Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4337))

  • 588 Accesses

Abstract

A center-transversal line for two finite point sets in ℝ3 is a line with the property that any closed halfspace that contains it also contains at least one third of each point set. It is known that a center-transversal line always exists [12],[24] but the best known algorithm for finding such a line takes roughly n 12 time. We propose an algorithm that finds a center-transversal line in \({\it O}({\it n}^{\rm 1+{\it \epsilon}}{\it \kappa}^{\rm 2}({\it n}))\) worst-case time, for any \({\it \epsilon}>\)0, where \({\it \kappa}({\it n})\) is the maximum complexity of a single level in an arrangement of n planes in ℝ3. With the current best upper bound \({\it \kappa}\)(n)=O(n 5/2) of [21], the running time is \({\it O}({\it n}^{\rm 6+{\it \epsilon}})\), for any \({\it \epsilon} > 0\). We also show that the problem of deciding whether there is a center-transversal line parallel to a given direction u can be solved in O(nlogn) expected time. Finally, we We also extend the concept of center-transversal line to that of bichromatic depth of lines in space, and give an algorithm that computes a deepest line exactly in time \({\it O}({\it n}^{\rm 1+{\it \epsilon}}{\it \kappa}^{\rm 2}({\it n}))\), and a linear-time approximation algorithm that computes, for any specified \({\it \delta}>0\), a line whose depth is at least \(1-{\it \delta}\) times the maximum depth.

P.A. was supported by NSF under grants CCR-00-86013 EIA-98-70724, EIA-99-72879, EIA-01-31905, and CCR-02-04118. S.C. was partially supported by the European Community Sixth Framework Programme under a Marie Curie Intra-European Fellowship, and by the Slovenian Research Agency, project J1-7218-0101. J.A.S. was partially supported by grant TIN2004-08065-C02-02 of the Spanish Ministry of Education and Science (MEC). M.S. was partially supported by NSF Grants CCR-00-98246 and CCF-05-14079, by grant 155/05 of the Israel Science Fund, and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University. P.A. and M.S. were also supported by a joint grant from the U.S.-Israeli Binational Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K.: Ray shooting and other applications of spanning trees with low stabbing number. SIAM J. Comput. 21, 540–570 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agarwal, P.K., Matoušek, J.: Dynamic half-space range reporting and its applications. Algorithmica 13, 325–345 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Agarwal, P.K., Sharir, M.: Arrangements and their applications. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 49–119. Elsevier Science Publishers B.V., North-Holland (2000)

    Chapter  Google Scholar 

  4. Agarwal, P.K., Sharir, M., Welzl, E.: Algorithms for center and Tverberg points. In: Proc. 20th Annu. ACM Sympos. Comput. Geom., pp. 61–67 (2004); Also to appear in ACM Trans. Algorithms

    Google Scholar 

  5. Bern, M., Eppstein, D.: Multivariate regression depth. Discrete Comput. Geom. 28(1), 1–17 (2002)

    MATH  MathSciNet  Google Scholar 

  6. Chan, T.M.: An optimal randomized algorithm for maximum Tukey depth. In: Proc. 15th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 430–436 (2004)

    Google Scholar 

  7. Chazelle, B.: Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom. 9(2), 145–158 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press, New York (2001)

    Google Scholar 

  9. Chazelle, B., Edelsbrunner, H., Guibas, L., Sharir, M.: Algorithms for bichromatic line segment problems and polyhedral terrains. Algorithmica 11, 116–132 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Clarkson, K.L., Eppstein, D., Miller, G.L., Sturtivant, C., Teng, S.-H.: Approximating center points with iterated Radon points. In: Proc. 9th Annu. ACM Sympos. Comput. Geom., pp. 91–98 (1993)

    Google Scholar 

  11. Dey, T.K.: Improved bounds on planar k-sets and related problems. Discrete Comput. Geom. 19, 373–382 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dol’nikov, V.: A generalization of the sandwich theorem. Mathematical Notes 52, 771–779 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Halperin, D., Sharir, M.: New bounds for lower envelopes in three dimensions, with applications to visibility in terrains. Discrete Comput. Geom. 12, 313–326 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jadhav, S., Mukhopadhyay, A.: Computing a centerpoint of a finite planar set of points in linear time. Discrete Comput. Geom. 12, 291–312 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Matoušek, J.: Lectures on Discrete Geometry. Springer, Berlin (2002)

    MATH  Google Scholar 

  16. Naor, N., Sharir, M.: Computing a point in the center of a point set in three dimensions. In: Proc. 2nd Canad. Conf. Comput. Geom., pp. 10–13 (1990)

    Google Scholar 

  17. Pellegrini, M.: On lines missing polyhedral sets in 3-space. Discrete Comput. Geom. 12, 203–221 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pellegrini, M.: Ray shooting and lines in space. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch. 37, 2nd edn., pp. 839–856. CRC Press LLC, Boca Raton (2004)

    Google Scholar 

  19. Rousseeuw, P., Hubert, M.: Depth in an arrangement of hyperplanes. Discrete Comput. Geom. 22, 167–176 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rousseeuw, P., Hubert, M.: Regression depth. J. Amer. Stat. Assoc. 94, 388–402 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sharir, M., Smorodinsky, S., Tardos, G.: An improved bound for k-sets in three dimensions. Discrete Comput. Geom. 26, 195–204 (2001)

    MATH  MathSciNet  Google Scholar 

  22. Sharir, M., Welzl, E.: A combinatorial bound for linear programming and related problems. In: Proc. 9th Annu. Sympos. Theoretical Aspects of Computer Science, pp. 569–579 (1992)

    Google Scholar 

  23. Toth, G.: Point sets with many k-sets. Discrete Comput. Geom. 26(2), 187–194 (2001)

    MATH  MathSciNet  Google Scholar 

  24. Živaljević, R.T., Vrećica, S.T.: An extension of the ham sandwich theorem. Bull. London Math. Soc. 22, 183–186 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agarwal, P.K., Cabello, S., Sellarès, J.A., Sharir, M. (2006). Computing a Center-Transversal Line. In: Arun-Kumar, S., Garg, N. (eds) FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2006. Lecture Notes in Computer Science, vol 4337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11944836_11

Download citation

  • DOI: https://doi.org/10.1007/11944836_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49994-7

  • Online ISBN: 978-3-540-49995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics