
On Obtaining Pseudorandomness from

Error-Correcting Codes

Thesis by

Shankar Kalyanaraman

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2005

(Submitted June 2, 2006)

ii

c© 2005

Shankar Kalyanaraman

All Rights Reserved

iii

To ma, pa, Sriram and the fantastic summer of 2005 during which this thesis was

written amid and in spite of many entreating distractions.

iv

Abstract

Constructing pseudorandom objects based on codes has been the focus of some recent

research. These constructions were based on specific algebraic codes and were rather

simple in their structure in that a random index into a codeword was picked and m

subsequent symbols output. In this work, we explore the question of whether it is

possible to extend the scope of application of this paradigm of constructions to larger

families of codes.

We show in this work that there exist such pseudorandom objects based on cyclic,

linear codes that fool linear tests. When restricted to just algebraic codes, our tech-

niques yield constructions that fool low-degree tests. Specifically, our results show

that Reed-Solomon codes can be used to obtain pseudorandom objects, albeit in a

weakened form. To the best of our knowledge, this is the first instance of Reed-

Solomon codes being used to this effect.

In the process, we also touch upon one of the holy grails of derandomization.

It should come as no surprise that pseudorandom objects that fool low-degree tests

are automatically correlated to derandomizing polynomial identity testing. We look

at whether our constructions are general enough to answer this important question

and while we come up short in our endeavor, we believe our approach adds a new

perspective to this problem and hopefully a meaningful opening to solving it.

v

Contents

Abstract iv

1 Introduction 1

1.1 Computational and statistical indistinguishability 1

1.1.1 Pseudorandom generators . 2

1.1.2 Extractors . 2

1.1.3 Parameters for extractors . 3

1.2 Historical overview of extractors . 4

1.2.1 Trevisan’s breakthrough . 4

1.2.2 Reconstruction proof paradigm 4

1.3 Coding theory and pseudorandomness 5

1.3.1 Extractors from Reed-Müller codes 6

1.3.2 Proof sketch for the Shaltiel-Umans extractor 7

1.4 Extractors from other codes? . 7

1.4.1 Extractors fooling linear tests 8

1.4.2 Extractors fooling low-degree tests 9

1.4.3 Two-source extractors for linear and low-degree tests 10

1.5 From extractors to pseudorandom sets 11

1.5.1 Pseudorandom sets fooling linear tests 12

1.5.2 Pseudorandom sets fooling low-degree tests 12

2 Preliminary Definitions 14

2.1 Definitions and notation . 14

2.1.1 Definitions from probability theory 14

vi

2.1.2 Definitions from algebra . 15

2.1.3 Definitions in pseudorandomness 16

2.1.4 Definitions from coding theory 17

2.2 Reconstruction proof technique via the Shaltiel-Umans extractor . . . 18

2.2.1 The Shaltiel-Umans extractor 18

2.2.2 Proof sketch for the Shaltiel-Umans extractor 19

3 Brief description of results and statements of theorems and proof

outlines 24

3.1 Extractors fooling linear tests . 24

3.2.1 q-ary extractors to binary extractors 25

3.4 Extractors fooling low-degree tests 26

3.5 Two-source extractors that fool linear and low-degree tests 27

3.6 Unconditional PRGs fooling linear and low-degree tests 28

4 Extractors fooling linear and low-degree tests 30

4.1 q-ary Extractors that fool Fq-linear tests 30

4.1.1 From q-ary extractors to binary extractors 37

4.1.2 Specific constructions of extractors for linear tests 41

4.2 q-ary Extractors fooling low-degree tests 42

4.2.1 Errorless predictors for low-degree tests 43

4.2.2 Main result . 44

4.2.3 Specific constructions of extractors for low-degree tests 45

4.3 Two-source extractors for linear and low-degree tests 46

4.3.1 Two-source extractors for linear tests 47

4.3.2 Two-source extractors for low-degree tests 48

5 Pseudorandom sets for linear and low-degree tests 50

5.1 Pseudorandom sets for linear tests . 50

5.1.1 q-ary pseudorandom sets . 51

5.1.2 Obtaining ε-biased spaces from q-ary pseudorandom sets . . . 53

vii

5.2 Pseudorandom sets for low-degree prediction tests 55

6 Review 57

6.1 Revisiting extractors and pseudorandom sets 57

6.2 Revisiting ε-biased spaces . 58

6.3 Pseudorandom sets for low-degree distinguishing tests 59

6.3.1 Polynomial identity testing . 59

6.3.2 Pseudorandom sets for low-degree tests and polynomial identity

testing . 60

6.3.3 Towards constructing pseudorandom sets for low-degree distin-

guishing sets . 61

6.3.4 Constructing the low-degree prediction test 64

Epilogue 70

Bibliography 71

1

Chapter 1

Introduction

Over the past decade, the study of randomness as a measure of complexity has come

to play an increasingly crucial role alongside time and space. Without venturing into

the foreign realms of physics and referring readers interested in any further discussion

to [Cal04], we point out that sources of “pure” randomness are hard to find in nature

and even sources such as Zener diodes or radioactive emissions by unstable elements

like uranium cannot be relied upon to provide a long sequence of “truly random”

bits. Subsequently, it is not hard to see why randomness is seen as another measure

of complexity of an algorithm alongside time and space.

1.1 Computational and statistical indistinguisha-

bility

Fortunately for us, most algorithms that call for randomness are not too demanding

and only require that the bits appear to be random and we shall refer to these bits as

“pseudorandom” bits. In slightly more formal terms, we only require that the output

of pseudorandom bits is “indistinguishable” from a stream of perfectly random bits.

But in satisfying one requirement, we have raised another question – what do we

mean by indistinguishability? The answer to this question comes in different flavors.

On the one hand we could require that any efficiently computable function upon

input from a distribution over pseudorandom sequences of bits behaves almost identi-

2

cally to the case when the input drew from a uniformly random distribution and this

is referred to as computational indistinguishability. On the other, we could ask for

a stronger form of indistinguishability – referred to as statistical indistinguishability

wherein the statistical distance between a distribution over pseudorandom sequences

and a uniformly random distribution is negligibly small.

The statistical notion of indistinguishability is stronger than the computational be-

cause in some sense it requires indistinguishability even in regards to computationally

inefficient functions. Two types of pseudorandom objects can be constructed based

on these two ideas of indistinguishability both of which have found ample application

in complexity theory.

1.1.1 Pseudorandom generators

Pseudorandom generators or PRGs are objects based on computational indistin-

guishability. A PRG takes as input a short random seed and obtains as output a

longer pseudorandom string that is computationally indistinguishable from its uni-

formly random counterpart. Constructions of PRGs have been motivated from their

applications in cryptography and complexity theory. Briefly, the main theme behind

these constructions captures the requirement of computational indistinguishability by

leveraging the hardness of a specific problem instance to obtain a PRG.

1.1.2 Extractors

Extractors on the other hand are pseudorandom objects based on statistical indistin-

guishability. They take as input a distribution which is not completely random and

obtain a distribution that is statistically indistinguishable from a uniformly random

distribution. They are so-called because they aim to “extract” all the randomness

from the input distribution. Since their introduction in a paper by Nisan and Zuck-

erman [NZ96] less than a decade ago, extractors have come to be widely studied.

This is in part because of the wide range of applications extractors lend themselves

3

to including expander graph constructions [WZ93], derandomization of probabilistic

algorithms [Zuc97, NZ96, INW94, RR99], constructions of codes [TSZS01, Gur04]

and so on. The curious reader is referred to the Shaltiel’s excellent survey on ex-

tractors [Sha02]. Since most of this work focuses on extractors, it will be worth our

while to understand them in more detail and also to discuss various approaches to

constructing them.

1.1.3 Parameters for extractors

An extractor takes as inputs a weak random source and a small completely random

“seed”. The seed is needed because it can be shown easily that in its absence even

a single bit of randomness cannot be extracted from the weak source. We also need

to quantify what exactly we mean when we say a source has “weak” randomness. To

this end, we introduce the concept of min-entropy. For a probability distribution D

and a random variable X sampled according to D, the min-entropy of D is defined

as log(1/p∗) where

p∗ = max Pr
D

[X]

Therefore, a uniform distribution on {0, 1}n has min-entropy n and a distribution on

{0, 1}n with min-entropy k satisfies PrD[x] ≤ 2−k for all x.

Ideally we would like to construct an extractor with a small seed and output length

close to the min-entropy k of the input source. Radhakrishnan and Ta-Shma [RTS00]

showed using the probabilistic method that there exist (k, ε) extractors with seed-

length log n + 2 log(1/ε) + O(1) and output length m = k − O(log(1/ε)) where k

is the min-entropy of the input source and ε is how close the output distribution is

statistically to the uniform distribution.

4

1.2 Historical overview of extractors

Some of the earliest constructions of extractors were based on families of hash func-

tions [ILL89, SZ99] and the basic idea was that for a universal family H of hash

functions h : {0, 1}n → {0, 1}l, hy(x) is an (l + 2 log(1/ε), ε) extractor. That is, hy(x)

is ε-close to the uniform distribution on {0, 1}l for x picked from a distribution with

min-entropy l + 2 log(1/ε). “ε-closeness” is a measure of statistical distance that we

explain in more detail subsequently. While these constructions were simple and clean,

they were far from being optimal in seed-length which turned out to be larger than

the randomness extracted. Some effort went into reducing the seed-length but the

improvements were minor [SZ99].

Another line of work on extractors involved composing two extractors each working

on small “blocks” of the weak random source. The relevant contribution in this

regard came from a long series of papers beginning with Nisan and Zuckerman’s work

[NZ96, TS96, Zuc97].

1.2.1 Trevisan’s breakthrough

A major breakthrough came in a paper by Trevisan [Tre01] who discovered an un-

canny connection between some existing PRG constructions and extractors. Trevisan

proposed constructions based on PRGs obtained by Nisan and Wigderson [NW94] and

Impagliazzo and Wigderson [IW97]. We spend more time later illustrating the basic

proof idea underlying Trevisan’s constructions but in essence Trevisan exploited the

hardness-randomness tradeoffs that were used to obtain PRGs in [NW94, IW97] and

replaced the hard instances of problems in those constructions with weakly random

sources to obtain an extractor instead.

1.2.2 Reconstruction proof paradigm

As clever as this idea is, the real legacy of Trevisan’s work was the reconstruction

proof technique which has been the centerpiece of subsequent extractor constructions

5

[TSZS01, SU01] and also forms the foundation of our work. Again, we will devote

more time to this proof technique but we give some flavor of the technique at this

point. If B denotes the set of all “bad” inputs where an input is “bad” if there

exists a function that distinguishes it with non-negligible probability from a random

input, Trevisan showed using the proof technique of [NW94, IW97] that B cannot

be too big. Furthermore, if the input is drawn from a source with some min-entropy

then the probability conditioned on the events x ∈ B and x /∈ B that the output of

the extractor is statistically distinguishable from a random sequence turns out to be

small.

As mentioned earlier, Trevisan’s work opened up a new way of thinking about

extractors and fostered a long line of further improvements [RRV02, TSZS01, SU01].

Crucial among these were the near-simultaneous works by Ta-Shma, Zuckerman and

Safra [TSZS01] and Shaltiel and Umans [SU01] that used the reconstruction proof

paradigm to establish a fundamental connection between error-correcting codes and

extractors. We will cover more on the reconstruction proof technique in §2.2 in

Chapter 2.

1.3 Coding theory and pseudorandomness

Coding theory pertains to the study of error-correcting codes. Although the subject

of coding theory may seem alien to theoretical computer science, ever since its (im-

plicit?) involvement in the development of interactive proof systems coding theory,

and in particular algebraic coding theory has become part of mainstream theoretical

computer science [ALM+98, BF90, BLR90]. Even prior to this however, codes have

been used in connection with obtaining pseudorandomness. Naor and Naor [NN93]

and Alon et al [AGHP92] used them to obtain k-wise ε-biased sample spaces. Alon

et al [ABI86] showed the equivalence between l-wise independent sets and dual codes

of distance l + 1.

6

Codes can also be used to improve PRG constructions. Blum and Micali [BM84]

showed that good constructions of PRGs can be obtained using a one-way permu-

tation and a corresponding hardcore predicate. The challenge then is to build a

good hardcore predicate. For instance, Goldreich and Levin [GL89] used Hadamard

codes to show the existence of a hardcore predicate. In general however, it can be

shown that any good “list-decodable” code is a good candidate for obtaining such

predicates. List-decodable codes are codes for which there exists an efficient decod-

ing algorithm that retrieves a small list of possible codewords that are close to the

received word. Sudan [Sud97] achieved a crucial breakthrough by showing that Reed-

Solomon codes can be list-decoded beyond half the minimum distance. The notions

of list-decodability and hardcore predicate bit construction tie in very closely with

hardness amplification [BFNW93, IW97, STV01, Tre03]. We will review definitions

from coding theory as well as the relevant algebra in Chapter 2.

1.3.1 Extractors from Reed-Müller codes

The extractor constructions given by Ta-Shma et al [TSZS01] and Shaltiel and Umans

[SU01] use Reed-Müller codes which are algebraic codes. A message in a Reed-Müller

code is interpreted as a multi-variate polynomial of small degree and the codeword

is the evaluation of the polynomial over a field. We focus on the Shaltiel-Umans

construction as it generalizes the approach taken in [TSZS01] and will describe it in

slightly broader detail in a subsequent chapter but yield to the temptation of giving

here a small sketch of how it works. The construction works in two stages. The

input from the weak random source is taken to describe the co-efficients of a d-variate

polynomial of degree h over a field Fq of size q > 2. Applying the Reed-Müller

encoding to the polynomial we obtain a codeword in Fqm

q . The final output of the SU

extractor consists of m “consecutive” elements starting from a position indexed by

the random seed. For a code C, we will use fC,m to denote this by

7

Definition 1

fC,m(x, y) = (C(x)[y + 1], C(x)[y + 2], . . . , C(x)[y + m]) (1.1)

Therefore, in the description above C is a Reed-Müller code. In the next stage, a

binary code C′ is used to encode each q-ary symbol in fC,m. Finally, an additional

random seed is used to index a single position in the binary codeword and output the

corresponding binary symbol for each of the m q-ary symbols. This is given by

Definition 2

f ′C,m,C′(x, y, z) = (C′(C(x)[y + 1])[z], C′(C(x)[y + 2])[z], . . . , C′(C(x)[y + m])[z]) (1.2)

1.3.2 Proof sketch for the Shaltiel-Umans extractor

In order to show that the construction above is indeed statistically indistinguishable

from a uniformly random distribution on {0, 1}m Shaltiel and Umans employ the

reconstruction proof technique. At its simplest refinement, their proof assumes the

contrary and constructs a function that takes as “advice” m− 1 bits of the extractor

and outputs the m-th bit with reasonably good success probability. By using a series

of predictor functions whose inputs overlap with each other and using the list-decoding

properties of the Reed-Müller code, we obtain the correct reconstruction of the entire

codeword C(x) and subsequently x. But since x was picked from a distribution with

some fixed min-entropy, if the total amount of advice used by the predictor is less

than the min-entropy we will have obtained a contradiction since we were able to

describe x with lesser information. The Shaltiel-Umans extractor will be discussed in

more detail in §2.2.1 in Chapter 2.

1.4 Extractors from other codes?

In proving that the construction above is an extractor Shaltiel and Umans draw

from many algebraic properties special to Reed-Müller codes. But is it possible to

8

construct extractors without relying too heavily on such algebra? More generally, can

we construct extractors from a larger class of codes?

We care to pose this question because of the numerous deep implications an answer

in the affirmative holds with regard to other questions in complexity theory. Suppose

for example that extractor constructions can be easily obtained from any linear code,

this would demonstrate an intrinsic connection between pseudorandomness and alge-

braic coding theory because it would mean that linear codes are good pseudorandom

objects. Furthermore, since such codes are well-understood owing to many decades

of research invested into their study we can exploit this rich body of work towards

refining our own understanding of the nature of pseudorandomness. Specifically, since

there exists a plethora of explicit constructions of a variety of linear codes we would

automatically obtain explicit extractor constructions. The wide scope of applications

that extractors can be used in puts a further premium on this question.

But more than this, we would be interested in the methodology used to obtain

pseudorandomness from codes. Our hope would be to exploit the reconstruction

proof technique as applied to a larger body of codes than just Reed-Müller codes and

achieve better parameters of extractors which we believe is possible by simplifying

the technique.

We will leave the braver endeavor of seeking pseudorandomness from linear codes

to subsequent pursuit and focus our attention in this work on a slightly smaller class of

codes – cyclic linear codes. This class contains some well-known codes such as Reed-

Müller and Reed-Solomon codes and manages to retain some of the nice algebraic

properties of the former that were used in [SU01] which gives us hope in finding a

favorable resolution to our question.

1.4.1 Extractors fooling linear tests

Our attempts at answering this question form the core contents of this work. We

first state a theorem that meets this question part of the way where we show that

cyclic linear codes beget good constructions for extractors that fool linear tests. For

9

a cyclic linear code C with relative minimum distance δ and for some positive integer

m > 0, let fC,m be as defined in (1.1).

Theorem 3 For any k and ρ > 0, fC,m is a (k, ρ) q-ary extractor for the family of

all linear tests, provided that δ > 1− ρ/2, and k > m + log(2/ρ).

To prove this theorem, we resort to the reconstruction proof methodology but we

adapt it to the case of cyclic linear codes. The proof sketch that we saw earlier spent

some effort in going from a reasonably correct next-element predictor to an errorless

prediction of the entire codeword. This involved using a set of predictor functions

that overlapped at common points and then using the error-correcting properties of

the Reed-Müller code to obtain the correct evaluation of the symbol before moving

on to predict the next. This cumbersome procedure requires more advice bits which

directly affects the output length via the contradiction that we hope to obtain. Fur-

thermore, since the construction is based on a multivariate polynomial defined on a

field, describing a random codeword symbol requires more in terms of seed-length as

well. This results in a trade-off in the final extractor parameters and hence a less

than optimal construction.

In our approach we eschew this expensive conversion from an error-prone predictor

to an errorless predictor. Namely we show that for a cyclic linear code, if there exists

a linear predictor with good success probability then it is automatically an errorless

linear predictor. This avoids the complicated transformation in [SU01] and gets us

the desired improvement in parameters with the caveat being however that it works

only for a restricted class of tests. We cover this material in detail in §4.1 in Chapter

4.

1.4.2 Extractors fooling low-degree tests

Suppose now that we wish to broaden our class of linear prediction tests to include

all tests of fixed degree, namely low-degree tests. Are cyclic linear codes still good

candidates for obtaining extractors that fool all low-degree tests? It turns out from

the following theorem that a subclass of them are. Let C be a fixed Reed-Müller code

10

that encodes all messages given by the co-efficients of an l-variate polynomial of total

degree h.

Theorem 4 For any k and ρ > 0, fC,m is a (k, ρ) q-ary extractor for the family of

all degree d prediction tests, provided that ρ > 2dh/q, and k > m + log(2/ρ).

The reader may suspect that since there already exist constructions of extractors from

Reed-Müller codes that fool all tests, Theorem 4 is redundant and offers much less

than what is known. However, what distinguishes the construction described in the

aforementioned theorem from the Shaltiel-Umans extractor is that it uses once again

our lighter-weight reconstruction proof technique and also does not make use of any

algebraic properties exclusive to Reed-Müller codes. As an important consequence to

this, Reed-Solomon codes which constitute a subfamily of Reed-Müller codes can also

be used to obtain extractors that fool degree-d prediction tests. Extractors based on

Reed-Müller codes fooling low-degree prediction tests will be discussed in §4.2 under

Chapter 4.

1.4.3 Two-source extractors for linear and low-degree tests

Suppose instead of our regular model of a weak random source and a short uniform

source as inputs for the extractor, we now consider two weak random sources. Such

extractors are referred to as multiple-source extractors and have sparked a recent

spate of developments [BIW04, BKS+04, Raz05]. We look at the natural analog of

the general case and wonder if we can extend our constructions to make them work

for the two-source case. This turns out to be the case when C is a systematic Reed-

Solomon code that encodes messages given by co-efficients of a univariate polynomial

of degree h.

Theorem 5 Fix k1, k2, n1, n2, ρ. For h < (ρ/2) · 2k2 and q = 2n2 the function

fC,m(x, y) is a (k1, k2, ρ) q-ary extractor for the class of linear prediction tests with

k1 > m + log(2/ρ).

11

Theorem 6 Fix k1, k2, n1, n2, ρ. For h < (ρ/2d) · 2k2 and q = 2n2 the function

fC,m(x, y) is a (k1, k2, ρ) q-ary extractor for the class of degree-d prediction tests with

k1 > m + log(2/ρ).

We will discuss these constructions also in Chapter 4.

1.5 From extractors to pseudorandom sets

Let us recall the defining property of extractors. If E is a (k, ε) extractor taking as

inputs random variables X and Y , then when X is sampled according to a distribution

with min-entropy at least k and Y is sampled according to the uniform distribution

the random variable E(X, Y) describes a distribution that is ε-close to the uniform

distribution. We can also capture this property in the following manner. For every

test T that distinguishes the extractor output from a string chosen uniformly at

random with success probability ε, the support of X for which this occurs is of size

at most 2k.

A pseudorandom set is a collection of strings with the property that a string

chosen uniformly at random from the collection “ε-fools” all distinguishing tests;

in other words there exists no distinguishing test with success probability ε for the

uniform distribution on the pseudorandom set.

This distinction between extractors and pseudorandom sets is crucial to under-

stand because the pseudorandom set enjoys a property that is stronger than what the

extractor gives us. The extractor property only ensures that for every distinguishing

test on the output distribution, the number of “bad” inputs – or inputs for which the

test distinguishes with success probability at least ε – is small whereas the pseudo-

random set property means that there exists a string which ε-fools all distinguishing

tests. This also explains why unconditional pseudorandom sets against all efficient

distinguishing tests are that much harder to construct. The best success we have had

so far in this regard are conditional pseudorandom sets that fool distinguishing tests

described by small circuits [NW94, SU01, Uma02].

12

Fortunately, in the case of linear and low-degree tests this is rendered quite simple.

Since we showed that prediction tests with reasonably good success probability for

the extractors in Theorems 3 and 4 are automatically errorless, we only need to fix

the first input of the extractor suitably to ensure that there exists no such errorless

predictor. Then, iterating over all possible choices of the seed we will have our required

unconditional pseudorandom set for linear and low-degree tests.

1.5.1 Pseudorandom sets fooling linear tests

Our next theorem states that from a systematic cyclic linear code C with blocklength

n̄, relative minimum distance δ and containing the all-ones codeword, one can con-

struct a pseudorandom set fooling all linear tests.

Theorem 7 Let x be such that C(x)[1 . . . k̄] = 0k̄−11. Then S = {fC,k̄−1(x, y) :

1 ≤ y ≤ n̄} is a q-ary pseudorandom set that fools all linear predictors with success

probability ρ, provided that ρ ≥ 1− δ.

This theorem acquires added relevance because using the standard q-ary to binary

transformation that we described earlier, we can obtain their binary equivalents which

are called ε-biased spaces. In particular, using good binary list-decodable codes we can

construct ε-biased spaces of size O(mpolylog(m, 1/ε)/ε3) over {0, 1}m. This compares

favorably with earlier constructions obtained in [AGHP92] and [NN93] which have

sizes (m/ε)2 and m/εc respectively where 4 < c < 5 although these constructions also

had the property of k-wise independence. We must note however that the ε-bias in

our constructions follows naturally by dint of the choice of a cyclic linear code as we

will see in Lemma 11 in Chapter 6. Our constructions are presented in better light

in §5.1.2 under Chapter 5.

1.5.2 Pseudorandom sets fooling low-degree tests

Analogous to the previous theorem, we utilize Theorem 4 to obtain pseudorandom

sets that fool low-degree tests. Suppose C is a systematic Reed-Müller code with

13

blocklength n̄ that encodes all messages given by the co-efficients of an l-variate

polynomial of total degree h where
(

h+l
l

)
= k̄.

Theorem 8 Let x be such that C(x)[1 . . . k̄] = 0k̄−11. Then S = {fC,k̄−1(x, y) : 1 ≤

y ≤ n̄} is a q-ary ρ-pseudorandom set for the class of all degree d predictors, provided

that ρ ≥ dh/q.

Some comment is in order regarding what exactly is achieved by Theorem 8. It would

appear that a pseudorandom set as obtained in the theorem fooling all low-degree

prediction tests is tantamount to derandomization of polynomial identity-testing since

no low-degree polynomial appears to distinguish between the pseudorandom set and

a uniformly random set. This would indeed be true if instead of prediction tests, the

pseudorandom set were to fool all degree-d “distinguishing” tests instead of prediction

tests which is what the theorem makes possible. The distinction between the two kinds

of tests is that a degree-d distinguishing test is of the form p(x1, . . . , xm) where p is a

degree-d polynomial whereas a degree-d prediction test is of the form p(x1, . . . , xm−1)−

xm.

Still, armed with a pseudorandom set that fools low-degree prediction tests it

seems tantalizingly close to be able to construct a set that fools low-degree distin-

guishing tests. Yao’s famous lemma [Yao82] gives a standard relation between a

prediction test to a distinguishing test but unfortunately does not preserve the low-

degree property we need. We shall therefore have to be content with claiming that

Theorem 4 allows for derandomizing polynomial identity-testing for a restricted class

of polynomials comprising of all polynomials that may be expressed easily as a pre-

diction test. No doubt minor improvements are possible in the nature of how the

prediction test can be expressed. For instance, it is trivial to extend the theorem

to construct pseudorandom sets that fool low-degree prediction tests of the form

p(x1, . . . , xm−1)− xk
m where k ≤ d and indeed, we encapsulate this into a generalized

framework of “partition” prediction tests. We defer a full treatment on this subject

to Chapter 6.

14

Chapter 2

Preliminary Definitions

2.1 Definitions and notation

2.1.1 Definitions from probability theory

For a finite set S, we can talk of a random variable X that assumes values in S under

some random experiment.

Definition 9 For a random variable X, a (discrete) probability distribution D

on a finite set S assigns to every element x ∈ S a positive real in [0, 1] denoted by

PrD[X = x] and signifying the probability that X assumes the value x during the

random experiment.

For the purposes of this work, we will take a distribution automatically to mean a

discrete distribution on a finite set.

Definition 10 The min-entropy of a random variable X with distribution D is

denoted H∞(X) and given by H∞(X) = minx∈S log(1/ PrD[X = x]).

Definition 11 Let P, Q be distributions over a set S. P is ε-close to Q if

∑
x∈S

∣∣∣∣Pr
P

[X = x]− Pr
Q

[X = x]

∣∣∣∣ ≤ 2ε

or equivalently if

max
A⊆S

∣∣∣∣Pr
P

[X ∈ A]− Pr
Q

[X ∈ A]

∣∣∣∣ ≤ ε

15

Wherever it is clear, we will only implicitly refer to the underlying distribution

associated with X and denote Pr[X = x] to mean the probability that X when

sampled according to this distribution takes the value x.

2.1.2 Definitions from algebra

Definition 12 A ring (R, +, ∗) is an algebraic structure comprising of a (possibly

infinite) set of elements R and two binary operators +, ∗ : R × R → R with the

following properties

• (R, +) forms an abelian group and hence satisfies associativity and commutativ-

ity with respect to +, contains an identity element 0 and has an inverse element

−a for every element a ∈ R satisfying a + (−a) = 0.

• ∗ is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c, a, b, c ∈ R

• ∗ distributes over +: a ∗ (b + c) = a ∗ b + a ∗ c, a, b, c ∈ R.

In a commutative ring R, ∗ is commutative. The tuple (Z, +, ∗) is an example of a

ring where Z is the set of all integers.

Definition 13 A field (F, +, ∗) is a commutative ring with the following additional

properties

• There exists a multiplicative identity element denoted 1 ∈ F, 1 �= 0 satisfying

a · 1 = a, a ∈ F .

• Every non-zero element a ∈ F has a multiplicative inverse denoted a−1 ∈ F

satisfying a · a−1 = 1.

An example of a field is the tuple (C, +, ∗) where C is the set of all complex numbers.

Definition 14 The fundamental theorem of algebra states that every complex

polynomial of degree n has exactly n roots. In other words, if p(x) =
∑n

k=0 akx
k where

a0, . . . , an are complex numbers then there exist (not necessarily distinct) complex

numbers α1, . . . , αn such that p(x) = (x− α1)(x− α2) . . . (x− αn).

16

2.1.3 Definitions in pseudorandomness

Definition 15 A distinguisher with success rate ε for a random variable X =

(X1, X2, . . . , Xm) defined on Fm
q is a function f : Fm

q → Fq with the property that

|Pr[f(X) = 0]− Pr[f(Um) = 0]| ≥ ε

where Um is the uniform distribution on Fm
q .

Definition 16 An ith-element predictor with success probability ρ for a random

variable X = (X1, X2, . . . , Xm) with distribution D defined on Fm
q is a function

f : Fi−1
q → Fq such that: PrD[f(X1, . . . , Xi−1) = Xi] ≥ ρ. If ρ = 1 we say that f is

errorless.

We will be concerned with linear and low-degree distinguishers and predictors. Note

that a linear function f satisfies the identities (i) f(
∑k

j=1 xj) =
∑k

j=1 f(xj) − (k −

1)f(0) and (ii) f(αx) = αf(x)− (α− 1)f(0) for any scalar α. A homogeneous linear

function f has f(0) = 0.

Definition 17 A (k, ρ) q-ary extractor for a family of predictors P is a function

E : {0, 1}n × {0, 1}t → Fm
q such that for every random variable X with H∞(X) ≥ k,

there is no ith-element predictor f ∈ P for E(X, Ut) with success probability ρ for any

i = 1, . . .m.

In our notation, the usual q-ary extractors (as defined in, e.g., [SU01]) are simply q-

ary extractors for the family of all predictors. Rather than referring to PRGs directly

we prefer to describe the set of strings they produce.

Definition 18 A q-ary ρ-pseudorandom set for a family of predictors P is a

multiset S ⊆ Fm
q with the property that there is no i-th element predictor f ∈ P with

success probability ρ for i = 1, . . . , m for the random variable induced by the uniform

distribution on S.

17

2.1.4 Definitions from coding theory

Definition 19 The Hamming distance between two strings a, b ∈ Fn̄
q denoted

Δ(a, b) is the number of places where the strings are distinct:

Δ(a, b) = |{i|a[i] �= b[i]}|

The weight of a string s ∈ Fn̄
q is denoted w(s) and given by Δ(s, 0n̄).

Definition 20 An [n̄, k̄, d̄] q-ary linear code is a subspace C ⊆ Fn̄
q of dimension k̄

for which the Hamming distance between every pair x, y ∈ C is at least d̄.

Definition 21 The rate of an [n̄, k̄, d̄] q-ary code C is given by k̄
n̄

while its relative

distance is given by d̄
n̄
.

Since a linear code C describes a subspace, we can talk of an (k̄× n̄)-generator matrix

G that satisfies x ·G ∈ C for all x ∈ Fk̄
q . We will call such an x ∈ Fk̄

q a message. Given

a message x, we will use C(x) to mean the x-th codeword in C. All of the codes we

consider in this work are equipped with efficient ways to compute G.

Definition 22 A code C is systematic if for all x ∈ F
k
q :

C(x)[1 . . . k] = x

Definition 23 A code C is cyclic if it satisfies the following condition:

(c1, c2, . . . , cn̄−1, cn̄) ∈ C ⇒ (cn̄, c1, c2, . . . , cn̄−1) ∈ C.

We always treat the indices into a cyclic code modulo n̄.

A specific family of q-ary codes we will use is that of Reed-Müller codes.

Definition 24 The codewords of a Reed-Müller code with parameters �, h are

the evaluations of �-variate polynomials of total degree at most h, on the points F�
q\{0}.

18

When � = 1 we get a Reed-Solomon code with parameter h. Note that a Reed-Müller

code has distance (1−h/q)ql. All of these codes are cyclic (for an appropriate ordering

of F�
q \ {0}) and linear. The nullspace of a subspace C ⊆ Fn̄

q comprises all vectors

h ∈ Fn̄
q such that h · c = 0 for all c ∈ C.

Definition 25 The parity-check matrix denoted H for an [n̄, k̄, d̄] q-ary linear

code C is an (n̄ − k̄ × n̄) matrix whose rows contain a basis of the nullspace of C.

Therefore, for all c ∈ C c ·HT = 0n̄−k̄.

2.2 Reconstruction proof technique via the Shaltiel-

Umans extractor

In this section we give an overview of the Shaltiel-Umans extractor and the underlying

application of Trevisan’s reconstruction proof technique. Although understanding the

Shaltiel-Umans extractor or the reconstruction proof technique is not necessary to

absorb the contents of our work, it would help to put the ideas in context. Much of

the following treatment is rehashed and adapted from [SU01].

2.2.1 The Shaltiel-Umans extractor

Let x be sampled from a distribution on {0, 1}n with min-entropy k. We will first

focus on the q-ary case, where q is a value to be determined shortly. In the first

step, we encode x using a q-ary Reed-Müller code with parameters d, h on Fd
q . The

blocklength of the Reed-Müller code is therefore qd. The random seed is used to

pick an index �v ∈ Fd
q and the final output consists of m consecutive symbols of

the codeword starting at the �v-th position. We have overloaded the meaning of

consecutive here and we really mean picking successive multiples in exponents of A�v

where A is a generator for the multiplicative group of Fd
q . Therefore, m consecutive

symbols starting at the �v-th position means picking symbols indexed at {Ai�v}0≤i≤m−1.

Note that there is an isomorphism between Fqd and Fd
q and hence A corresponds to

some cyclic generator α ∈ Fqd. Consequently, A has the property that for any �v ∈ F
d
q ,

19

{Ai�v|1 ≤ i ≤ qd} = Fd
q \ �0. Furthermore, such a generator matrix can be found in

time polynomial in qd.

Since we are interpreting all x ∈ {0, 1}n as message strings to be encoded using the

Reed-Müller code, {0, 1}n should be contained in the message space comprising all

d-variate polynomials of total degree h. So, we choose h in terms of n, d satisfying

n ≤
(

h + d− 1

d

)
(2.1)

The following theorem is adapted from Theorem 4.5 in [SU01]. Let C be a Reed-

Müller code with parameters d, h satisfying (2.1) and A be the matrix defined above.

Theorem 26 Let E(x,�v) = (C(x)[�v], C(x)[A�v], . . . , C(x)[Am−1�v]). Then for all d, h

satisfying (2.1), x sampled from any distribution over {0, 1}n with min-entropy k

and �v sampled randomly from Fd
q E is a (k, ρ) q-ary extractor provided that k >

O(mhd log q) and q > O(dh/ρ3).

In our work, we will only be interested in giving a proof sketch and more importantly

going over the reconstruction technique. We refer the reader to [SU01] for corollaries

and full proof of the theorem.

2.2.2 Proof sketch for the Shaltiel-Umans extractor

At its simplest, the idea is essentially proof by contradiction. If E were not a (k, ρ)

extractor, then there is a predictor with good success rate. Using this predictor, we

can reconstruct the entire codeword and hence x with lesser information than its

min-entropy which is a contradiction.

For the reconstruction procedure, using an averaging argument we can show that

it suffices to work with a fixed value of x chosen from {0, 1}n.

Definition 27 A string x ∈ {0, 1}n is ρ-good for a function P : Fm−1
q → Fq and

20

E if

Pr
�v∈Fd

q

[P (E(x,�v)1,...,m−1) = E(x,�v)m] ≥ ρ/2

Here, P is a predictor function that takes as input the first m− 1 symbols of E(x,�v)

and returns an element of Fq. The reconstruction procedure RP : {0, 1}l → {0, 1}n

is structured as follows: R has oracle access to the predictor function P and takes as

input l bits of advice returning an n-bit output.

Definition 28 R is a ρ-good reconstruction on E with advice size l if for any

predictor function P and x that is ρ-good for P and E:

Pr[∃z ∈ {0, 1}l, RP (z) = x] ≥ 1/2

where the probability is taken over the distribution of the random coin tosses of R.

There are two steps to proving Theorem 26 – show that there exists a ρ-good re-

construction on E and show that if this is so, then E is a (k, ρ) q-ary extractor for

k > l + log(2/ρ) + 2. We will get to the first step shortly but suppose for now that

there is such a reconstruction procedure.

Claim 29 Let X be a random variable with distribution D, H∞(D) ≥ k. Then

Pr
D

[X is ρ-good for P and E] ≤ ρ/2

Proof. Let p = PrD[X is ρ-good for P and E]. Since there is a ρ-good reconstruction

R on E with advice size l, for any ρ-good x the following is true from Definition 28

for X sampled according to D:

Pr
D

[∃z ∈ {0, 1}l; X = RP (z)] ≥ p/2 (2.2)

Now, there is a fixing of the random coin tosses of R for which (2.2) holds with the

probability taken over only D. Such an R has at most 2l outputs each corresponding

to the input z ∈ {0, 1}l and each such output is assumed by X with probability at

21

most 2−k since D has min-entropy at least k. Hence,

Pr
D

[∃z ∈ {0, 1}l; X = RP (z)] ≤ 2l−k (2.3)

Combining (2.3) with (2.2) for a fixed R, we get that p/2 ≤ 2l−k and for k > l +

log(2/ρ) + 2 this gives us p ≤ ρ/2.

We will now describe how R is obtained in the following lemma adapted from Lemma

4.13 in [SU01].

Lemma 1 For parameters as in Theorem 26, there exists a ρ-good reconstruction on

E with advice size O(mhd log q).

Proof. (Sketch) Let P be a function P : Fm−1
q → Fq and let x ∈ {0, 1}n be ρ-good for

P and E. This means that over a choice of �u ∈ Fd
q P predicts the �u-th point evaluation

of C(x) correctly using evaluations on m− 1 previous points A−m+1�u, . . . , A−1�u with

probability ρ/2. The crux of the proof now is to reuse iteratively P ’s predictions

along with existing advice to obtain predictions for the evaluation on all points of

the field given by Ai�u. If the predictor were errorless, we would be home free by just

giving as advice the first m − 1 evaluations to the predictor and using it to obtain

the entire codeword C(x). However, it has success probability only ρ/2 and so we

need to error-correct each successive prediction before feeding it back to obtain newer

predictions. To this end, we define two sets of degree 2r − 1 curves as follows:

• Pick 2r random points �y1, . . . , �y2r and 2r random and distinct values t1, . . . , t2r

• Define p1 : Fq → F
d
q by p1(ti) = �yi, i = 1, . . . , 2r

• Define p2 : Fq → Fd
q by p2(ti) = A�yi, i = 1, . . . , r and p2(ti) = �yi, i = r+1, . . . , 2r

• Define P2j+1 = Ajp1, j = 1, . . . , qd and P2j+2 = Ajp2, j = 1, . . . , qd

The relevance of setting up these sets of interleaving curves will be clear from the

properties they possess which we will state without proof.

22

Property 1 For all i, Pi is a degree-2r − 1 polynomial.

Property 2 The set {Pi(w)|w ∈ Fq} is 2r-wise independent.

Property 3 For any consecutive pair {Pi−1, Pi} there are r random points of inter-

section.

Property 4 The codeword C(x) restricted to Pi denoted C(x)[Pi(.)] is a univariate

polynomial of degree at most (2r − 1)(h− 1).

In all of the above, r = c′d where c′ is a constant whose value will be determined

later.

To jumpstart the reconstruction, we will feed in advice containing all the coef-

ficients of C(x)[Pi(.)] for 1 ≤ i ≤ 2m which will require at most 2hr · 2m · log q =

4mhr log q advice bits. Using this, we proceed to use the predictor P to predict on

curves Pi, i > 2m. The following claim is adapted from [SU01] and stated without

proof:

Claim 30 With probability at least 1− 1/O(qd) over the coin tosses of R:

Pr
�u∈Pi

[P (C(x)[A−m+1�u], . . . , C(x)[A−1�u]) = C(x)[�u]] ≥ ρ3/4

Since Pi has q points, Claim 30 tells us that with high probability over the coin tosses

of R at least ρ3q/4 points in Pi are correctly evaluated by the predictor out of a

possible q points. Our goal now is to be able to error-correct the predictor on Pi

and for this, we make use of Sudan’s list-decoding bound [Sud97] captured in the

following lemma

Lemma 2 ([Sud97]) Let f be a function evaluated on n̄ points and S be the set of

all polynomials of degree d̄ that agree with f on t̄ > (2n̄d)
1
2 points. Then |S| ≤ 2n̄/t̄.

By choosing a sufficiently large c′, we can ensure that the condition t̄ >
√

2n̄d is

satisfied and hence we will have a list of 2n̄/t̄ = 8/ρ3 such degree-2rh polynomials of

which one of them is the correct reconstruction of the polynomial on Pi. We could

23

use additional advice that tells us which entry in the list corresponds to the correct

evaluation but this is expensive. Since a list will be generated for each prediction step,

we will need advice at every single instance and this leads to a blow-up in the total

advice required which would run counter to our objective of obtaining a contradiction

by describing x with a short advice string.

Fortunately, our choice of Pi helps us resolve this. Recall from Property 3 that for

any consecutive Pi−1 and Pi, there are r random points of intersection. The remainder

of the proof is guided by consequent simple observations that we will not prove. The

first one follows from Schwartz-Zippel:

Observation 2.3 Two different degree-2rh polynomials agree on at most a 2rh/q

fraction of points

Observation 2.4 Since we have inductively assumed that a complete evaluation on

Pi−1 is already known before we proceed to obtain the evaluation on Pi, with probability

at most (2rh/q)r = O(ρd), an “incorrect” polynomial would agree with the evaluation

on Pi.

Observation 2.5 With probability at least 1−O(ρd) over the random coin tosses of

R a correct evaluation of Pi is obtained.

Since there are 2qd prediction steps corresponding to each curve Pi, applying the

union bound on the total number of prediction steps gives us that with probability

at least 1/2, the entire reconstruction procedure is successful.

As noted while proving Lemma 1 we would have loved to avoid going through the

complicated machinery including using error-correcting codes, interleaving prediction

steps and using 2r-wise independent curves in order to make the transition from a

predictor with moderate success probability to an errorless predictor. This is indeed

what we achieve in the case of extractors for linear and low-degree prediction tests.

Briefly and at the expense of belaboring the point, we are able to show that if there

is a predictor with reasonably good success probability it is automatically an errorless

predictor. This helps significantly in further improving the output length parameter.

24

Chapter 3

Brief description of results and
statements of theorems and proof
outlines

In this chapter, we provide a broad overview of our results and give a flavor of our

proof techniques.

3.1 Extractors fooling linear tests

Recall the definition of fC,m from Chapter 1:

fC,m(x, y) = (C(x)[y + 1], C(x)[y + 2], . . . , C(x)[y + m])

Namely upon inputs x, y fC,m outputs m consecutive symbols of the codeword C(x)

starting at the (y + 1)-th position. Our first result pertains to showing that if C

is a systematic cyclic, linear code then fC,m fools linear tests when x is chosen from

sufficiently high min-entropy distributions. We do so by employing the reconstruction

proof paradigm, namely we show that for fixed x if the random variable fC,m(x, Ut)

has a linear predictor p, then x has a short description. In this case p is a linear

function for which:

p(C(x)[y + 1], C(x)[y + 2], . . . , C(x)[y + m− 1]) = C(x)[y + m] (3.1)

25

with noticeable probability over the choice of y. If we succeed in showing that x

has a description that is smaller in size than the min-entropy of the distribution it

is chosen from, we will have arrived at a contradiction thereby proving that no such

linear function p can exist. Our key observation in showing this is that:

Observation 3.2 If C has sufficiently good distance, then p must be errorless.

To prove this we first select a subset S of those y for which (3.1) holds. In Lemma 3

in Chapter 4 we will show that if C has sufficiently good distance, then the codeword

symbol at an arbitrary position r may be expressed as a linear combination � of the

values of C(x) at the positions S:

C(x)[r] = �(C(x)[y])y∈S =
∑
y∈S

cyC(x)[y]

Since C is cyclic, this same equation holds for every cyclic shift; i.e. for all i:

C(x)[r + i] = �(C(x)[y + i])y∈S =
∑
y∈S

cyC(x)[y + i]

These equations together with (3.1), which holds for all y ∈ S, imply that (3.1) holds

for r. Since r was arbitrary, we conclude that p is indeed errorless. From here, it is

easy to see that x may be described by C(x)[1 . . .m− 1], since we can use p to obtain

C(x)[m], and again to obtain C(x)[m+1], and so on, until we have C(x) in its entirety.

Finally decoding C(x) recovers x.

3.2.1 q-ary extractors to binary extractors

The q-ary extractors described above can be used to obtain binary extractors fool-

ing linear tests by a simple application of binary codes akin to the construction of

concatenated codes. Once the specific q-ary extractor is obtained as above, we use a

binary linear code C′ with suitable parameters to encode each symbol of the m ele-

ments of the q-ary extractor output. Then, using a separate seed we index a random

position in the binary codeword of each of the m symbols to obtain the final m-bit

26

output given by:

hC,C′,m(x, y ◦ z) = (C′(fC,m(x, y)1)z, C′(fC,m(x, y)2)z, . . . , C′(fC,m(x, y)m)z)

We argue that this fools all linear tests by once again using the reconstruction proof

technique. Namely,

Observation 3.3 If there is a binary linear test p satisfying

p(hC,C′,m(x, y ◦ z)1, . . . , hC,C′,m(x, y ◦ z)m−1) = hC,C′,m(x, y ◦ z)m

with noticeable probability over the choice of z, then by virtue of our choice of C′ p is

in fact an errorless binary linear predictor.

In order to complete the proof we now need to show that there exists an errorless

q-ary linear predictor for the original q-ary extractor. We accomplish this by choosing

an appropriate representation of the q-ary symbol in binary and then showing that

p’s errorless prediction retrieves the original q-ary symbol with noticeable probability

over the choice of y. Then, we proceed to apply the analysis of Observation 3.2 to

assert that the predictor so obtained is in fact an errorless predictor.

The rest of the proof involves implementing a reconstruction procedure that it-

eratively invokes this predictor on m − 1 bits of advice that is given it. Since the

predictor is errorless for a reasonably good fraction of x, the reconstruction procedure

itself succeeds in recovering x with good success probability. In order to complete our

proof by contradiction we argue that given the min-entropy of the distribution from

which x is sampled and the relevant parameters of the extractor construction, such a

reconstruction procedure cannot have existed and hence nor could the predictor.

3.4 Extractors fooling low-degree tests

We extend our treatment to low-degree tests and observe that a subclass of cyclic,

linear codes namely polynomial cyclic, linear codes like Reed-Müller codes and Reed-

27

Solomon codes fools this subclass. Once again we are tempted to argue using the line

of approach described in §3.1 that for a Reed-Müller code C with sufficiently good

distance parameter, if there exists a low-degree test given by:

p(C(x)[y + 1], C(x)[y + 2], . . . , C(x)[y + m− 1]) = C(x)[y + m] (3.2)

claiming to work with a reasonably good success rate then the test is indeed errorless.

This line generally works except for some modifications we need to make in order

to show that the test is errorless for C. We make use of the fact that C(x) is now

itself a low-degree polynomial over a field Fq of size q. This means that there is a

mapping between the index y and values for variables (y1, y2, . . . , yl) ∈ Fl
q for which

rx(y1, y2, . . . , yl) ≡ C(x)[y], where rx is a low-degree polynomial depending on x.

Furthermore, some basic properties of fields give us that for all i there is a low-degree

polynomial rx,i for which rx,i(y1, y2, . . . , yl) ≡ C(x)[y + i].

Now, we observe that the left-hand side of (3.2) is a low-degree polynomial in

y1, y2, . . . , yl, as is the right hand side. Furthermore, if they agree with reasonably

high probability the Fundamental Theorem of Algebra (Definition 14 in Chapter 2)

tells us that they must be equal. This implies that p is an errorless predictor, since

equation (3.2) holds for all y.

The ensuing steps that include building a reconstruction procedure are verisimilar

to the corresponding arguments in favor of extractors fooling linear predictors.

3.5 Two-source extractors that fool linear and low-

degree tests

Following the previous discussions, we can also extend our constructions to multiple-

source extractors that fool restricted classes of prediction tests. When C is a system-

atic Reed-Solomon code, fC,m(x, y) is a (k, ρ) q-ary two-source extractor for low-degree

tests. Our proof structure is nearly preserved from the discussions above. The only

alteration that we need to make is that instead of requiring that C have good relative

28

distance in order for a predictor to be errorless, we shall require that its dimension

be small compared to the support of the second source.

3.6 Unconditional PRGs fooling linear and low-

degree tests

We saw above that depending on our choice of C, the function fC,m(·, ·) fooled varying

classes of prediction tests. Suppose that for a given code C one can identify a fixed

“good” x for which fC,m(x, ·) fools all prediction tests of a certain class. We call

the set {fC,m(x, y)|y ∈ {0, 1}t} a pseudorandom set against all prediction tests of the

class.

One of the surprising side-effects of having transformations from a predictor to

an errorless predictor like the ones we have is that it is easy to find this “good” x

unconditionally. This is because we need only to find a codeword that cannot have

an errorless predictor. Indeed any codeword beginning with 0m1 will suffice. If such

a codeword has an errorless predictor p, then that predictor must output 0 since

p(C(x)[y + 1], C(x)[y + 2], . . . , C(x)[y + m− 1]) = C(x)[y + m]

implies p(0, 0, 0 . . . , 0) = 0 (when y = 0) and p(0, 0, 0 . . . , 0) = 1 (when y = 1), a

contradiction.

This gives a simple construction of pseudorandom sets fooling all linear tests from

any cyclic code with good distance. We can even extend this to the binary case

whence our constructions are better known as ε-biased spaces. These probability

spaces find applications in a variety of other problems including derandomization,

communication complexity and constructions of hash functions. The interested reader

is referred to [NN93] for more information on these topics and other applications of

ε-biased spaces. [NN93] also gave a good construction of k-wise independent ε-biased

probability spaces. In particular, their construction of an ε-biased space had size

O(m/εc) where c ∈ (4, 5) is a positive constant. Subsequently Alon et al [AGHP92]

29

gave a construction of k-wise independent ε-biased spaces with size (m/ε)2.

We are also able to conclude that substrings of low-degree polynomials compose

a pseudorandom set that fools low-degree prediction tests, giving a derandomization

of polynomial identity testing for this restricted class of tests.

30

Chapter 4

Extractors fooling linear and
low-degree tests

In this chapter, we discuss constructions of extractors that fool linear and low-degree

tests. Our construction for binary extractors will involve a two-step process. In the

first step we construct q-ary extractors that fool linear tests over a field Fq and in the

second step we use the q-ary extractor to obtain a binary extractor using an auxiliary

linear code. The rest of the chapter is correspondingly premised for low-degree tests.

4.1 q-ary Extractors that fool Fq-linear tests

Our construction is similar in technique to [SU01]. We consider Definition 1.1 in

Chapter 1 of fC,m: a codeword picked from a cyclic linear code C with distribution

as specified by the min-entropy of the source and output m successive symbols of the

codeword starting from a random position in the codeword. For a code C we denote

C(x) to be the codeword obtained by encoding the message string x and C(x)[i] the

ith symbol in C(x). The following results describe important properties of linear codes

that will be useful to us in the development of our proof.

Lemma 3 Let C be a q-ary [n′, k′, δn′]-linear code over Fq and let S = {t1, . . . , ts} ⊆

[m] be such that |S| ≥ (1−δ)n′+1. Further, let 1 ≤ r ≤ m be some arbitrary position.

31

Then there exists an s-tuple (l1, . . . , ls) ∈ Fs
q such that for every codeword C(x)

C(x)[r] =

s∑
i=1

liC(x)[ti]

Proof. For the case r ∈ S, this is trivial. We only therefore need to prove the

statement for r ∈ S. Let C(X) = [C(XS) | C(XS)] be the row vector denoting the

n′ symbols of C(x) permuted so that the first |S| symbols correspond to the indices

r ∈ S. Note that |S| ≤ δn′ − 1.

We will think of these |S̄| symbols as unknowns that we want to express in terms

of the |S| known symbols. Consider the system of n′ homogeneous linear equations

in |S| unknowns obtained by writing down the parity checks according to the relation

H · C(X)T = H · [C(XS) | C(X)S]T = 0 (4.1)

⇒ H · [C(XS) | 0]T + H · [0 | C(XS)]T = 0 (4.2)

⇒ H · [C(XS) | 0]T = −H · [0 | C(XS)]T (4.3)

The right hand side in (4.3) given by −H · [0 | C(XS)]T is the column vector of

terms that are linear combinations of symbols {C(x)[s] | s ∈ S} whereas C(XS) is

the row vector of the unknown symbols.We will need to make use of the following

property of linear codes.

Proposition 4 The parity-check matrix H of an [n′, k′, δn′] q-ary linear code C sat-

isfies H · x = 0 for x ∈ C and has the property that any δn′ − 1 columns of H are

linearly independent.

Since C is a linear code it satisfies Proposition 4 and hence any δn′− 1 columns of H

are linearly independent. In particular therefore, (4.3) represents a non-homogeneous

system of equations in |S̄| unknowns with a unique non-trivial solution. This means

that each unknown symbol can now be written as a non-trivial linear combination of

the known symbols in S. Furthermore, since the coefficients of the linear combination

32

in terms of the known symbols corresponding to S are independent of the codeword,

the lemma holds for all codewords in C.

Proof. (of Proposition 4) Suppose that there exists some l = δn′ − 1 columns of H

that are linearly dependent:

l∑
j=1

bij · cij = 0 (4.4)

where ci1, . . . , cil are the columns of H and bij �= 0 for j = 1, . . . , l. We can now

construct an x ∈ Fn′
q such that for any position ik = il+1, . . . , in′, x[ik] = 0 and for

ij = i1, . . . , il, x[ij] = bij . x satisfies x ·H = 0 from (4.4) and hence x ∈ C. But x has

distance δn′−1 which is less than the minimum distance of C which is a contradiction.

Using Lemma 3 we are in good shape to prove an important result about linear predic-

tors for the extractors mentioned above. The result roughly states that a “reasonably

correct” linear predictor for our extractor is in fact exactly correct.

Lemma 5 Let C be a q-ary [n′, k′, δn′] cyclic linear code with 1n′ ∈ C. Suppose for

some x, P is a linear ith-element predictor with success probability ρ > (1− δ) for the

distribution induced by fC,m(x, y) = (C(x)[y + 1], C(x)[y + 2], . . . , C(x)[y + m]) over y

chosen uniformly from [n′]. Then, P is an errorless linear predictor.

Proof. Let P predict p ≥ (1− δ)n′ + 1 positions accurately. More precisely, the set

S = {k|P (C(x)[k+1], . . . , C(x)[k+i−1]) = C(x)[k+i]} has at least |S| ≥ (1−δ)n′+1.

Consider the evaluation of P at an arbitrary position r + i. Since C is a linear

code, we may apply Lemma 3 and express C(x)[r + i] as a linear combination in

{C(x)[s+ i] : s ∈ S} say C(x)[r+ i] =
∑

s∈S bsC[s+ i]. Moreover, C is cyclic and hence

for all k, C(x)[r + i + k] =
∑

s∈S bsC(x)[s + i + k]. Evaluating f for xlr+i and using

33

the properties of a linear function:

f(C(x)[r + 1], . . . , C(x)[r + i− 1]) (4.5)

= f(
∑
s∈S

bsC(x)[s + 1], . . . ,
∑
s∈S

bsC(x)[s + i− 1]) (4.6)

=
∑
s∈S

f(bsC(x)[s + 1], . . . , bsC(x)[s + i− 1])

−(|S| − 1)f(0, . . . , 0) (4.7)

=
∑
s∈S

bsf(C(x)[s + 1], . . . , C(x)[s + i− 1])

−
∑
s∈S

(bs − 1)f(0, . . . , 0)− (|S| − 1)f(0, . . . , 0) (4.8)

=
∑
s∈S

bsf(C(x)[s + 1], . . . , C(x)[s + i− 1])−
∑
s∈S

bsf(0, . . . , 0)

+|S|f(0, . . . , 0)− (|S| − 1)f(0, . . . , 0) (4.9)

=
∑
s∈S

bsC(x)[s + i] + (1−
∑
s∈S

bs)f(0, . . . , 0) (4.10)

= C(x)[r + i] + 0 (4.11)

= C(x)[r + i] (4.12)

where (4.8) follows from the fact that f is a linear function. (4.11) follows from

the fact that 1n′ ∈ C and hence also satisfies the linear combination C(x)[r + i] =∑
s∈S bsC(x)[s + i] from the final observation in Lemma 3.

We now have a direct extractor construction following from Lemma 5. We describe

our construction formally in the theorem below but first we will state and prove a

very important lemma that will be used both in our theorem on extractors for linear

predictors as well as low-degree predictors.

Lemma 6 Let Pd be a next-element degree-d predictor with success probability ρ for

the random variable fC,m(X, Y) induced by sampling X according to D and Y uni-

formly from {0, 1}t. Suppose there exists a function R : {0, 1}m → Fn′
q with oracle

34

access to Pd such that

Pr
D

[∃a ∈ {0, 1}m, R(a) = C(X)] ≥ ρ/2

Then the function fC,m(x, y) is a (k, ρ) q-ary extractor with seed length t = log n′ and

satisfying k > m + log(2/ρ) for all degree-d predictors.

Proof. There are at most 2m inputs a to R and hence at most 2m possible outputs

C(x). Since X is sampled according to a distribution D with min-entropy k, the

random variable C(X) assumes each such output C(x) with probability at most 2−k.

Applying the union bound,

Pr
D

[∃a ∈ {0, 1}m, R(a) = C(X)] ≤ 2i−12−k ≤ 2m−k (4.13)

But from the lemma statement,

Pr
D

[∃a ∈ {0, 1}m, R(a) = C(X)] ≥ ρ/2

Hence for k such that 2m−k < ρ/2 or equivalently for k > m + log(2/ρ), we arrive at

a contradiction to our original assumption that fC,m is not a (k, ρ) q-ary extractor for

degree-d tests. This completes the proof of the lemma.

Theorem 31 Let k, n, ρ be fixed. Let C be an [n′, k′, δ′] q-ary systematic cyclic linear

code C with 1n′ ∈ C such that k′ ≥ n and δ′ > 1− ρ/2. Then the function fC,m(x, y)

is a (k, ρ) q-ary extractor with seed length t = log n′ for the class of linear predictors

provided k > m + log
(

2
ρ

)
.

Proof. Suppose fC,m is not an extractor with the parameters as claimed. Let D be a

distribution associated with the pair of independent random variables (X, Y) where

X is sampled according to a distribution D′ of min-entropy k on {0, 1}n and Y is

sampled according to the uniform random distribution on {0, 1}t. Then, there exists

35

for some random variable X and some i, a linear ith-element predictor P satisfying

Pr
D

[P (fC,m(X, Y)1,...,i−1) = fC,m(X, Y)i] ≥ ρ (4.14)

We have the following claim:

Claim 32

Pr
X←D′

[Pr
Ut

[P (fC,m(X, Y)1,...,i−1) = fC,m(X, Y)i] ≥ ρ/2] ≥ ρ/2 (4.15)

Proof. We use an averaging argument to prove the claim. We will call all values x

that X assumes for which:

Pr
Ut

[P (fC,m(x, Y)1,...,i−1) = fC,m(x, Y)i] ≥ ρ/2

“good” and those x for which:

Pr
Ut

[P (fC,m(x, Y)1,...,i−1) = fC,m(x, Y)i] < ρ/2

“bad”. Then, by conditional probabilities and (4.14)

Pr
D

[P (fC,m(X, Y)1,...,i−1) = fC,m(X, Y)i] ≥ ρ

= Pr
Ut

[P (fC,m(x, Y)1,...,i−1) = fC,m(x, Y)i|x is “bad”] · Pr
D′

[X = x]

+ Pr
Ut

[P (fC,m(x, Y)1,...,i−1) = fC,m(x, Y)i|x is “good”] · Pr
D′

[X = x] ≥ ρ (4.16)

But

Pr
Ut

[P (fC,m(x, Y)1,...,i−1) = fC,m(x, Y)i|x is “bad”] · Pr
D′

[X = x] < ρ/2 · 1 = ρ/2 (4.17)

36

Combining (4.16) and (4.17), we get

Pr
Ut

[P (fC,m(x, Y)1,...,i−1) = fC,m(x, Y)i|x is “good”] · Pr
D′

[X = x] ≥ ρ/2

⇒ Pr
D′

[X = x] ≥ ρ/2 (4.18)

where in (4.18) x is “good”. This completes the proof.

Therefore for a ρ/2 fraction of X sampled according to D′ we have a linear ith-element

predictor P with success probability ρ/2 over a uniformly random distribution of Y .

Also from the statement of the theorem ρ/2 ≥ 1 − δ′ and hence this satisfies the

condition in Lemma 5 to give us that P is a linear ith-element predictor with success

probability 1.

We now describe a reconstruction procedure based on P that will use m bits of

advice to obtain the entire codeword C(x) with high probability. We will first fix a

good x, namely a choice of x for which Lemma 5 holds and P is an errorless predictor.

To jumpstart the predictor, we feed it with the first i−1 consecutive symbols of C(x)

to give us P (C(x)[1], . . . , C(x)[i− 1]) = C(x)[i]. We iterate over the next set of i − 1

symbols: P (C(x)[2], . . . , C(x)[i]) = C(x)[i+1],P (C(x)[3], . . . , C(x)[i+1]) = C(x)[i+2]

and so on and eventually at the end of all the prediction steps we will have obtained

C(x) and hence x itself. To express this formally, we augment P and define a new

function R : Fi−1
q → Fn′

q such that R(a) first invokes P on the i − 1 elements given

by the advice string a and follows it up with successive iterations to obtain C(x) for

“good” x. In other words, if a encoded E(x, 1) then

R(a) = (C(x)[1, . . . , i− 1], P (C(x)[1, . . . , i− 1]),

P (C(x)[2, . . . , i− 1], P (C(x)[1, . . . , i− 1])), . . .)

From (4.15), we get:

Pr
D

[∃a ∈ F
i−1
q , R(a) = C(X)] ≥ ρ/2 (4.19)

37

In order to be able to apply Lemma 6 for linear or degree-1 predictors we need to

modify R so that it takes as input m-bit binary strings. Here we are helped by the

fact that C is a systematic cyclic linear code and hence, C(x)[1, . . . , n] = x ∈ {0, 1}n.

Since we are free to choose our advice bits from any set of symbols of C(x) because

P is errorless and hence works correctly for all such positions we choose the first

i− 1 ≤ n symbols of C(x) each of which belongs to {0, 1}. Hence R is automatically

the required reconstruction function that we can use to apply Lemma 6 and complete

the proof.

4.1.1 From q-ary extractors to binary extractors

Our reduction from the q-ary extractors to the binary case follows the main idea of

combining the q-ary code C with a good binary code C′ akin to [TSZS01, SU01]. While

we require that C be cyclic and linear, we only need C′ to be a systematic binary linear

code. We assume that Fq is an extension field of F2 = {0, 1}. Additionally Fq can

also be thought of as a log q-dimensional vector space F
log q
2 with co-ordinates in F2.

We assume an arbitrary basis �e1, . . . , �elog q ∈ F
log q
2 for Fq and represent every z ∈ Fq

as z = (z1, . . . , zlog q) =
∑log q

i=1 zi�ei, zi ∈ {0, 1}.

Our main goal would be to show that the existence of a linear predictor for the

binary extractor would imply the existence of a linear predictor for the q-ary extractor.

But first, we will introduce and prove a proposition that will be required in proving

our subsequent theorem on binary extractors for linear prediction tests.

Proposition 7 Let P : Fm
q → {0, 1} be a q-ary linear distinguisher for a distribution

D over Fm
q with advantage ε. Then, there exists a q-ary linear mth-element predictor

for D, P ′ : Fm−1
q → Fq such that

Pr
D

[P ′(x1, . . . , xm−1) = xm] ≥ 1

q
+

ε

q − 1

38

and for the case 1
q
≤ ε ≤ 1− 1

q
,

Pr
D

[P ′(x1, . . . , xm−1) = xm] ≥ 1

q
+ ε

Proof. (Of Proposition 7) Since P is a linear distinguisher, we may assume without

loss of generality that it is of the form P (x1, . . . , xm) = −xm +
∑m−1

i=1 Cixi + C0. By

definition,

|Pr
D

[P (x1, . . . , xm) = 0]− Pr
Um

[P (x1, . . . , xm) = 0]| ≥ ε

where Um is the uniform probability distribution on Fm
q . Note that PrUm [P (x1, . . . , xm) =

0] = 1/q. Two cases arise, namely that PrD[P (x1, . . . , xm) = 0] ≥ 1/q + ε or

PrD[P (x1, . . . , xm) = 0] ≤ 1/q−ε. In the first case P ′(x1, . . . , xm−1) = C0+
∑m−1

i=1 Cixi

is an mth-element predictor with success probability 1
q
+ ε. In the second case from a

simple pigeonhole argument, there exists some v ∈ Fq; v �= 0 for which

Pr
D

[P (x1, . . . , xm) = v] ≥ 1

q − 1
· (1− 1

q
+ ε) =

1

q
+

ε

q − 1

Choosing P ′(x1, . . . , xm−1) = C0 +
∑m−1

i=1 Cixi where C ′0 = C0 − v gets us an mth-

element predictor with success probability 1
q

+ ε
q−1

. For the special case when 1
q
≤

ε ≤ 1− 1
q
, we note that PrUm [P (x1, . . . , xm) = 0] = 1

q
≤ ε and hence the distinguisher

property implies that only the first case is possible.

Theorem 33 Let k, n, ε be fixed. Let C be an [n′, k′, δ′] q-ary systematic cyclic linear

code with 1n′ ∈ C. Let fC,m be a (k, ρ) q-ary extractor based on C with t = log n′, k′ ≥

n, δ′ ≥ 1− ρ
2

and k > m+log(2/ρ) guaranteed by Theorem 31 for linear predictors. Let

C′ be a systematic [n′′, log q, δ′′n′′] binary linear code with 1n′′ ∈ C′ and δ1 > 1/2−ε/2.

The function hC,C′,m : {0, 1}n × {0, 1}t+t1 → {0, 1}m given by

hC,C′,m(x, y ◦ z) = (C′(fC,m(x, y)1)z, C′(fC,m(x, y)2)z, . . . , C′(fC,m(x, y)m)z)

is a (k, ε) binary extractor with t1 = log n1 for the class of linear predictors provided

ε > 2ρ. Here fC,m(x, y)i ∈ F
log q
2 is written in terms of the basis (�e1, . . . , �elog q).

39

Proof. The proof is similar to that of Theorem 31. Let B′ be a binary linear distin-

guisher with advantage ε. Let X be a random variable in {0, 1}m sampled according

to some distribution D with min-entropy k. We apply Proposition 7 to the case q = 2

and obtain a binary linear predictor B from B′ satisfying

Pr
X←D,Y ◦Z←Ut+t′

[B(h(X, Y ◦ Z)1, . . . , h(X, Y ◦ Z)i−1) = h(X, Y ◦ Z)i] ≥ 1/2 + ε

where Ut+t′ is the uniform probability distribution on {0, 1}t+t′. Again, by virtue of

an averaging argument we get

Pr
X←D,Y←Ut

[Pr
Z←Ut′

[B(h(X, Y ◦ Z)1, . . . , h(X, Y ◦ Z)i−1) = h(X, Y ◦ Z)i]

≥ 1/2 + ε/2]

≥ ε/2

This means that for at least an ε/2 fraction of (x, y) that (X, Y) assumes for which

Pr
Z←Ut′

[B(h(x, y ◦ Z)1, h(x, y ◦ Z)2, . . . , h(x, y ◦ Z)i−1) = h(x, y ◦ Z)i] ≥ 1/2 + ε/2

B is a binary linear predictor with success probability 1/2 + ε/2 over Z. We will call

such an (x, y) good.

Lemma 8 For a good choice of (x, y), let B be a binary linear predictor with success

probability at least 1/2 + ε/2 for the function

h(x, y ◦ z) = (C′(fC,m(x, y)1)z, C′(fC,m(x, y)2)z, . . . , C′(fC,m(x, y)m)z)

Then B is an errorless binary linear predictor for h(x, y ◦ z) over the distribution on

{0, 1}m induced by sampling z uniformly from Ut1.

40

Lemma 9 Let P : Fi−1
q → Fq be a function given by:

P (fC,m(x, y)1,...,i−1) = (B(C′(fC,m(x, y)1)1, . . . , C′(fC,m(x, y)i−1)1),

B(C′(fC,m(x, y)1)2, . . . , C′(fC,m(x, y)i−1)2),

. . .

B(C′(fC,m(x, y)1)log q, . . . , C′(fC,m(x, y)i−1)log q))

Then P is a q-ary linear predictor for fC,m with success probability ε/2 over the dis-

tribution on Fm
q with x← X, y ← Ut.

Lemma 9 tells us that there exists a q-ary linear predictor P with success probability

at least ε/2 > 1/q + ε over x ← X, y ← Ut for fC,m. But fC,m is a (k, 1
q

+ ε) q-ary

extractor for linear predictors and hence we apply Theorem 31 to get a contradiction.

This completes the proof of Theorem 33.

Proof. (Of Lemma 9) From Lemma 8, we know that B is an errorless binary

linear predictor. Also C′ is a systematic binary linear code and hence the message

m corresponds to the first log q bits of the codeword C′(m). Since to start with,

the message was fC,m(x, y)i for some i, and B correctly predicts the entire codeword

C′(fC,m(x, y))i, P predicts fC,m(x, y)i correctly for all “good” choices of (x, y). But

the fraction of such good choices is at least ε/2. Therefore, P is a q-ary predictor

with success probability at least ε/2. Moreover, P is linear since each of fC,m(x, y)i’s

co-ordinates in {0, 1} is expressed as a linear function in terms of B. Formally, if

B(a1, . . . , ai−1) =
∑i−1

k=1 bkak then

P (fC,m(x, y)1,...,i−1)j =
∑

k

bkC′(fC,m(x, y)k)[j] + C, j = 1, . . . , log q

and hence P (fC,m(x, y)1,...,i−1) =
∑

k bkfC,m(x, y)k + C ·�1.

Proof. (Of Lemma 8) We examine B’s working at some good pair given by (x, y)

and some arbitrary z. Note that since C′ is also a linear code and since δ1 > 1/2−ε/2

41

or equivalently 1/2 + ε/2 > 1 − δ1 Lemma 3 applies. Let S be the set of all s for

which B predicts the ith-bit correctly. From the above discussion, |S| > (1 − δ1)n1.

Then B(C′(fC,m(x, y)1)[z], . . . , C′(fC,m(x, y)i−1)[z]) can be written as

B(
∑
s∈S

csC′(fC,m(x, y)1)[s], . . . ,
∑
s∈S

csC′(fC,m(x, y)i−1)[s])

=
∑
s∈S

B(csC′(fC,m(x, y)1)[s], . . . , csC′(fC,m(x, y)i−1)[s])− (|S| − 1)B(0, . . . , 0) (4.20)

=
∑
s∈S

csB(C′(fC,m(x, y)1)[s], . . . , C′(fC,m(x, y)i−1)[s])

−
∑
s∈S

(cs − 1)B(0, . . . , 0)− (|S| − 1)B(0, . . . , 0) (4.21)

=
∑
s∈S

csC′(fC,m(x, y)i)[s] + (1−
∑
s∈S

cs)B(0, . . . , 0) (4.22)

= C′(fC,m(x, y)i)[z] + 0 (4.23)

= C′(fC,m(x, y)i)[z] (4.24)

(4.20,4.21) follow from the linearity of B and (4.22) follows from the fact that for

s ∈ S B predicts correctly. (4.23) follows from the fact that 1n1 ∈ C′. We have

shown that for a fixed “good” choice of (x, y) B is an errorless linear predictor over

the distribution of z thus completing the proof of the claim.

4.1.2 Specific constructions of extractors for linear tests

Using a Reed-Müller codes in Theorem 31 and a Hadamard code in Theorem 33 we

obtain the following corollary:

Corollary 34 Fix n, k, ρ > 1/kO(1). Let C be a Reed-Müller code with parameters

l = log n/ log k, h = k. Let Fq be a field of order q = 2k/ρ. Let C′ be a [q, log q, 1/2]

binary Hadamard code. Then h : {0, 1}n × {0, 1}t → {0, 1}m as defined in Theorem

33 is a (k, ε) binary extractor for the class of linear prediction tests with seedlength

t = O(log n), m ≥ k − O(log k) and ε > 2ρ.

42

Proof. With parameters h = k, l = log n/ log k for a Reed-Müller code, applying

Theorem 31 gives us a (k, ρ) q-ary extractor for linear prediction tests where m ≥

k − O(log k) and t = O(log n). Applying Theorem 33 to this gives us a binary (k, ε)

extractor for linear prediction tests where ε > 2ρ.

We can improve the parameters further by using the concatenated codes constructed

in [GS00] in place of Hadamard codes and a Reed-Solomon code in place of the

Reed-Müller code.

Corollary 35 Fix n, k, ρ > 1/kO(1). Let C be a Reed-Müller code with parameters l =

1, h = n/ log q where Fq is a field of order q = 2n/ρ. Let C′ be a [(log q/ρ)O(1), log q, 1/2]

binary linear code. Then h : {0, 1}n × {0, 1}t → {0, 1}m as defined in Theorem 33

is a (k, ε) binary extractor for the class of linear prediction tests with seedlength

t = log n + O(log log n) + O(log(1/ε)) + O(1), m ≥ k − O(log n) and ε > 2ρ.

Proof. Using the Reed-Müller code with the parameters mentioned we obtain a q-ary

(k, ρ) extractor for linear prediction tests with seedlength t1 = log n + log(2/ρ) and

m > k − O(log n) from Theorem 31. To this extractor, we apply the construction

from Theorem 33 to obtain a binary (k, ε) extractor for linear prediction tests with

additional seedlength t2 = O(log log n)+O(log(1/ε)). Hence, the combined seedlength

is t = t1 + t2 = log n + O(log log n) + O(log(1/ε)).

4.2 q-ary Extractors fooling low-degree tests

In this section, we discuss constructions for extractors that fool low-degree tests.

Before we set to explain in detail the proofs and constructions, it will be worthwhile to

illustrate similarities and differences between these constructions and those seen in the

previous section. In the latter case, constructions were based on the family of cyclic

linear codes whereas in the present case we will describe constructions that are based

on the more restricted subfamily of Reed-Müller codes. Additionally our constructions

are restricted to larger alphabets (q > 2). However, the proof structure is generally

43

intact in that we will again show that a low-degree predictor with “reasonably good”

success rate is actually errorless.

4.2.1 Errorless predictors for low-degree tests

We first state and prove a lemma for Reed-Müller codes analogous to that of Lemma

5.

Lemma 10 Let C be a q-ary [n′, k′, δn′] Reed-Müller code with parameters l, h. Sup-

pose for some x, p is a degree-d i-th element predictor for fC,m(x, y) with success

probability ρ > dh/q over the choice of y then p is an errorless predictor.

Proof. From our definition of a Reed-Müller code, we observe that C(x) is a polyno-

mial in l variables of total degree h, rx : Fl
q → Fq and its symbols correspond to the

evaluation of rx on all y = (y1, . . . , yl) ∈ Fl
q. Therefore, C(x)[y] = rx(y1, . . . , yl). Using

the fact that there exists an isomorphism Fl
q ↔ Fql and the existence of a cyclical

ordering of elements in Fql, we may write for each i y + i = (y′1, . . . , y
′
l) ∈ Fl

q in terms

of a linear transformation function ti : Fl → Fl where ti(y1, . . . , yl) = (y′1, . . . , y
′
l) so

that C(x)[y+ i] = rx(y
′
1, . . . , y

′
l) = rx(ti(y1, . . . , yl)) = rx,i(y1, . . . , yl) for some l-variate

degree-h polynomial rx,i.

From the statement of the lemma, we know that p satisfies

Pr
Y ∈Fl

q

[p(C(x)[Y + 1], . . . , C(x)[Y + i− 1]) = C(x)[Y + i]] = ρ > dh/q (4.25)

Consider the i-variate polynomial Q(z1, . . . , zi) = zi − p(z1, . . . , zi−1). Q also is

of degree d since it has degree 1 in zi and p has degree d > 0. The polynomial

Q′(y1, . . . , yl) = Q(rx,1, . . . , rx,i) has total degree at most dh since each of rx,1, . . . , rx,i

is a degree-h polynomial. Also, by construction Q′ vanishes in exactly the points

y ∈ Fl
q where p predicts accurately and so Q′ vanishes on greater than dh/q fraction

of points in Fl
q. But by the Schwartz-Zippel lemma [Sch80, Zip79] we know that a

non-zero polynomial of total degree dh can vanish in at most a dh/q fraction of points

in F
l
q and hence Q′ must be identically zero and vanish on all points in F

l
q. Since Q′

44

vanishes in exactly those points where p predicts correctly, p must therefore be an

errorless predictor.

4.2.2 Main result

Theorem 36 Let C be an [n̄, k̄, δn̄] q-ary systematic Reed-Müller code with parame-

ters �, h. For any k and ρ > 0, fC,m is a (k, ρ) q-ary extractor for the family of all

degree d prediction tests, provided that ρ > 2dh/q, and k > m + log(2/ρ).

Proof. By way of contradiction assume that fC,m is not a q-ary (k, ρ) extractor for

all degree-d prediction tests. Then, there exists some random variable X with distri-

bution D and min-entropy at least k such that there exists an ith-element predictor

P of degree at most d with success probability at least ρ over D and a random choice

of y ∈ Fl
q. In other words,

Pr
X←D,Y ∈Fl

q

[P (fC,m(X, Y)1,...,i−1) = fC,m(X, Y)i] ≥ ρ

By an averaging argument identical to that in Claim 32, we have

Pr
X←D

[
Pr

Y ∈Fl
q

[P (fC,m(X, Y)1,...,i−1) = fC,m(X, Y)i] ≥ ρ/2

]
≥ ρ/2 (4.26)

As before, for at least a ρ/2 fraction of x P predicts the ith-element of fC,m(x, Y) with

probability at least ρ/2 > dh/q over the values Y assumes. We will call all such values

x that X assumes as good. Note that P : Fi−1
q → Fq is an (i− 1)-variate polynomial

of total degree at most d and hence from Lemma 10 P is an errorless predictor for

the random variable Y :

Pr
Y ∈Fl

q

[P (fC,m(x, Y)1,...,i−1) = fC,m(x, Y)i] = 1 (4.27)

The reconstruction procedure is now identical to that described earlier in the

proof of Theorem 31. We jumpstart the predictor P by feeding as advice the first

45

m consecutive symbols of C(x). We reuse subsequently predicted values as input to

repeated invocations of P . Since for good x, P is an errorless predictor we will thus be

able to retrieve the entire codeword. To express this formally, we define R : Fi−1
q → Fq

q

given by

R(a) = (C(x)[1, . . . , m− 1], P (C(x)[1, . . . , m− 1]),

P (C(x)[2, . . . , m− 1], P (C(x)[1, . . . , m− 1])), . . .)

Using (4.26), we can analyze R’s success rate:

Pr
D

[∃a ∈ F
i−1
q , R(a) = C(X)] ≥ ρ/2 (4.28)

As before we started off with a systematic cyclic linear code, and so C(x)[1, . . . , n] =

x ∈ {0, 1}n. Since we are free to choose our advice bits from any set of symbols of

C(x) because P is errorless for our choice of x and hence works correctly for all such

positions we choose the first i−1 ≤ n symbols of C(x) each of which belongs to {0, 1}.

Hence R is a function that has oracle access to a degree-d predictor P and takes as

input an m-bit binary string a. Furthermore, it satisfies the conditions of Lemma 6

and hence we may apply Lemma 6 to complete the proof.

4.2.3 Specific constructions of extractors for low-degree tests

We look at specific constructions of extractors fooling low-degree prediction tests.

To this end we make use of Reed-Solomon codes. Recall that these are Reed-Müller

codes with l = 1.

Corollary 37 Fix n, k, d and ρ > 1/kO(1). Let C be a q-ary systematic Reed-Solomon

code with parameters q = 2dn/ρ and h = n. Then fC,m is a (k, ρ) q-ary extractor

for the family of all degree d prediction tests, with seed length log n + log(2d/ρ) and

output length m = k − log(2/ρ).

46

Proof. This follows from a straightforward application of Theorem 36 by substituting

h = n. The seedlength is given by t = log n + log(2d/ρ).

4.3 Two-source extractors for linear and low-degree

tests

So far we have seen constructions for seeded extractors that combined a weak random

source with a short random seed to obtain an output that fools restricted classes of

tests. We can further relax the requirement of the seed being random and talk of

extractors from two weak random sources.

Definition 38 A (k1, k2, ρ) q-ary extractor for a family of predictors P is a

function E : {0, 1}n1 × {0, 1}n2 → F
m
q such that for random variables X1, X2 with

H∞(X1) ≥ k1, H∞(X2) ≥ k2, there is no ith-element predictor f ∈ P for E(X1, X2)

with success probability ρ for any i = 1, . . .m.

As before, the usual (k1, k2, ρ) q-ary extractors can be defined as (k1, k2, ρ) q-ary

extractors for the family of all predictors. Multiple source extractors have attracted

a lot of interest in the last few years and led to a number of recent results [BKS+04,

BIW04, Raz05]. In this section, we will see that our previous constructions for seeded

extractors for restricted classes of tests can be easily extended to the case of two-source

extractors.

In proving our results for seeded extractors in the previous section we made use

of Lemma 6. But in proving the lemma, we made no use of the fact that Y was sam-

pled uniformly from {0, 1}t and hence we have the following corollary which follows

instantly from that lemma for an [n′, k′, d′] q-ary cyclic, linear code C.

Corollary 39 Let Pd be a next-element degree-d predictor with success probability ρ

for the random variable fC,m(X1, X2) induced by sampling X1 according to D1 and X2

according to D2. Suppose there exists a function R : {0, 1}m → Fn′
q with oracle access

47

to Pd such that

Pr
D1

[∃a ∈ {0, 1}m, R(a) = C(X1)] ≥ ρ/2

Then the function fC,m(x, y) is a (k1, k2, ρ) q-ary extractor with seed length t = log n′

and satisfying k1 > m + log(2/ρ) for all degree-d predictors.

4.3.1 Two-source extractors for linear tests

We first show that fC,m as described previously is a two-source extractor for linear

prediction tests provided C satisfies some constraints.

Theorem 40 Let k1, k2, n1, n2, ρ be fixed. Let C be a systematic Reed-Solomon code

with parameter h < (ρ/2)·2k2 and q = 2n2. Then the function fC,m(x, y) is a (k1, k2, ρ)

q-ary extractor for the class of linear predictors with k1 > m + log(2/ρ).

Proof. Assume for the sake of contradiction that with the given parameters fC,m

is not a (k1, k2, ρ) q-ary extractor. Then there exists for some choice of the pair

of independent random variables (X1, X2) sampled according to a distribution D =

(D1, D2) over ({0, 1}n1, {0, 1}n2) and some i, 1 ≤ i ≤ m a linear ith-element predictor

P satisfying

Pr
D

[P (fC,m(X1, X2)1,...,i−1) = fC,m(X1, X2)i] ≥ ρ

Using the averaging argument as before, we see that

Pr
X1←D1

[
Pr

X2←D2

[P (fC,m(X1, X2)1,...,i−1) = fC,m(X1, X2)i] ≥ ρ/2

]
≥ ρ/2 (4.29)

We will call all x that X1 assumes for which the inner probability is greater than

ρ/2 good. From (4.29), we know that this fraction is greater than ρ/2. Since D2 has

min-entropy k2, its support is at least 2k2. Therefore, for good x ∈ {0, 1}n1 there

are at least (ρ/2) · 2k2 choices of y that X2 assumes out of a total of 2n2 for which

P (fC,m(x, y)1,...,i−1) = fC,m(x, y)i. Hence,

Pr
Y←Un2

[P (fC,m(x, Y)1,...,i−1) = fC,m(x, Y)i] ≥ (ρ/2) · 2k2−n2

48

Furthermore, from the theorem statement C has parameter h < (ρ/2) · 2k2 but for a

Reed-Solomon code h = (1− δ)q where δ · q = δ · 2n2 is the minimum distance of the

code. Therefore,

Pr
Y←Un2

[P (fC,m(x, Y)1,...,i−1) = fC,m(x, Y)i] ≥ (ρ/2) · 2k2−n2 > (1− δ) (4.30)

Lemma 5 applies and therefore P is errorless.

Proceeding as usual, we define a reconstruction procedure R : Fi−1
q → F2n2

q as

R(a) = (C(x)[1, . . . , m− 1], P (C(x)[1, . . . , m− 1]),

P (C(x)[2, . . . , m− 1], P (C(x)[1, . . . , m− 1])), . . .)

Combining this with our previous observations about P being errorless for good x,

we get

Pr
x∈X1

[∃a ∈ F
i−1
q , R(a) = C(x)] ≥ ρ/2 (4.31)

C is a systematic Reed-Solomon code and so our previous arguments in favor of picking

advice bits from the first n symbols of the codeword still hold and hence R satisfies

the conditions set forth in Corollary 39 and this completes the proof.

4.3.2 Two-source extractors for low-degree tests

Theorem 40 can be easily extended to obtain two-source extractors that fool low-

degree tests.

Theorem 41 Let k1, k2, n1, n2, d, ρ be fixed. Let C be a systematic Reed-Solomon

code with parameter h < (ρ/2d) · 2k2 and q = 2n2. Then the function fC,m(x, y)

is a (k1, k2, ρ) q-ary extractor for the class of degree-d prediction tests with k1 >

m + log(2/ρ).

49

Proof. (Sketch) The proof structure is almost exactly identical to that of Theorem

40 and so we shall only provide a sketch to the proof. In fact, the only thing that

changes is that instead of appealing to Lemma 5, we shall use Lemma 10 instead to

show that a degree-d prediction test P with success probability ρ is errorless if

(ρ/2) · 2k2 > (dh/q) · q = dh

Since this is true from the theorem statement, P is errorless. The rest of the proof

follows exactly as before: we construct a reconstruction procedure R that uses (i−1)

bits of advice and reconstructs a “good” x with probability ρ/2. So, for ρ/2 >

2m−k1 ⇒ k1 > m + log(2/ρ) we have a contradiction to our assumption of existence

of a degree-d prediction test.

50

Chapter 5

Pseudorandom sets for linear and
low-degree tests

In the previous chapter we looked at extractors for two classes of prediction tests. As

we have seen these extractors use a weak random source in addition to an auxiliary

short random seed as inputs. In this chapter we will pose and answer the following

question: is it possible to fix the input coming from the weak random source to

obtain a pseudorandom object determined only by a random seed that describes a

distribution that fools the same classes of prediction tests? In particular, we will

focus on unconditional pseudorandom sets for these classes of prediction tests. We

recall the definition of a pseudorandom set from Chapter 2.

Definition 42 A q-ary ρ-pseudorandom set for a family of predictors P is

a multiset S ⊆ F
m
q such that there is no i-th element predictor f ∈ P with success

probability ρ for any i for the random variable induced by picking an element uniformly

at random from S.

5.1 Pseudorandom sets for linear tests

Applying Definition 42 to the case of linear tests, we can talk of a q-ary ρ-pseudorandom

set for linear prediction tests.

51

5.1.1 q-ary pseudorandom sets

Our first result is for constructing unconditional pseudorandom sets that fool linear

prediction tests. We state the theorem below and proceed to prove it. The idea

captured in the theorem is to choose an input x in such a way that is foolproof

against any errorless linear predictor.

Theorem 43 Let C be a systematic [n′, k′, δn′] q-ary cyclic linear code with 1n′ ∈ C.

Let x be such that C(x)[1 . . . k′] = 0k′−11. Then S = {fC,m(x, y) : 1 ≤ y ≤ n′} is a

q-ary ρ-pseudorandom set for the class of all linear prediction tests for ρ > 1− δ and

m = k′ − 1.

Proof. Since C is systematic and of dimension k′, its first k′ symbols are the message

symbols and correctly describe a codeword in C. Let us assume that there exists an

i-th element linear predictor P with success probability ρ satisfying

Pr
y

[P (fC,k′−1(x, y)1,...,i−1) = fC,k′−1(x, y)i] ≥ ρ

Since ρ > 1 − δ, by Lemma 5 P is an errorless predictor and for every choice of y,

upon input fC,k′−1(x, y)1,...,i−1 P predicts fC,k′−1(x, y)i correctly. In particular

P (C(x)[k′ − i], . . . , C(x)[k′ − 2]) = C(x)[k′ − 1] (5.1)

P (C(x)[k′ − i + 1], . . . , C(x)[k′ − 1]) = C(x)[k′] (5.2)

But from our choice of C(x), the inputs to P in (5.1) and (5.2) are

(C(x)[k′ − i], . . . , C(x)[k′ − 2]) = (C(x)[k′ − i + 1], . . . , C(x)[k′ − 1]) = (0, . . . , 0)

whereas C(x)[k′−1] = 0 and C(x)[k′] = 1 which is a contradiction to our assumption.

By way of example, the following corollary gives a construction for such a pseudoran-

dom set using Reed-Solomon codes.

52

Corollary 44 Fix m, ρ. Let C be a systematic Reed-Solomon code with parameters

h, q satisfying q > h/ρ and h = m − 1. Let x be such that C(x)[1 . . . m] = 0m−11.

Then the set S given by

S = {fC,m(x, y) : 1 ≤ y ≤ q}

is a q-ary ρ-pseudorandom set in Fm
q of size q for the class of all linear prediction

tests.

Proof. It suffices to check if C satisfies ρ > 1− δ. Since C is a Reed-Solomon code,

its relative distance is given by δ = (q −m + 1)/q = 1− (m− 1)/q > 1− ρ from our

choice of q > (m− 1)/ρ.

We can also define pseudorandom sets that fool restricted classes of distinguishing

tests.

Definition 45 A vector v ∈ Fm
q is a (homogeneous) linear distinguishing test

with success probability ρ′ for a set S ⊆ F
m
q if v satisfies

∣∣∣∣Pr
s∈S

[s · v = 0]− Pr
x

[x · v = 0]

∣∣∣∣ ≥ ρ′

Correspondingly a q-ary ρ′-pseudorandom set S that fools the class of linear distin-

guishing tests satisfies

∣∣∣∣Pr
s∈S

[s · v = 0]− Pr
x

[x · v = 0]

∣∣∣∣ < ρ′

for all v ∈ Fm
q .

Corollary 46 Let C and S be as defined above in Theorem 43. Then S is a q-ary ρ′-

pseudorandom set for the class of linear distinguishing tests where ρ′ = (ρ−1/q)(q−1).

Proof. From Proposition 7 in Chapter 4 we know that a linear distinguisher with

advantage ε implies a linear predictor with success probability 1/q + ε/(q − 1). Con-

versely therefore, if there exists no linear prediction test with success probability ρ for

53

fC,m then there exists no linear distinguishing test with advantage (ρ − 1/q)(q − 1).

5.1.2 Obtaining ε-biased spaces from q-ary pseudorandom

sets

From q-ary pseudorandom sets for linear tests, we shift our attention to their binary

counterparts.

Definition 47 A multiset S ⊆ {0, 1}m is an ε-biased space if for s chosen uni-

formly at random from S and every non-zero v ∈ {0, 1}m, the random variable

X = s · v satisfies

|Pr[X = 0]− Pr[X = 1]| < ε

Our construction of ε-biased spaces is structured exactly along the same lines as

our construction of binary extractors for linear prediction tests from q-ary extractors.

Theorem 48 Let C1 be an [n′1, k
′
1, δ1n

′
1] q-ary systematic cyclic linear code and C2

be an [n′2, log q, δ2n
′
2] binary systematic linear code. Set m = k′1 − 1 and define S =

{fC1,m(x, y) : 1 ≤ y ≤ n′1}. Define

T = {(C2(s1)[z], C2(s2)[z], . . . , C2(sm)[z]) : (s1, . . . , sm) ∈ S, 1 ≤ z ≤ n′2}

Then T is a 4ε-biased space for δ1 > 1− ε, δ2 > 1/2− ε.

Proof. As usual, we proceed by assuming the contrary. Then by definition, there

exists a v ∈ {0, 1}m such that

∣∣∣∣ Pr
x∈T

[x · v = 0]− Pr
x∈T

[x · v = 1]

∣∣∣∣ ≥ 4ε (5.3)

⇒ Pr
x∈T

[x · v = 0]− Pr
x∈T

[x · v = 1] ≥ 4ε or Pr
x∈T

[x · v = 0]− Pr
x∈T

[x · v = 1] ≤ −4ε(5.4)

Since the two events are mutually exclusive and exhaustive,

Pr
x∈T

[x · v = 0] + Pr
x∈T

[x · v = 1] = 1 (5.5)

54

Combining (5.4) and (5.5), we get

Pr
x∈T

[x · v = 0] ≥ 1/2 + 2ε or Pr
x∈T

[x · v = 0] ≤ 1/2− 2ε (5.6)

⇒
∣∣∣∣ Pr
x∈T

[x · v = 0]− Pr
x

[x · v = 0]

∣∣∣∣ ≥ 2ε (5.7)

(5.7) follows from the fact that Prx[x · v = 0] = 1/2 for any non-zero v. This means

that v is a linear distinguisher with success rate 2ε and by Proposition 7 in Chapter 4

gives an i-th bit binary linear predictor B for some i with success probability 1/2+2ε

for the m-bit random variable x over the distribution induced by picking uniformly

at random from T :

Pr
x∈T

[B(x1,...,i−1) = xi] ≥ 1/2 + 2ε (5.8)

We can rewrite (5.8) as follows

Pr
y,z

[B(C2(fC1,m(x, y)1)[z], . . . , C2(fC1,m(x, y)i−1)[z]) = C2(fC1,m(x, y)i)[z]]

≥ 1/2 + 2ε (5.9)

Following a standard averaging argument, for an ε fraction of y

Pr
z

[B(C2(fC1,m(x, y)1)[z], . . . , C2(fC1,m(x, y)i−1)[z]) = C2(fC1,m(x, y)i)[z]]

≥ 1/2 + ε (5.10)

Since δ2 > 1/2− ε from the theorem statement Lemma 8 from Chapter 4 holds and

B is an errorless binary linear predictor for an ε fraction of y. From Lemma 9 again

in Chapter 4, this implies a q-ary linear predictor P for fC1,m with success probability

ε over the distribution induced by picking y uniformly. But from Theorem 31, for

δ1 > 1− ε fC1,m is a (k, ε) q-ary extractor for all linear prediction tests which leads to

a contradiction in our assumption.

Corollary 49 Fix m. Let C1 be a Reed-Solomon code with parameters m and q >

55

m/ε and let C2 be a [q, log q, q/2] binary Hadamard code. Then the set T defined in

Theorem 48 is a 4ε-biased space of size O(m2/ε2).

Proof. It is easy to see that the size of T is given by n′1·n′2 where n′1, n
′
2 are respectively

the blocklengths of C1, C2. Hence, |T | = q2 = m2/ε2.

Corollary 50 Fix m. Let C1 be a Reed-Solomon code with parameters m and q > m/ε

and let C2 be an [n̄ = O(log2 q/ε2), log q, (1/2− ε)n̄] binary linear code. Then the set

T defined above is a 4ε-biased sample space of size O(mpolylog(m, 1/ε)/ε3).

5.2 Pseudorandom sets for low-degree prediction

tests

We extend our treatment of pseudorandom sets to low-degree prediction tests.

Theorem 51 Fix m, ρ. Let C be a systematic q-ary Reed-Müller code with parameters

h, l satisfying
(

h+l−1
h

)
= m and q ≥ dh/ρ. Let x be such that C(x)[1 . . .m] = 0m−11.

Then S = {fC,m(x, y) : 1 ≤ y ≤ q} is a q-ary ρ-pseudorandom set for the class of

degree d predictors.

Proof. Since C is systematic and its dimension is exactly m, the codeword C(x) with

the aforementioned properties indeed exists. Assuming contrariwise that there exists

an i-th element degree-d prediction test p for the uniform distribution on S, we use

Lemma 10 from Chapter 4 to claim that p is an errorless predictor. In particular

p(C(x)[m− i], . . . , C(x)[m− 2]) = C(x)[m− 1] (5.11)

p(C(x)[m− i + 1], . . . , C(x)[m− 1]) = C(x)[m] (5.12)

but

(C(x)[m− i], . . . , C(x)[m− 2]) = (C(x)[m− i + 1], . . . , C(x)[m− 1]) = (0, . . . , 0)

56

while C(x)[m − 1] = 0 and C(x)[m] = 1. This gives a contradiction to our original

assumption.

Using Reed-Solomon codes, we can obtain specific constructions of pseudorandom

sets for low-degree tests.

Corollary 52 Fix m, ρ. Let C be a systematic Reed-Solomon code with parameters

h, q satisfying h = m − 1, q = dh/ρ. Then the set S as described in Theorem 51 is

a q-ary ρ-pseudorandom set in Fm
q of size d(m − 1)/ρ for the class of all degree d

prediction tests.

Proof. It suffices to comment only on the size of S which is given by the blocklength

of C. Since for a Reed-Solomon code, the blocklength is q, |S| = q = d(m−1)/ρ. The

rest of the proof structure is intact from above.

57

Chapter 6

Review

6.1 Revisiting extractors and pseudorandom sets

At the start of this work, we introduced notions of statistical and computational

indistinguishability. We then connected these notions to two types of pseudorandom

objects, namely extractors and pseudorandom generators. Any function with a small

circuit size achieves limited success in distinguishing the output of a pseudorandom

generator from that of a uniformly random distribution. In the case of the output of

an extractor, no function regardless of circuit size is able to distinguish it from that

of a uniformly random distribution with reasonable success.

In the pseudorandom objects that we have introduced in Chapters 4 and 5 how-

ever, this distinction is not very clear because a low-degree prediction test can be

viewed both as a computationally limited function against which a pseudorandom

generator is constructed and as belonging to a restricted class of functions against

which an extractor is constructed.

As we saw before, a (k, ρ) q-ary extractor fC,m : {0, 1}n × {0, 1}t → Fm
q for linear

(low-degree) prediction tests satisfies the property that for x sampled from a dis-

tribution with min-entropy at least k over {0, 1}n and y sampled from a uniformly

random distribution over {0, 1}t, fC,m(x, y) induces a distribution over Fm
q that fools

all linear (low-degree) prediction tests with success probability ρ. In contrast, a q-ary

ρ-pseudorandom set S that fools all linear (low-degree) prediction tests is constructed

by fixing some suitably chosen x and the distribution is induced by sampling y uni-

58

formly from {0, 1}t has the property that it fools all linear (low-degree) prediction

tests.

6.2 Revisiting ε-biased spaces

In Chapter 5 we described our construction of ε-biased spaces based on the binary

extractors for linear tests discussed in Chapter 4. Specifically, our construction of an

ε-biased space composed a q-ary systematic cyclic linear code with a binary systematic

linear code. Depending on the choice of codes used, we obtained different parameters

in our constructions as noted in Corollaries 49 and 50. While we would undoubtedly

have liked to claim that the “bias” derives from how we construct the pseudorandom

set by fixing a suitable codeword, it turns out that any [n̄, k̄, δn̄] binary linear code

containing the all-ones codeword and whose codewords have relative distance δ ≥

(1− ε)/2 automatically realizes an ε-biased space of size n̄ on {0, 1}k̄.

Lemma 11 [Bie99] Let C be an [n̄, k̄, δn̄] binary linear code containing 1n̄ where

δ ≥ (1− ε)/2. Let G = [x1, . . . ,xn̄] be the (k̄ × n̄) generator matrix for C. Then the

set S = {xi|1 ≤ i ≤ n̄} is an ε-biased space in {0, 1}k̄.

Proof. In order to show that S is an ε-biased space we must show that for any

u ∈ {0, 1}k̄,

∣∣∣∣Pr
x∈S

[x · u = 1]− Pr
x∈S

[x · u = 0]

∣∣∣∣ ≤ ε (6.1)

or that − ε ≤ Pr
x∈S

[x · u = 1]− Pr
x∈S

[x · u = 0] ≤ ε (6.2)

But, Pr
x∈S

[x · u = 1] + Pr
x∈S

[x · u = 0] = 1 (6.3)

So we need to show that (1− ε)/2 ≤ Pr
x∈S

[x · u = 1] ≤ (1 + ε)/2 (6.4)

or equivalently that (1− ε)n̄/2 ≤ |{x · u = 1|x ∈ S}| ≤ (1 + ε)n̄/2 (6.5)

Since G is the generator matrix for C, for any u ∈ {0, 1}k̄ u ·G is a codeword in C.

Therefore u ·G has weight at least (1− δ)n̄ ≥ (1− ε)n̄/2. On the other hand, since

1n̄ ∈ C any other codeword c in C can have distance at most (1 + ε)n̄/2, otherwise

59

the codeword 1n̄ + c has distance less than (1− ε)n̄/2. But by construction

w(u ·G) = |{u · x|x ∈ S}|

and hence

(1− ε)n̄/2 ≤ w(u ·G) ≤ (1 + ε)n̄/2

This completes the proof.

Therefore given a good binary linear code such as the RS-Had code obtained by

concatenating a q-ary Reed-Solomon code with a Hadamard code, we can obtain an

ε-biased space of size O(m2/ε2) where the distance of the code is (1− ε)/2.

6.3 Pseudorandom sets for low-degree distinguish-

ing tests

A natural variant of degree-d prediction tests discussed in Section §5.2 of Chapter 5

is the class of degree-d distinguishing tests.

Definition 53 A degree-d distinguishing test p with success probability ρ for a

random variable X = (X1, . . . , Xm) defined on Fm
q and sampled according to some

distribution D is a polynomial p : Fm
q → Fq of total degree at most d satisfying

∣∣∣∣Pr[p(X1, . . . , Xm) = 0]− Pr
z∈Fm

q

[p(z1, . . . , zm) = 0]

∣∣∣∣ ≥ ρ (6.6)

where z = (z1, . . . , zm) is chosen uniformly at random from Fm
q .

6.3.1 Polynomial identity testing

Consider the problem of determining if a given polynomial p : F
m
q → Fq in m variables

of total degree d is identically zero on Fq. We refer to this problem as the polyno-

mial identity test. By exhaustive search requiring time O(qm), we can evaluate the

60

polynomial on its entire domain and determine if p ≡ 0. Alternatively, we can use

the Schwartz-Zippel lemma which says that a polynomial in m variables and of total

degree d is zero on at most a d/|S| fraction of inputs from Sm where S ⊆ Fq. This

suggests a probabilistic polynomial-time algorithm for the polynomial identity test

problem in the following manner: choose m elements at random from S and evaluate

p on the m-tuple in Sm drawn from them. Since the probability that p vanishes on

a random point is at most d/|S|, the algorithm fails with at most d/|S|. Is it pos-

sible however to use fewer than m log q random bits than as was needed above? Of

course, if the class of decision problems bounded for which there exists a probabilistic

polynomial-time denoted BPP collapses to P as is presently widely believed the answer

to this question would be yes, but we do not know for sure if BPP=P. This pertains

to the important question of derandomizing polynomial identity testing about which

there has been some extensive research in the past [CK00, KS01, LV98, IKW01, KI03].

6.3.2 Pseudorandom sets for low-degree tests and polyno-

mial identity testing

The previous discussion sheds some light on the existence of a connection between

polynomial identity testing and low-degree distinguishing tests. Suppose that there

exists a q-ary ρ-pseudorandom set S that could fool the class of all degree-d distin-

guishing tests. We construct a random variable X with distribution D over S by

choosing an element uniformly at random from S. Then by Definition 53, for any

degree-d distinguishing test p, X satisfies

∣∣∣∣Pr[p(X1, . . . , Xm) = 0]− Pr
z∈Fm

q

[p(z1, . . . , zm) = 0]

∣∣∣∣ < ρ (6.7)

If furthermore it is the case that D requires fewer random bits to describe it than

was needed for the probabilistic algorithm described above then we have answered the

question posed in §6.3.1. We have already seen constructions of q-ary ρ-pseudorandom

sets for the class of degree-d prediction tests in Theorem 51 and Corollary 52. Is it

61

possible similarly to construct pseudorandom sets for degree-d distinguishing tests?

In what follows we will attempt an answer to this question.

6.3.3 Towards constructing pseudorandom sets for low-degree

distinguishing sets

Before taking the subject any further it would serve us well to revisit our pseudoran-

dom set constructions for low-degree prediction tests. Let Fq be a field of order q.

The construction in Corollary 52 in Chapter 5 gives a (dh/q)-pseudorandom set S for

the class of degree-d prediction tests using a Reed-Solomon code C with parameters

h = m + 2, q. S was defined as

S = {fC,m(x, y) : 1 ≤ y ≤ q} (6.8)

where x was such that C(x)[1 . . . m] = 0m−11. Let α be a generator for F∗q, the

multiplicative group of Fq. Since C is a Reed-Solomon code, we can associate a

univariate polynomial g : Fq → Fq of degree h with x such that

g(z) =
(z − 1)(z − α)(z − α2) . . . (z − αh)

(αh+1 − 1)(αh+1 − α) . . . (αh+1 − αh)

Our attempt will explore using S to obtain a pseudorandom set S ′ for degree-d

distinguishing tests. Consider the following algorithm. Its input is a polynomial p

in m variables of total degree d defined on Fq. Presented below is an algorithm that

takes as input an m-variate polynomial of degree d and accepts it if it identically zero

and rejects otherwise.

62

Algorithm 1 Determine if p ≡ 0

Require: An m-variate polynomial p : Fm
q → Fq of degree d

Fix l ≥ 2(m + 2)d3dR
for i = 0 to l − 1 do

Define ri ∈ Fm
q as ri = (g(αi), g(αi+1), . . . , g(αi+m−1))

if p(ri) �= 0 then
REJECT and EXIT

end if
end for
ACCEPT

We will define dR subsequently. In order to show that Algorithm 1 works correctly,

we would only need to show that if p �≡ 0 then there exists an i such that p(ri) �= 0

because if p ≡ 0 then the algorithm accepts. Note that if this is true then Algorithm

1 unconditionally derandomizes polynomial identity testing. We are tasked with

determining if this holds and we will do so by advancing some claims towards proving

the correctness of the algorithm. In showing that an ri exists for which p(ri) �= 0 if

p �≡ 0, we state and prove the following proposition.

Proposition 12 For some j : 1 ≤ j ≤ m let p′ : Fj
q → Fq be a degree-d polynomial

in j variables over Fq. Let R = {ri|0 ≤ i ≤ r − 1} be a set in Fm
q where ri is defined

for each i as in Algorithm 1. Then

Pr
z∈R

[p′(z1, . . . , zj) = zj+1] ≤
(m + 2) · d

r

Proof. Suppose for the sake of contradiction that

Pr
z∈R

[p′(z1, . . . , zj) = zj+1] >
(m + 2) · d

r
(6.9)

This means that p′ is a (j +1)-th element degree-d prediction test with success prob-

ability at least d(m+ 2)/r for the random variable obtained by sampling z uniformly

from R.

Consider the (j + 1)-variate polynomial q(z1, . . . , zj+1) = zj+1 − p′(z1, . . . , zj). q

also is of degree d. The polynomial q′(z) = q(g(z), g(αz), . . . , g(αjz)) is a univariate

63

polynomial and has total degree at most d(m+2) where g is the degree-h polynomial

defined in (6.8). Also, by construction q′ vanishes in the points z ∈ R where p′ predicts

zj+1 accurately and so from (6.9) q′ vanishes on greater than d(m + 2) points in R.

But q′ is a polynomial of total degree d(m + 2) and by the Fundamental Theorem of

Algebra a non-zero polynomial of degree h can have at most h zeroes. Hence, q′ must

be identically zero over Fq and in particular for all z ∈ R:

q′(z1, . . . , zj+1) = zj+1 − p′(z1, . . . , zj) = 0 (6.10)

⇒ p′(z1, . . . , zj) = zj+1 (6.11)

(6.11) tells us that p′ is an errorless (j + 1)-th element predictor for the random

variable obtained by sampling z uniformly from R. Therefore,

p′(g(α0), . . . , g(αj−1)) = g(0, . . . , 0) = g(αj) = 0 (6.12)

p′(g(αm+2−j), . . . , g(αm+2−1)) = g(0, . . . , 0) = g(αj) = 1 (6.13)

which is a contradiction to our assumption. We should note that this proposition is

almost identical to an analogous application of Lemma 10, the only difference being

that in the latter case the predictor’s success rate would be measured over Fj
q whereas

in the former case this is measured over R.

We will attempt showing the existence of an ri ∈ R for which p(ri) �= 0 by means

of arriving at a contradiction. We hope to achieve this contradiction by showing

that we can obtain from a low-degree distinguishing test against R, a low-degree

prediction test with reasonably good success rate. Once this is achieved, we will

obtain a contradiction by picking suitable parameters in the construction of R and

appealing to Proposition 12 to ensure that R is a pseudorandom set that fools such

a prediction test.

64

6.3.4 Constructing the low-degree prediction test

Lemma 13 Suppose there exists a degree-d distinguishing test p such that p(ri) = 0

for all ri ∈ R. Then for some t, 1 ≤ t ≤ m there exists an (m − t + 1)-th element

predictor fu∗ : Fm−t
q → Fq with success probability 1/d2 for the random variable

induced by picking ri uniformly from R.

Proof. We will inductively construct a series of non-zero polynomials p0, . . . , pm based

on p in the following manner:

• p0 is defined as:

p0 = p

Note that p0 can also be written as a univariate polynomial in xm over the

polynomial ring Fq[x1, . . . , xm−1]:

p0(xm) =

d∑
j=0

c0,j(x1, . . . , xm−1)x
j
m

where c0,j : Fm−1
q → Fq, 0 ≤ j ≤ d are polynomials in (m− 1) variables over Fq

and with total degree at most d− j.

• Let pk : Fq[x1, . . . , xm−k−1]→ Fq be the non-zero univariate polynomial in xm−k

of total degree at most d constructed in this manner. pk may be written as:

pk(xm−k) =

d∑
j=0

ck,j(x1, . . . , xm−k−1)x
j
m−k

Since pk is identically not zero, there exists some j∗; 0 ≤ j∗ ≤ d such that

ck,j∗(x1, . . . , xm−k−1) �≡ 0 while ck,j(x1, . . . , xm−k−1) ≡ 0 for all j > j∗. Then

pk+1 is defined as

pk+1 = ck,j∗

Observation 6.4 The multiset of polynomials {p0, . . . , pm} constructed in this fash-

ion has at most d distinct elements.

65

Proof. First of all, we can easily observe that for any i each successive polynomial in

the series contains one literal less than its predecessor. Therefore if deg(pi) denotes

the degree of pi, then deg(pi) ≤ deg(pi−1). Furthermore, suppose that deg(pi) =

deg(pi−1) = d′ say. From the procedure we used to construct pi, there is a j∗ such

that pi+1 = ci,j∗. But pi has degree j∗ in xm−i and therefore deg(pi+1) = deg(ci,j∗) =

d′ − j∗ = deg(pi) = d′ giving j∗ = 0. Since our procedure guarantees that ci,j ≡ 0 for

all j > j∗, pi = ci,j∗ = pi+1. This completes the proof since p has degree d.

Our next two observations are self-explanatory.

Observation 6.5 Let s denote the smallest integer for which deg(ps) = 0. Then from

our original hypothesis about p we get

Pr
z∈R

[p0(z) �= 0] = 0

while from how the series of polynomials are constructed we get

Pr
z∈R

[ps(z) �= 0] = 1

Observation 6.6 Since there are at most d distinct polynomials in {p0, . . . , ps}, there

exists some t for which

Pr
z∈R

[pt(z) �= 0]− Pr
z∈R

[pt−1(z) �= 0] ≥ 1/d (6.14)

From Observation 6.6, we conclude that since |R| = Ω(md4) there is an ri ∈ R such

that

pt(ri) �= 0 ∧ pt−1(ri) = 0

We will discuss in what follows a randomized algorithm that will determine a point

ri where pt−1(ri) = 0. Note that as a univariate polynomial of degree at most d in

xm−t+1 over Fq[x1, . . . , xm−t], pt−1 has at most d roots over the ring. So, a reasonable

goal for a randomized algorithm would be to output one of these roots in Fq (if it

66

exists) at random. Recall that

pt−1 =

d∑
k=0

ct−1,k(x1, . . . , xm−t)x
k
m−t+1

We will now use the previous discussion to describe the final step involved in

constructing our predictor. We define a family of functions F = {fu : F
m−t
q → Fq|1 ≤

u ≤ d} with the property that on input x1, . . . , xm−t, an element of F given by fu

outputs the u-th root z∗ of the univariate polynomial p′t−1(z) =
∑d

k=0 ck,t−1z
k under

some canonical ordering of the d roots of p′t−1(z). If there is no root then fu outputs

0. Note that given (x1, . . . , xm−t) the coefficients ck,t−1 = ck,t−1(x1, . . . , xm−t) are all

in Fq.

In order to simplify our notation, we shall denote ri|j to mean the first j compo-

nents of ri = (ri)1,...,j. We also denote the event (p(ri|m−t) �= 0)∧(p(ri|m−t+1) = 0)

by E. We observe using simple facts about conditional probability that

Pr
ri∈R,u

[fu(ri|m− t) = (ri)m−t+1] ≥ Pr
u

[fu chooses (ri)m−t+1|E] · Pr
ri∈R

[E]

≥ 1

d
· 1
d

=
1

d2
(6.15)

which follows from the fact that Prri∈R[E] ≥ 1/d from (6.14) and the randomized

algorithm would choose (ri)m−t+1 with probability at least 1/d. From (6.15) we get:

Pr
ri∈R,u

[fu chooses (ri)m−t+1] ≥
1

d2
(6.16)

From an averaging argument, we can show that there exists a fixing of u = u∗ for

which

Pr
ri∈R

[fu∗((ri)1,...,m−t) = (ri)m−t+1] ≥
1

d2
(6.17)

fu∗ is our predictor with success probability at least 1/d2 over the choice of ri ∈ R.

67

But we set out to construct a low-degree prediction test from a degree-d dis-

tinguishing test and we ask if fu∗ can be described by a low-degree “root-finding”

polynomial R. All we need of R is that upon input (c0, . . . , cd) ∈ F
d+1
q , R outputs

the u∗-th root in Fq of the polynomial p′(z) =
∑d+1

k=0 ckz
k. If no such root exists in

Fq, then R outputs an arbitrary element κ. Namely, if p′ has roots {ζ1, . . . , ζd} not

all in Fq then

R(c0, . . . , cd) =

⎧⎪⎨
⎪⎩

ζu∗ if ζu∗ ∈ Fq,

κ otherwise.

(6.18)

We stress here that κ is arbitrary and not even necessarily fixed. We only require

that it does not lie in Fq. We enunciate our reasons for requiring R to be low-degree

will be clear in the following claim.

Claim 54 Suppose R : Fd+1
q → Fq is a polynomial of degree dR such that upon inputs

(c0, . . . , cd) ∈ F
d+1
q R outputs the u∗-th root of the univariate polynomial p′(z) =∑d

k=0 ckz
k. Then there exists an (m− t + 1)-th element predictor with degree ddR for

the random variable induced by sampling uniformly from R with success probability

1/d2.

Proof. We define P : Fm−t
q → Fq as follows:

P (x1, . . . , xm−t) = R(c0(x1, . . . , xm−t), c1(x1, . . . , xm−t), . . . , cd(x1, . . . , xm−t))

P is a polynomial in (x1, . . . , xm−t) of total degree at most ddR since each of c0, . . . , cd

is a polynomial of degree at most d and R is a polynomial of degree dR from

the supposition of the claim. Since R outputs the u∗-th root of the polynomial

p′(z) =
∑d

k=0 ckz
k, P agrees with fu∗(x1, . . . , xm−t) on all ri : 0 ≤ i ≤ l − 1 in R.

Furthermore P outputs the u∗-th root when c1, . . . , cd are not all 0 (it outputs 0

68

otherwise). Therefore from (6.16) we get

Pr
z∈R

[P (z1...m−t) = zm−t+1] ≥
1

d2

which is as claimed.

Let us tease out the rest of the hoped-for contradiction. By construction in Algorithm

1, l > (m + 2)d3dR and hence 1/d2 > (m + 2)ddR/l. Therefore, P is a low-degree

prediction test with success probability greater than (m + 2)deg(P)/l which is in

contravention to Proposition 12 giving us the required contradiction to our hypothesis.

The $64000-dollar question is if the degree of a “root-finding” polynomial R given

by dR is small. If dR = poly(d) then l = Ω(m · poly(d)) and we will have suc-

cessfully derandomized polynomial identity testing using a pseudorandom set of size

polynomial in m, d.

Unfortunately for us, Lemma 14 below shows that R has degree Ω(q − d).

Lemma 14 Let R : F
d+1
q → Fq be defined as in (6.18). Then deg(R) ≥ (q − d− 1).

Proof. By definition,R outputs the u∗-th root ζu∗ of the polynomial p′(z) =
∑d

k=0 ckz
k

when ζu∗ ∈ Fq. p′ is a univariate polynomial of total degree d. Consider the polyno-

mial g : Fd+1
q → Fq given by

g(c0, . . . , cd) = p′(R(c0, . . . , cd)) (6.19)

Claim 55 g is a (d + 1)-variate polynomial that has degree at least q − 1.

Proof. (Of claim) Consider the univariate polynomial g′(c0, c1) given by

g′(c1) = g(1, c1, 0, . . . , 0) = p′(R(1, c1, 0, . . . , 0))

69

Since p′(z) = 1 + c1z has degree 1, R must behave as follows:

R(1, c1, 0, . . . , 0) =

⎧⎪⎨
⎪⎩
−1/c1 c1 �= 0,

κ otherwise.

Consequently,

g′(c1) =

⎧⎪⎨
⎪⎩

0 c1 �= 0,

κ otherwise.

Therefore, for at least (q−1) values of c1 ∈ Fq, g′(c1) = 0 and hence g′(c1) has degree

at least (q−1). But g′ is a restriction to one variable of the polynomial g(c0, c1, . . . , cd)

and hence g(c0, . . . , cd) must also have total degree at least (q − 1).

Since p′ has degree at most d and g has degree at least q− 1 from Claim 55, R must

have degree at least q − d− 1.

70

Epilogue

In this work, we looked at some intriguing connections between codes and pseudo-

random objects. Specifically, we considered the family of cyclic linear codes and

described a very simple and generic technique of obtaining limited pseudorandom-

ness from them. The pseudorandomness was limited because the objects obtained

fooled a limited class of low-degree polynomial tests rather than the larger class of all

efficient tests but we are hopeful that the techniques that we addressed in this work

can be used to improve on this.

Still, an interesting concomitant to pseudorandom objects for low-degree polyno-

mial tests as we saw was how they essentially would imply derandomizing polynomial

identity testing. We looked at approaching this problem via our constructions but

unfortunately came up short in our attempt to convert pseudorandom objects for low-

degree prediction tests to pseudorandom objects for low-degree distinguishing tests.

Nonetheless we are confident that our attempt deserves a closer look and we believe

that it can be used to get some partial success.

71

Bibliography

[ABI86] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized

parallel algorithm for the maximal independent set problem. Journal of

Algorithms, 7(4):567–583, 1986.

[AGHP92] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions

of almost k-wise independent random variables. Random Structures and

Algorithms, (3):289–304, 1992.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario

Szegedy. Proof verification and the hardness of approximation problems.

Journal of the ACM, 45(3):501–555, 1998.

[BF90] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In

STACS 90: Proceedings of the seventh annual symposium on Theoretical

aspects of computer science, pages 37–48, New York, NY, USA, 1990.

Springer-Verlag New York, Inc.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexpo-

nential time simulations unless EXPTIME has publishable proofs. Com-

putational Complexity, 3(4):307–318, 1993.

[Bie99] Jürgen Bierbrauer. Weakly biased arrays, weakly dependent arrays and

error-correcting codes, 1999.

[BIW04] Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting ran-

domness from few independent sources. In Proceedings of the 45th Annual

72

IEEE Symposium on Foundations of Computer Science, pages 384–393,

2004.

[BKS+04] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Sim-

ulating independence: New constructions of condensers, ramsey graphs,

dispersers and extractors, 2004. Submitted for publication.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with appli-

cations to numerical problems. In STOC ’90: Proceedings of the twenty-

second annual ACM symposium on Theory of computing, pages 73–83,

New York, NY, USA, 1990. ACM Press.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong se-

quence of pseudo-random bits. SIAM Journal on Computing, 13:850–864,

1984.

[Cal04] Cristian Calude. Algorithmic randomness, quantum physics, and incom-

pleteness. In Maurice Margenstern, editor, MCU, volume 3354 of Lecture

Notes in Computer Science, pages 1–17. Springer, 2004.

[CK00] Z.-Z. Chen and M.-Y. Kao. Reducing randomness via irrational numbers.

SIAM Journal on Computing, 29(4):1247–1256, 2000.

[GL89] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way

functions. In ACM, editor, Proceedings of the twenty-first annual ACM

Symposium on Theory of Computing, Seattle, Washington, May 15–17,

1989, pages 25–32, New York, NY, USA, 1989. ACM Press.

[GS00] V. Guruswami and M. Sudan. List decoding algorithms for certain con-

catenated codes. In Proceedings of the 32nd Annual ACM Symposium on

Theory of Computing (STOC-00), pages 181–190, 2000.

[Gur04] V. Guruswami. Better extractors for better codes? In STOC ’04: Proceed-

ings of the thirty-sixth annual ACM symposium on Theory of computing,

pages 436–444, New York, NY, USA, 2004. ACM Press.

73

[IKW01] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy wit-

ness: Exponential time vs. probabilistic polynomial time. In Frances M.

Titsworth, editor, Proceedings of the Sixteenth Annual Conference on

Computational Complexity (CCC-01), pages 2–12, Los Alamitos, CA,

June 18–21 2001. IEEE Computer Society.

[ILL89] R. Impagliazzo, L. Levin, and M. Luby. Pseudorandom generation from

one-way functions. In Proceedings of the 21st Annual ACM Symposium

on Theory of Computing, pages 12–24, May 1989.

[INW94] R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for net-

work algorithms. In Proceedings of the Twenty-Sixth Annual ACM Sym-

posium on the Theory of Computing, pages 356–364, Montréal, Québec,

Canada, 23–25 May 1994.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential

circuits: Derandomizing the XOR lemma. In Proceedings of the 29th

Annual ACM Symposium on the Theory of Computing (STOC ’97), pages

220–229, New York, May 1997. Association for Computing Machinery.

[KI03] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity

tests means proving circuit lower bounds. In Proceedings of the 35th

Annual ACM Symposium on Theory of Computing (STOC-03), pages

627–634, San Diego, May 9–11 2003. ACM Press.

[KS01] A. Klivans and D. Spielman. Randomness efficient identity testing of mul-

tivariate polynomials. In Proceedings of the thirty-third annual ACM sym-

posium on Theory of computing (STOC-01), pages 216–223, New York,

NY, USA, 2001. ACM Press.

[LV98] D. Lewin and S. Vadhan. Checking polynomial identities over any field:

towards a derandomization? In Proceedings of the 30th Annual ACM

Symposium on Theory of Computing (STOC), pages 438–447, 1998.

74

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient

constructions and applications. SIAM Journal on Computing, 22(4):838–

856, August 1993.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Com-

puter and System Sciences, 49(2):149–167, October 1994.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of

Computer and System Sciences, 52(1):43–52, February 1996.

[Raz05] R. Raz. Extractors with weak random seeds. In Proceedings of the

37th Annual ACM Symposium on Theory of Computing (STOC-05), May

2005.

[RR99] R. Raz and O. Reingold. On recycling the randomness of states in space

bounded computation. In Proceedings of the 31st ACM Symposium on

Theory of Computing, pages 159–168, 1999.

[RRV02] R. Raz, O. Reingold, and S. Vadhan. Extracting all the randomness and

reducing the error in Trevisan’s extractors. Journal of Computer and

System Sciences, 65(1):97–128, 2002.

[RTS00] J. Radhakrishnan and A. Ta-Shma. Bounds for dispersers, extractors, and

depth-two superconcentrators. SIAM Journal on Discrete Mathematics,

13(1):2–24, 2000.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial

identities. Journal of the ACM, 27(4):701–717, 1980.

[Sha02] R. Shaltiel. Recent developments in explicit constructions of extractors.

Bulletin of the European Association for Theoretical Computer Science,

77:67–, June 2002. Columns: Computational Complexity.

75

[STV01] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without

the XOR lemma. Journal of Computer and System Sciences, 62(2):236–

266, March 2001.

[SU01] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a

new pseudo-random generator. In IEEE, editor, 42nd IEEE Symposium

on Foundations of Computer Science: proceedings: October 14–17, 2001,

Las Vegas, Nevada, USA, pages 648–657, 1109 Spring Street, Suite 300,

Silver Spring, MD 20910, USA, 2001. IEEE Computer Society Press.

[Sud97] Madhu Sudan. Decoding of Reed-Solomon codes beyond the error-

correction bound. Journal of Complexity, 13(1):180–193, 1997.

[SZ99] A. Srinivasan and D. Zuckerman. Computing with very weak random

sources. SIAM Journal on Computing, 28(4):1433–1459, August 1999.

[Tre01] L. Trevisan. Extractors and pseudorandom generators. Journal of the

ACM, 48(4):860–879, July 2001.

[Tre03] L. Trevisan. List decoding using the XOR lemma. In Proceedings of

the 44th Annual IEEE Symposium on Foundations of Computer Science,

pages 126–135, 2003.

[TS96] A. Ta-Shma. On extracting randomness from weak random sources (ex-

tended abstract). In ACM, editor, Proceedings of the twenty-eighth annual

ACM Symposium on the Theory of Computing, Philadelphia, Pennsylva-

nia, May 22–24, 1996, pages 276–285, New York, NY, USA, 1996. ACM

Press.

[TSZS01] A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from Reed-Muller

codes. In IEEE, editor, 42nd IEEE Symposium on Foundations of Com-

puter Science: proceedings: October 14–17, 2001, Las Vegas, Nevada,

USA, pages 638–647, 1109 Spring Street, Suite 300, Silver Spring, MD

20910, USA, 2001. IEEE Computer Society Press.

76

[Uma02] C. Umans. Pseudo-random generators for all hardnesses. In Proceedings of

the 34th Annual ACM Symposium on Theory of Computing (STOC-02),

pages 627–634, New York, May 19–21 2002. ACM Press.

[WZ93] A. Wigderson and D. Zuckerman. Expanders that beat the eigenvalue

bound: Explicit construction and applications. In Proceedings of the

Twenty-Fifth Annual ACM Symposium on the Theory of Computing,

pages 245–251, San Diego, California, 16–18 May 1993.

[Yao82] A. C. Yao. Theory and applications of trapdoor functions. In Proceedings

of the 23rd Symposium on Foundations of Computer Science (FOCS),

pages 80–91. IEEE Computer Society Press, 1982.

[Zip79] R. E. Zippel. Probabilistic algorithms for sparse polynomials. In Proceed-

ings of EUROSAM 79, volume 72 of Lecture Notes in Computer Science,

pages 216–226, 1979.

[Zuc97] D. Zuckerman. Randomness-optimal oblivious sampling. Random Struc-

tures and Algorithms, 11:345–367, 1997.

