from IES, making the DAE void. To avoid an attribute from getting
evicted before DAE is handled, IES keeps a time window before which the attribute is
not evicted. A subscriber is expected to handle DAE within the time window, or else
the subscriber must issue a fresh get call.

Figure 4 shows the use of asynchronous signaling to handle periodic update request.
IES periodically checks if the requested attribute has expired or is unavailable in the
repository; it then signals the publishers with a DRE. IES maintains the periodicity by
using multiple timers. Of course, because of the asynchronous nature, the periodicity

cannot be guaranteed accurately; it may depend on how fast the publishers are able to
handle DREs.

Complex event notification Often a protocol module may need to adapt its behavior
when certain conditions are satisfied: changes in the environment, resource availability,
and/or application requirements. Such adaptability to dynamic changes is quite common
in wireless protocol stacks, and this goal is aimed at helping protocol modules monitor
these changes in a fast and efficient manner.

IES uses predicate based rule representation to capture complex conditions. A rule
takes the form of ‘if condition do notify module P’. Conditions are well formed formulae
over the IES attributes. For example, a simple rule can be ‘if (energy < 5) do notify
routing module’. IES keeps checking if the specified condition is satisfied, and when
satisfied, it notifies the respective subscribers with rule satisfied event (RSE). The two
important design questions in this context are: how frequently should IES check for rule
satisfaction, and how should IES handle the case when the condition attributes are not
currently available in IES memory?

There is a trade-off between the promptness of event notification and incurred com-
putation cost. Owing to the resource constrained nature of sensor devices, IES checks
for condition satisfaction only periodically. IES uses the frequency of access/updates to
the attributes to fine tune this periodicity. In case an attribute is unavailable at the time
of checking, IES signals the publishers for the required attribute data.

4 Implementation

This section describes IES implementation in TinyOS. We have implemented all three
interfaces, Publisher, Subscriber, and Watchdog. TinyOS provides support for asynchro-
nous communication among the components, which is very useful in implementing the
event notification service. However, the static nature of TinyOS makes memory man-
agement restrictive, and event notification inefficient.

TinyOS is a component based operating system designed for concurrent operations
and resource constrained embedded devices. Components provide interfaces to be used
by others. An application is written as a set of components wired together using the
interfaces and events. Though TinyOS itself provides only basic send and receive in-
terface support over CSMA based radio control, the other layers (such as routing and
fusion) are implemented as independent modules. The modules are statically wired to-
gether through their component interfaces to realize the network protocol stack.

Data management module Since TinyOS is designed for resource constrained de-
vices, e.g., Mica2 with 4 KBytes of RAM, it uses static memory optimization tech-
niques to generate memory efficient codes. Because TinyOS does not support dynamic
memory allocation, we allocate statically a chunk of memory to be used by IES, and
use priority based eviction to control its usage.

Every IES entry is of fixed length, that helps an easy and efficient implementation
of DMM even without any dynamic memory support. However, this restriction limits
the flexibility of get and put methods: the attribute value must be of fixed size, which

10

Hash
Table Set-associative

/_' Data
Bank

Array

Attribute Index

Sticky

Attribute Value
1 Byte

2 Bytes 4 Bytes

Expiration
2 Bytes

Fig. 5. DMM memory hierarchy. Direct-mapped cache maps an attribute to its location in the data
bank.

is 4 Bytes in our case. Figure 5 depicts the DMM implementation. An IES entry is of 9
Bytes length, with 2 Bytes for attribute, 2 Bytes for expiration time, and one Byte for
maintaining sticky bits. Sticky field value is used to influence memory eviction policy.

DMM is implemented as a two-level cache: first, a direct-mapped cache to keep
frequently used attributes, and second, a set associative cache to keep more attributes
which we call the data bank. The first-level direct-mapped cache maps an attributeID to
a unique index in the second-level cache. The data bank stores a list of attribute-value
pairs. So, if the attributeID is available in the direct-mapped cache, then the correspond-
ing index value is used to get the attribute value from the data bank. If the attributeID is
not present in the first-level cache, then the data bank needs to be searched. By keeping
the data bank set associative, the search space is reduced to the associativity factor. As
an example, for a memory mapped cache of 8 entries, and a 16-way set associative data
bank of total 256 entries (16 sets), each direct-mapped cache entry is of 24 bits (16 bit
attributeID and 8 bit data bank array index). For a hit in the direct-mapped cache (we
call a cache hit), an attribute is obtained in 2 accesses (one to the direct-mapped cache,
and another to the data bank). For a miss in the direct-mapped cache (we call cache
miss), an attribute is obtained in at most 17 accesses (one to the direct-mapped cache,
and at most 16 to the data bank as there are 16 entries per set). In case of a miss in the
data bank, asynchronous signalling is used to notify a producer (see Section 3).

Event management module EMM implementation supports comparison based con-
ditional rules. A module interested in being notified registers itself with the Warchdog
interface. EMM, in turn, can register itself as a DMM subscriber for the attribute in the
specified rule, and it can then periodically check the rule. Currently, periodic checking
of rules is not implemented; rather, the checking is done whenever relevant attributes
are updated through a put command.

Another source of inefficiency comes from TinyOS limitations. A TinyOS appli-
cation can be thought of as a set of modules, whose dependency graph needs to be
specified statically at compile time. Because of this static nature, event subscription
also becomes static. Thus all event subscriptions need to be encoded at compile time
itself. In our implementation, we facilitate dynamic rule addition by a simple trade-oft:

11

1600

—e—hsn Interface 1400
1200

1000
800

600
400
200
0+ T T

3
=3
S}

@
=}
S}

—a— |ES interface

I
]
Latency (uSec)

@
S
S}

N
=3
S]

Information access latency (uSec)

100 & ‘@*‘\\ &
e"’o & S
0 L & SD& e*(&
4 8 12 16 20 24 28 32 A Q/@ %‘.,b'
! ¥ «
Neighborhood size

Fig. 6. Comparing information access la- Fig. 7. Memory access overhead comparison
tency using HSN’s neighbors interface and for DMM in TinyOS. For IES case, 32-way
using IES interface. In IES case, the neigh- set associative data bank is used.
borhood data is being accessed directly from
the DMM cache.

we allow an event notification to be triggered when any one of a set of rules are sat-
isfied. Thus a rule can be dynamically added to a rule set, but the rule satisfaction is
notified to all the modules registered for any rule in that set. A rule satisfaction event
has a rule identifier field, which can be used by the subscribers to filter the notifications
of interest to them.

5 Evaluation

This section evaluates the effectiveness of IES in supporting cross-layering in Sen-
sorStack. First, through an extensive set micromeasurements, we investigate the over-
head of data access through the IES interface for different scenarios, and compare them
with the case where data is accessed directly through protocol modules’ interfaces. We
also measure the overhead incurred in checking rules in EMM. Finally, we evaluate a
complete protocol stack to quantify benefits of using IES, specifically in terms of appli-
cation longevity and communication savings in data collection from neighboring nodes.
Below, because of the lack of space, we present only the micromeasurements.

We use the SysTime interface of TinyOS for timing measurements on Mica2 plat-
form. SysTime provides timer values at 1.2 micro seconds granularity. The direct-mapped
cache size is fixed to 32 entries, and the data bank size is fixed to 256 entries. Set asso-
ciativity of the data bank is varied from 8 to 64. Each data point is an average over 100
readings.

Figure 6 shows the memory access latency values when all the attributes are present
in the direct-mapped cache. It also presents the latency values when the same infor-
mation is accessed directly by invoking neighbors interface using the HSN routing
component. As expected for this ideal case, IES memory access is much faster than
access using the HSN routing module. IES allows only 4 Byte values for an attribute.
As expected, the latency increases linearly with the increase in the number of attributes.

Figure 8(A) shows the case when there is a miss from direct-mapped cache, and
Figure 8(B) shows the case when there is miss even from the data bank. As the asso-

12

1200 - —e—5=16 2500

o

Q o —— S=

% 1000 4 f: s=16

S A 2000 _m s=32

E 800 1 =

= g 1500

g 600 g

g 3 1000

S 400 4)

g g

& 200 J £ 500

g 2

< O 1 0 T T T T T T T 1

4 8 12 16 20 24 28 32 8 12 16 20 24 28 32

Access data size Access Data Size
GV (B

Fig. 8. Memory access overhead for DMM in TinyOS. Figure (A) shows the results when attribute
is present in the data bank, and Figure (B) shows the results when the attribute is not in IES.

ciativity is increased, the access latency increases linearly because of increase in the
number of comparisons DMM has to do to get the attribute. In case of miss from the
data bank, the latency results include the cost of signalling DRE, the publisher doing
put, and finally signalling the DAE. Figure 7 compares the memory access latency of
accessing 32 Bytes data for various cases. It confirms the benefit of using the direct-
mapped cache. When the data is available in the data bank, the memory access latency
for a 32-way set associative data bank is comparable to that of directly accessing data
from the HSN interface. For frequently accessed attributes, data access latency using
direct-mapped cache is negligible compared to the latency using the HSN interface. If
the data is neither in the direct-mapped cache nor in the data bank, the latency incurred
is about three times more than the latency using the HSN interface.

6 Related Work

Related work to cross-layering can be broadly divided into two groups: the first consid-
ers all the layers together in a holistic way, and the second considers pairs of protocol
layers. SensorStack falls in the first group; however, it uses the findings from the spe-
cific cross-layering instances between layers.

MobileMan project [4] also has similar goal to SensorStack to support cross-layering
in a centralized way by facilitating information sharing. But there are two main dif-
ferences between IES architecture and MobileMan’s architecture [3]. First, instead of
providing centralized shared memory, MobileMan provides call-back based approach
such that consumers can directly access producer’s private data. This approach implies
that consumer has to know the publisher, the consumer has to do early binding to the
producer, and asynchronous access to data becomes difficult. Second, conditions for
asynchronous access are set as black-box functions instead of predicates over shared
variables. Using their approach, even when there may not be any change in the shared
data, every condition has to be checked periodically, thus leading to inefficiency.

Researches from Berkeley have proposed a sensor network architecture that takes
a micro kernel approach. They advocate bringing down the standard interfaces to the

13

applications from the transport layer of the Internet stack to the link layer [5]. The
proposed link layer abstraction, SP [15] also aims to share neighborhood information
and message pool with all other protocols. While sharing of information is motivated
similarly to IES, SP is confined only to link layer information, and they do not provide
generic publish/subscribe interface like IES. Also, SP does not allow rule-based event
notification as done in IES.

7 Conclusion and Outlook

This paper is a proof of concept that stackability and adaptability can be achieved si-
multaneously in a network protocol stack. We observe that cross-layering is important
to achieve adaptability, but doing so arbitrarily limits the stackability. To solve this
problem, we decouple cross-layer data from the functionalities provided by the lay-
ers. Based on this idea, we present the design of a novel Information exchange service
(IES) to facilitate the cross-layering. The publish/subscription based data management
module helps achieve stackability by standardizing the cross-layer interaction, and rule-
based event management module helps achieve adaptability by supporting reactive noti-
fication of changes. We present a simple taxonomy for cross-layer information sharing
that provides transparency without affecting stackability. We share our experience in
implementing IES on TinyOS and Linux. TinyOS provides support for asynchronous
communication among the components, which comes in handy for supporting the event
notification service. However, the static nature of TinyOS makes the memory manage-
ment restrictive, and the event notification inefficient. Linux, on the other hand, does not
provide direct support for asynchronous communication among kernel modules, thus
needs indirect mechanisms. We have presented results that show that the cross layer
information gathering adds little overhead to the basic functionality of the stack. Cur-
rently, the IES is limited to information sharing for the modules within a single node.
Our future work includes extending this information exchange service across different
nodes of the sensor network.

References

1. A. Cerpa and D. Estrin. Ascent: Adaptive self-configuring sensor networks topologies. In
Proceedings of Infocom, 2002.

2. B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An energy-efficient coordina-
tion algorithm for topology maintenance in ad hoc wireless networks. In Mobile Computing
and Networking, pages 85-96, 2001.

3. M. Conti, G. Maselli, and G. Turi. Design of a flexible cross-layer interface for ad hoc
networks. In Fourth Annual Mediterranean Ad Hoc Networking Workshop, June 2005.

4. M. Conti, G. Maselli, G. Turi, and S. Giordano. Cross-layering in mobile ad hoc network
design. In IEEE Computer, number 2, pages 48-51, Feb 2004.

5. D. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre, S. Shenker, I. Stoica,
G. Tolle, and J. Zhao. Towards a sensor network architecture: Lowering the waistline. In
The Tenth Workshop on Hot Topics in Operating Systems (HotOS X), June 2005.

6. C.Frank and K. Romer. Algorithms for generic role assignment in wireless sensor networks.
In SenSys ’05: Proceedings of the 3rd international conference on Embedded networked
sensor systems, pages 230-242, New York, NY, USA, 2005. ACM Press.

14

10.

11.

12.

13.

14.

17.

18.

20.

T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher. SPEED: A Stateless Protocol for Real-Time
Communication. In Proceedings of ICDCS 2003.

. JLHill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. System architecture

directions for networked sensors. In Architectural Support for Programming Languages and
Operating Systems, pages 93—-104, 2000.

. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and robust

communication paradigm for sensor networks. In Mobile Computing and Networking, pages
56-67, 2000.

Intel Research, Berkeley. Heterogeneous Sensor Network:
http://www.intel.com/research/exploratory/heterogeneous.htm; Software available in
TinyOS 1.1.10 snapshot from Sourceforge.net.

B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless networks. In
Mobile Computing and Networking, pages 243-254, 2000.

V. Kawadia and P. R. Kumar. A cautionary perspective on cross layer design. In /EEE
Wireless Communication Magazine, volume 2, pages 3—11, Feb 2005.

R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto, A. Paul, and U. Ramachandran.
Dfuse: a framework for distributed data fusion. In SenSys '03: Proceedings of the Ist in-
ternational conference on Embedded networked sensor systems, pages 114—125, New York,
NY, USA, 2003. ACM Press.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny aggregation
service for ad-hoc sensor networks. In Operating System Design and Implementation(OSDI),
Boston,MA, Dec 2002.

. J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica. A unifying link

abstraction for wireless sensor networks. In SenSys '05: Proceedings of the 3rd international
conference on Embedded networked sensor systems, pages 76-89, New York, NY, USA,
2005. ACM Press.

. K. Ramakrishnan, S. Floyd, and D. Black. The addition of explicit congestion notification

(ECN) to IP. RFC 3168, IETF, Sep. 2001.

T. van Dam and K. Langendoen. An adaptive energy-efficient mac protocol for wireless sen-
sor networks. In SenSys '03: Proceedings of the Ist international conference on Embedded
networked sensor systems, pages 171-180, New York, NY, USA, 2003. ACM Press.

M. Welsh and G. Mainland. Programming sensor networks using abstract regions. In First
USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI *04),
March 2004.

. W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC protocol for Wireless Sensor

Networks. In Proceedings of INFOCOM 2002, New York, June 2002.

H. Yokota, A. Idoue, T. Hasegawa, and T. Kato. Link layer assisted mobile ip fast handoff
method over wireless lan networks. In Proceedings of the 8th annual international confer-
ence on Mobile computing and networking (MobiCom ’02), pages 131-139, New York, NY,
USA, 2002. ACM Press.

15

