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Abstract. In this work, we consider Wardrop games where traffic has
to be routed through a shared network. Traffic is allowed to be split into
arbitrary pieces and can be modeled as network flow. For each edge in
the network there is a latency function that specifies the time needed to
traverse the edge given its congestion. In a Wardrop equilibrium, all used
paths between a given source-destination pair have equal and minimal
latency.
In this paper, we allow for polynomial latency functions with an upper
bound d and a lower bound s on the degree of all monomials that appear
in the polynomials. For this environment, we prove upper and lower
bounds on the price of anarchy.

1 Introduction

Motivation and Framework. The price of anarchy, also known as coordina-
tion ratio, has been defined in the seminal work by Koutsoupias and Papadim-
itriou [14] as a measure of the extent to which competition approximates coop-
eration. In general, the price of anarchy is the worst-case ratio between the value
of a social objective function, usually coined as social cost, in some equilibrium
state of a system, and that of some social optimum. Usually, the equilibrium
state has been taken to be that of a Nash equilibrium [16] – a state in which no
user wishes to unilaterally leave its own strategy in order to improve the value
of its private objective function, also known as individual cost. So, the price
of anarchy represents a rendezvous of Nash equilibrium, a concept fundamen-
tal to Game Theory, with approximation, an ubiquitous concept in Theoretical
Computer Science today (see, e.g., [22]).

The Wardrop model has already been studied in the context of road traffic
systems by Pigou [17] in the 1920’s and later by Wardrop [23], and by Beck-
mann, McGuire and Winsten [3] in the 1950’s. For a survey of the early work
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on this model see [4]. In the Wardrop model, traffic has to be sent through a
shared network and traffic is allowed to be split into arbitrary pieces. In this
environment, unregulated traffic is modeled as network flow. Wardrop [23] in-
troduced the concept of Wardrop equilibrium to describe user behavior in this
kind of traffic networks. Given an arbitrary network with edge latency functions,
Wardrop equilibria have been classified as flows with all flow paths used between
a given source-destination pair having equal latency. A Wardrop equilibrium can
be interpreted as a Nash equilibrium in a game with infinitely many users, each
carrying an infinitesimal amount of traffic from a source to a destination.

Inspired by the arisen interest in the price of anarchy, Roughgarden and Tar-
dos [21] re-investigated the Wardrop model and used the total latency as their
social objective function. The total latency is a measure for the total travel
time. In this context, the exact value for the price of anarchy was shown for
linear latency functions by Roughgarden and Tardos [21] and for arbitrary poly-
nomial latency functions with nonnegative coefficients and maximum degree d by
Roughgarden [19]. In his book [20, Chapter 3], Roughgarden gives the following
rule of thumb:

The price of anarchy is small unless cost functions are extremely steep.

In this work, we examine this rule of thumb closer by re-considering the price
of anarchy for polynomial latency functions of maximum degree d. However, in
contrast to the latency functions considered by Roughgarden [19], our latency
functions have also a minimum degree of s. For large d these latency functions
are extremely steep, however, we show that in many cases the price of anarchy
remains small.
Related Work. The price of anarchy was introduced by Koutsoupias and Pa-
padimitriou [14] and received a lot of attention in various routing games (see
e.g. [1, 2, 5–10, 12, 13, 15, 19, 21]).

Early work on the Wardrop model has been done in the context of road traffic
systems [3, 4, 17, 23]. Beckmann et al. [3] showed that a Wardrop equilibrium
always exists and that it is essentially unique. These results were based on the
observation that a Wardrop equilibrium is a solution to a related convex program.

For the Wardrop model, with social cost as total latency, Roughgarden and
Tardos [21] showed that the price of anarchy is exactly 4

3
in case of linear latency

functions. For the case of polynomial latency functions of maximum degree d,
Roughgarden [19] showed that the price of anarchy is (d+1) d√d+1

(d+1) d√d+1−d
. Interestingly,

in both cases, the price of anarchy is independent of the network topology, as it
is achieved on the simple network of two parallel links [19, 21]. Correa et al. [6]
improved the bounds from [19] on the price of anarchy for the special case of
polynomial latency functions without constant term and for d ≤ 4. The price of
anarchy was also studied for latency functions that arise as delay functions of
M/M/1 queues [19]. For arbitrary nondecreasing latency functions Roughgarden
and Tardos [21] showed that the total latency in a Wardrop equilibrium is upper
bounded by the optimum total latency for the instance where all traffic demands
are doubled.



Related to Wardrop games are (weighted) congestion games as introduced by
Rosenthal [18]. In a congestion game, there is a set of resources and players can
choose as their strategy a set of resources from a given set of subsets of resources.
Awerbuch et al. [2] and Christodoulou and Koutsoupias [5] were the first to study
the price of anarchy for congestion games. They showed asymptotic tight bounds
on the price of anarchy for congestion games with polynomial latency functions
in case of unweighted [2, 5] and in case of weighted player demands [2]. With a
more careful analysis, Aland et al. [1] were able to derive the exact value for the
price of anarchy in both cases. For a survey on weighted congestion games, we
refer to [11].
Contribution. In this paper, we study the price of anarchy for Wardrop games
with polynomial latency functions in more detail. In particular, we consider
polynomials that consist of monomials of maximum degree d and minimum de-
gree s. All our latency functions have nonnegative coefficients. We will call such
polynomials (d, s)-polynomials.

As our first result, we show that for general (d, s)-polynomials, the price of
anarchy (PoA(d,s)) is upper bounded by

PoA(d, s) ≤
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To achieve this result, we adopt a technique that was already used in [1] and that
is again based on a technique from [5]. The core of our analysis is to determine
parameters c1 and c2, such that

y · f(z) ≤ c1 · z · f(z) + c2 · y · f(y)

for all (d, s)-polynomials f and for all reals y, z ≥ 0. Table 1 shows numerical
values for the upper bound for all (d, s)-polynomials with d ≤ 10. The values for
s = 0 have already been shown by Roughgarden [19]. Observe that the values

s\d 1 2 3 4 5 6 7 8 9 10

0 4
3

1.62575 1.89563 2.15050 2.39438 2.62971 2.85814 3.08084 3.29856 3.51206
1 1.03551 1.09820 1.16756 1.23859 1.30962 1.38002 1.44954 1.51811 1.58575
2 1.01466 1.04498 1.08174 1.12147 1.16262 1.20439 1.24638 1.28834
3 1.00805 1.02614 1.04938 1.07547 1.10324 1.13199 1.16131
4 1.00510 1.01717 1.03329 1.05192 1.07217 1.09348
5 1.00352 1.01215 1.02404 1.03808 1.05358
6 1.00257 1.00907 1.01821 1.02918
7 1.00197 1.00703 1.01428
8 1.00155 1.00561
9 1.00125

Table 1. Example values for our upper bound on the price of anarchy



for s = 1 and d ≤ 4 improve the upper and match the lower bounds from [6].
We then prove monotonicity results on our upper bound. In particular, we

show that the upper bound on PoA(d, s) is monotone increasing in d and de-
creasing in s. Furthermore, we show that if s = d

a is a constant fraction of d,
then the upper bound on PoA

(
d, d

a

)
is still monotone increasing in d. Equipped

with these results, we apply the limit for d → ∞ to prove that for any a > 1,
PoA

(
d,

⌈
d
a

⌉)
is upper bounded by a constant. More precisely, we show that

PoA

„
d,

‰
d

a

ı«
≤ a

1
a−1 · (a− 1)

e · ln(a)
.

For instance, this gives upper bounds of 1.0614756 and 1.159983 for a = 2 and
a = 3, respectively.

We close our paper with a discussion on lower bounds on the price of anarchy
for Wardrop games with (d, s)-polynomials. Here, we use the very simple network
of two parallel links. So far, we could not show that our general upper bound
yields the exact value for the price of anarchy; however, numerical analysis for
all (d, s)-polynomials with d ≤ 30 gives a strong indication that this is the case.

For sufficiently large d and for the cases s = d
2 and s = d

3 , we give almost
matching lower bounds on PoA(d, s).
Roadmap. The rest of this paper is organized as follows. Section 2 introduces
the Wardrop model. Section 3.1 presents the upper bound on the price of anarchy,
whereas Section 3.2 discusses lower bounds. We conclude in Section 4 with a
summary of our results and some open problems. Due to lack of space, we omit
some proofs. They can be found in the appendix.

2 Notation

For all k ∈ N denote [k] = {1, . . . , k}.
Routing with Splittable Traffic. A Wardrop game is a tuple Γ = (n, G,w,P, f).
Here, n is the number of players and G = (V,E) is an undirected (multi)graph.
The vector w = (w1, . . . , wn) defines for every player i ∈ [n] its traffic wi ∈ R+.
For each player i ∈ [n] the set Pi ⊂ 2E consists of all possible routing paths
in G = (V,E) from some node si ∈ V to some other node ti ∈ V . Denote
P = P1 × . . . × Pn. Denote by f = {fe | e ∈ E} the set of differentiable, mono-
tone increasing and nonnegative edge latency functions.
In this paper, we allow for polynomial latency functions with nonnegative coeffi-
cients, where monomials of degree less than s are missing; that is, latency func-
tions are of the form fe(x) =

∑d
i=s aiex

i with aie ≥ 0 for all integers s ≤ i ≤ d
and all edges e ∈ E. We will call such latency functions (d, s)-polynomials.
Strategies and Strategy Profiles. A player i ∈ [n] can split its traffic wi over
the paths in Pi. A strategy for player i ∈ [n] is a tuple xi = (xiPi)Pi∈Pi with∑

Pi∈Pi
xiPi

= wi and xiPi
≥ 0 for all Pi ∈ Pi. Denote by Xi = {xi | xi is a

strategy for player i} the set of all strategies for player i. A strategy profile x =
(x1, . . . , xn) is an n-tuple of strategies for the players. Define X = X1 × . . .×Xn

as the set of all possible strategy profiles.



Wardrop Equilibria. For a strategy profile x, the load le(x) on an edge e ∈ E
is given by le(x) =

∑
i∈[n]

∑
Pi∈Pi,Pi3e xiPi

. A strategy profile x is a Wardrop
equilibrium, if for every player i ∈ [n], and every Pi, P

′
i ∈ Pi with xiPi

> 0 it
holds that X

e∈Pi

fe(le(x)) ≤
X
e∈P ′

i

fe(le(x)).

Observe that in a Wardrop equilibrium all flow paths of a player have equal
latency. We can regard each player i ∈ [n] as a service provider who has many
clients each handling a negligible small amount of traffic. In a Wardrop equi-
librium, each service provider satisfies all his clients because none of them can
improve its experienced latency.
Social Cost and Price of Anarchy. For a strategy profile x, define the social
cost SC(x) as the total latency ; thus,

SC(x) =
X
i∈[n]

X
Pi∈Pi

xiPi

X
e∈Pi

fe(le(x)).

This social cost is motivated by the interpretation as a game with infinitely many
players with negligible demand and models the sum of the players latencies. The
optimum associated with a game is defined by OPT = minx∈X SC(x). The price of
anarchy, also called coordination ratio and denoted PoA, is the maximum value,
over all instances and Wardrop equilibria x, of the ratio SC(x)

OPT . For the class of
Wardrop games, where all latency functions are (d, s)-polynomials, denote by
PoA(d, s) the price of anarchy with respect to d and s.

3 Price of Anarchy

3.1 Upper Bound

Before proving a general upper bound on the price of anarchy for Wardrop games
with (d, s)-polynomial latency functions, we have to prove the following technical
lemma:

Lemma 1. Let s, d ∈ N with s ≤ d. Choose c1, c2 ∈ R≥0 such that

y · zs ≤ c1 · zs+1 + c2 · ys+1 ∀y, z ∈ R>0 (1)

and y · zd ≤ c1 · zd+1 + c2 · yd+1 ∀y, z ∈ R>0. (2)

Then, it follows that

y · zi ≤ c1 · zi+1 + c2 · yi+1 ∀i ∈ N : s ≤ i ≤ d ∀y, z ∈ R>0.

Proof. Since

y · zi ≤ c1 · zi+1 + c2 · yi+1 ∀i ∈ N : s ≤ i ≤ d ∀y, z ∈ R>0

is equivalent to„
z

y

«i

≤ c1 ·
„

z

y

«i+1

+ c2 ∀i ∈ N : s ≤ i ≤ d ∀y, z ∈ R>0



it suffices to show that

zi ≤ c1 · zi+1 + c2 ∀i ∈ N : s ≤ i ≤ d ∀z ∈ R>0.

This follows by replacing z
y ∈ R>0 with a new z ∈ R>0. Furthermore, it follows

from (1) and (2) that

zs ≤ c1 · zs+1 + c2 ∀z ∈ R>0

and zd ≤ c1 · zd+1 + c2 ∀z ∈ R>0.

Fix an arbitrary i ∈ N with s ≤ i ≤ d. We proceed by case study dependent
on z ∈ R>0.
First assume that z ≤ 1. Let i = s + j, then 0 ≤ j ≤ d− s. We get

zi = zs+j ≤ zj `c1 · zs+1 + c2

´
= c1z

i+1 + zj · c2 ≤ c1z
i+1 + c2,

since z ≤ 1.
Now assume that z ≥ 1. Let i = d− j, then 0 ≤ j ≤ d− s. We get

zi = zd−j ≤ 1

zj

“
c1 · zd+1 + c2

”
= c1z

i+1 +
1

zj
· c2 ≤ c1z

i+1 + c2,

since z ≥ 1.
In any case zi ≤ c1 · zi+1 + c2. This completes the proof of the lemma. ut

We are now ready to prove our general upper bound on the price of anarchy.

Theorem 1. For Wardrop games with (d, s)-polynomial latency functions, we
have

PoA(d, s) ≤

“
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Proof. Observe, that for s = 0 our upper bound on the price of anarchy reduces
to the exact value on the price of anarchy that was proved by Roughgarden [19]
for this case. So, in the following, we assume that s ≥ 1. Let x = (x1P1 , . . . , xnPn

)
be a Wardrop equilibrium and let x∗ = (x∗1P1

, . . . , x∗nPn
) be a strategy profile with

optimum social cost. Since x is a Wardrop equilibrium, it follows by definition
of a Wardrop equilibrium that

SC(x) =
X
i∈[n]

X
Pi∈Pi

xiPi

X
e∈Pi

fe(le(x)) ≤
X
i∈[n]

X
Pi∈Pi

x∗iPi

X
e∈Pi

fe(le(x))

=
X
e∈E

le(x
∗)| {z }

:=y

· fe(le(x))| {z }
:=x

.

Now, since le(x∗) and le(x) are both positive real numbers, assume that c1 and
c2 are such that

y · f(z) ≤ c1 · z · f(z) + c2 · y · f(y) ∀x, y ∈ R≥0 (3)



for all polynomials f with minimum degree s and maximum degree d, having
nonnegative coefficients. Then,

SC(x) ≤ c1 ·
X
e∈E

le(x) · fe(le(x)) + c2 ·
X
e∈E

le(x
∗) · fe(le(x

∗))

= c1 · SC(x) + c2 · SC(x∗)

and with 0 < c1 < 1 it follows that
SC(x)

SC(x∗)
≤ c2

1− c1
.

Since x is an arbitrary Wardrop equilibrium, we get

PoA(d, s) ≤ c2

1− c1
. (4)

We will now show how to determine c1 and c2 such that inequality (3) holds and
that the resulting upper bound is minimal. In case y = 0 equation (3) follows
immediately from c1 ≥ 0 and z ≥ 0. In case z = 0 the left hand side yields
y · f(0) = 0, since by the degree of the lowest monomial being s ≥ 1 there are
no additive constants in the latency functions. This is always less or equal than
c2 · y · f(y), since latency functions are monotone increasing, y ≥ 0 and c2 ≥ 0.
So, in the following we assume that y > 0 and z > 0. In order to show that
(3) holds, it suffices to show that (3) holds for all monomials of degree i ∈ [n]
with s ≤ i ≤ d, since polynomials are a linear combination of monomials. This
implies that (3) then holds also for the considered polynomials. By Lemma 1 it
suffices to show this for the monomials of degree s and d. Consider inequality
(3) for a single monomial f(z) = ai · zi, which we divide by ai · yi+1 yielding„

z

y

«i

≤ c1 ·
„

z

y

«i+1

+ c2 ∀s ≤ i ≤ d ∀y, z ∈ R>0.

Set ẑ := z
y . Then ẑ ∈ R>0 and (3) reduces to

ẑi ≤ c1 · ẑi+1 + c2 ∀s ≤ i ≤ d ∀ẑ ∈ R>0. (5)

We now view (5) as a function in i, c1 and ẑ, since we want to determine the
maximum ẑ such that inequality (3) holds. Thus, we have the following function

c2(i, c1, ẑ) := ẑi − c1 · ẑi+1, (6)

which we partially differentiate in ẑ in order to retrieve the minimum c2 such
that (5) holds, yielding

∂

∂ẑ
c2(i, c1, ẑ) = i · ẑi−1 − (i + 1) · c1 · ẑi.

The ẑ for which c2 is maximum can now be easily determined to be ẑmax :=
i

c1·(i+1)
. Simple insertion in (6) yields

c2(i, c1, ẑ
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We define

c2(i, c1) :=

“
i

i+1

”i

ci
1 · (i + 1)

. (7)

Lemma 1 states that it suffices to focus on the monomials of degree s and d in
order for (3) to hold. We therefore determine c1 as a solution to the equation of
c2(d, c1) = c2(s, c1). Thus, we have“
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Having calculated c1, we can retrieve c2 by simple insertion in (7) using the
maximum degree d of the monomials yielding

c2 := c2(d, c1) =
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We get with (4) that
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which completes the proof of the theorem. ut

Having proved the general upper bound, we now investigate the case s =
⌈

d
a

⌉
with a ∈ R and 1 ≤ a ≤ d. For the case a = 1, we have that PoA(d, d) = 1
as shown in [21] for d = 1 and Theorem 1 shows that this also holds for the
case d ≥ 2. In order to prove an upper bound on PoA

(
d,

⌈
d
a

⌉)
, we first show

monotonicity results for the upper bound from Theorem 1.

Lemma 2. The upper bound on PoA(d, s) from Theorem 1 is monotone decreas-
ing in s.



Lemma 3. The upper bound on PoA
(
d, d

a

)
from Theorem 1 is monotone in-

creasing in d.

Combining the last two lemmas yields the corollary that PoA(d, s) is mono-
tone increasing in d.

Corollary 1. The upper bound on PoA(d, s) from Theorem 1 is monotone in-
creasing in d.

By Lemma 2, we can neglect the ceilings and replace s by d
a in the upper

bound from Theorem 1 to get an upper bound on PoA
(
d,

⌈
d
a

⌉)
. Furthermore,

by Lemma 3, this upper bound has the largest value for d →∞. By computing
this limit, we get:

Theorem 2. For Wardrop games with (d, s)-polynomial latency functions where
s =

⌈
d
a

⌉
, we have

PoA

„
d,

‰
d

a

ı«
≤ a

1
a−1 · (a− 1)

e · ln(a)
. (8)

3.2 Lower Bound

For the lower bound, we consider an instance of a Wardrop game with n = 1
player of traffic w1 = 1. The network consists of two parallel edges u and ` from
node s1 to node t1. The latency functions are fu(x) = α · xs and f`(x) = xd,
where α ∈ R>0 will be determined later. With a slight abuse of notation, let
z = (z, 1 − z) be a Wardrop equilibrium and let ẑ = (ẑ, 1 − ẑ) be the optimum
strategy profile, where z (resp. ẑ) is the amount of traffic that is assigned to link
u in the Wardrop equilibrium (resp. optimum).

In the Wardrop equilibrium, the latency on both links is the same, so z is
the only positive solution to

α · zs = (1− z)d. (9)

On the other hand, the optimum is defined by

bz := arg min
x∈[0,1]

n
α · xs+1 + (1− x)d+1

o
,

which yields that ẑ is the only positive solution to

α · s + 1

d + 1
· bzs − (1− bz)d = 0. (10)

Observe, that z and ẑ are both dependent on α, s and d. If we can compute z
and ẑ, then we can give a lower bound on the price of anarchy

PoA(d, s) ≥ SC(z)
SC(̂z)

=
α · zs+1 + (1− z)d+1

α · ẑs+1 + (1− ẑ)d+1
.

We can now further optimize this lower bound by choosing the best possible α.



The problem is that to determine z and ẑ, as we have to compute the root
for polynomials with arbitrary degree as demanded for the equations (9) and
(10). Numerical tests for all (d, s)-polynomials with d ≤ 30 gives lower bounds
that match the upper bounds from Theorem 1 up to some numeric precision.
We have given example values for the factor α for polynomial latency functions
up to a degree of 9 in Table 3.2, where reasonable. This is a strong indication
that our lower bound might be matching for all d ∈ N and s ∈ N with s ≤ d.

s\d 2 3 4 5 6 7 8 9

1 25
24

1.06452 1.07793 1.08599 1.09074 1.09335 1.09450 1.09462
2 1.02181 1.03361 1.03954 1.04180 1.04166 1.03991 1.03705
3 1.01087 1.01544 1.01603 1.01405 1.01022 1.00524
4 1.00399 1.00365 1.00045 0.99531 0.98885
5 0.99927 0.99540 0.98939 0.98191
6 0.99583 0.98929 0.98112
7 0.99321 0.98459
8 0.99115

Table 2. Example values for α, such that the lower bound is matching

An Almost Matching Lower Bound for a Special Case
We now show a lower bound on the price of anarchy for the case that s = d

2 .
Set the constant factor α = 1. Then, the traffic on u in the Wardrop equilib-

rium is the solution of the equation

z
d
2 = (1− z)d,

which yields

z =
3

2
− 1

2

√
5.

We get that the social cost in the Wardrop equilibrium is

SC(z) = z
d
2 +1 + (1− z)d+1 = z

d
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.

On the other hand, for the optimum we get that ẑ is the only positive root of„
d

2
+ 1

« bz d
2 − (d + 1)(1− bz)d.

This root calculates to

bz = 1 +
1−
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1 + 4
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The social cost in the optimum is

SC(bz) = bz d
2 +1 + (1− bz)d+1 = bz d

2 ·
d
2

+ 1 + d
2
· bz

d + 1
.

We get

SC(z)

SC(bz) =
“zbz” d

2 · d + 1
d
2

+ 1 + d
2
· bz ,

with limit

lim
d→∞

SC(z)

SC(bz) =
1

2
1√
5

· 4

5−
√

5
> 1.0614704.

Thus, for d large enough, we have PoA(d, d
2 ) ≥ 1.0614704. This is slightly below

the upper bound of PoA(d, d
2 ) ≤ 1.0614756. The same computations for a = 3

yield a lower bound of PoA(d, d
3 ) ≥ 1.159949, which is again slightly below

the upper bound of PoA(d, d
3 ) ≤ 1.159983. Note that for a ≥ 5, we are again

confronted with the problem of computing a general root.

4 Conclusion

In this paper, we have shown a general upper bound on the price of anarchy
for Wardrop games with (d, s)-polynomial latency functions. We then proved
monotonicity results on this upper bound and applied these to show that the
price of anarchy is upper bounded by a constant, if s is a constant fraction of d. As
an example, for s = d

2 this upper bound is 1.0614756. This implies that the price
of anarchy does not only depend on the “steepness” of the latency functions, but
rather on the presence of the lower monomials as the price of anarchy increases
with the presence of lower monomials. Our discussion on lower bounds strongly
indicates that our upper bound yields the exact value for the price of anarchy.
However, the problem of finding a matching general lower bound that holds for
all (d, s)-polynomials remains tantalizingly open.
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