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Abstract

In many multiagent domains a set of agents exert effort towards a joint outcome, yet the
individual effort levels cannot be easily observed. A typical example for such a scenario is
routing in communication networks, where the sender can only observe whether the packet
reached its destination, but often has no information about the actions of the intermediate
routers, which influences the final outcome. We study a setting where a principal needs to
motivate a team of agents whose combination of hidden efforts stochastically determines an
outcome. In a companion paper we devise and study a basic “combinatorial agency” model
for this setting, where the principal is restricted to inducing a pure Nash equilibrium. Here
we study various implications of this restriction. First, we show that, in contrast to the
case of observable efforts, inducing a mixed-strategies equilibrium may be beneficial for the
principal. Second, we present a sufficient condition for technologies for which no gain can be
generated. Third, we bound the principal’s gain for various families of technologies. Finally,
we study the robustness of mixed equilibria to coalitional deviations and the computational
hardness of the optimal mixed equilibria.

1. Introduction

In this paper we study Combinatorial Agency with Mixed Strategies, this section reviews
some background on Combinatorial Agency with pure strategies and then present our results
for mixed strategies.

1.1 Background: Combinatorial Agency

The well studied principal-agent problem deals with how a “principal” can motivate a
rational “agent” to exert costly effort towards the welfare of the principal. The difficulty
in this model is that the agent’s action (i.e. whether he exerts effort or not) is invisible
to the principal and only the final outcome, which is probabilistic and also influenced
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by other factors, is visible!. This problem is well studied in many contexts in classical
economic theory and we refer the readers to introductory texts on economic theory such
as the work of Mass-Colell, Whinston, and Green (1995), Chapter 14. In these settings, a
properly designed contract, in which the payments are contingent upon the final outcome,
can influence a rational agent to exert the required effort.

In many multiagent settings, however, a set of agents work together towards a joint
outcome. Handling combinations of agents rather than a single agent is the focus of the
work by Babaioff, Feldman, and Nisan (2006a). While much work was previously done
on motivating teams of agents (e.g., Holmstrom, 1982; Strausz, 1996), our emphasis is on
dealing with the complex combinatorial structure of dependencies between agents’ actions.
In the general case, each combination of efforts exerted by the n different agents may result
in a different expected gain for the principal. The general question asks, given an exact
specification of the expected utility of the principal for each combination of agents’ actions,
which conditional payments should the principal offer to which agents as to maximize his
net utility?

We view this problem of hidden actions in computational settings as a complementary
problem to the problem of hidden information that is the heart of the field of Algorithmic
Mechanism Design (Nisan, Roughgarden, Tardos, & Vazirani, 2007; Nisan & Ronen, 2001).
In recent years, computer science and artificial intelligence have showed a lot of interest
in algorithmic mechanism design. In particular, they imported concepts from game theory
and mechanism design for solving problems that arise in artificial intelligence application
domains, such as computer networks with routers as autonomous software agents.

Communication networks serve as a typical application to our setting. Since many com-
puter networks (such as the Internet and mobile ad-hoc networks) are used and administered
by multiple entities with different economic interests, their performance is determined by
the actions among the various interacting self-interested parties. Thus, taking into account
the economic and strategic considerations together with the technical ones may be crucial
in such settings. Indeed, recent years have seen a flurry of research employing game theo-
retic models and analysis for better understanding the effect of strategic considerations on
network design and performance.

An example that was discussed in the work of Feldman, Chuang, Stoica, and Shenker
(2007) is Quality of Service routing in a network: every intermediate link or router may
exert a different amount of “effort” (priority, bandwidth, etc.) when attempting to forward
a packet of information. While the final outcome of whether a packet reached its destination
is clearly visible, it is rarely feasible to monitor the exact amount of effort exerted by each
intermediate link — how can we ensure that they really do exert the appropriate amount
of effort? For example, in Internet routing, IP routers may delay or drop packets, and in
mobile ad hoc networks, devices may strategically drop packets to conserve their constrained
energy resources. Aside from forwarding decisions, which are done in a sequential manner,
some “effort” decisions take place prior to the actual packet transmission, and are done in
a simultaneous manner. There are many examples for such decisions, among them are the
quality of the hardware, appropriate tuning of the routers, and more. Our focus is on these

1. “Invisible” here is meant in a wide sense that includes “not precisely measurable”, “costly to determine”,

or “non-contractible” (meaning that it can not be upheld in “a court of law”).
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a-priori effort decisions, since they are crucial to the quality of the transmission, and it is
harder to detect agents who shirk with respect to these matters.

In the general model presented in the work of Babaioff et al. (2006a), each of n agents
has a set of possible actions, the combination of actions by the players results in some
outcome, where this happens probabilistically. The main part of the specification of a
problem in this model is a function (the “technology”) that specifies this distribution for
each n-tuple of agents’ actions. Additionally, the problem specifies the principal’s utility
for each possible outcome, and for each agent, the agent’s cost for each possible action.
The principal motivates the agents by offering to each of them a contract that specifies a
payment for each possible outcome of the whole project. Key here is that the actions of
the players are non-observable (“hidden-actions”) and thus the contract cannot make the
payments directly contingent on the actions of the players, but rather only on the outcome
of the whole project.

Given a set of contracts, each agent optimizes his own utility; i.e., chooses the action that
maximizes his expected payment minus the cost of the action. Since the outcome depends
on the actions of all players together, the agents are put in a game here and are assumed
to reach a Nash Equilibrium (NE). The principal’s problem is that of designing the optimal
contract: i.e. the vector of contracts to the different agents that induce an equilibrium that
will optimize his expected utility from the outcome minus his expected total payment. The
main difficulty is that of determining the required Nash equilibrium point.

Our interest in this paper, as in the work of Babaioff et al. (2006a), is focused on the
binary case: each agent has only two possible actions “exert effort” and “shirk” and there
are only two possible outcomes “success” and “failure”. Our motivating examples come
from the following more restricted and concrete “structured” subclass of problem instances:
Every agent i performs a subtask which succeeds with a low probability ~; if the agent does
not exert effort and with a higher probability §; > ~;, if the agent does exert effort. The
whole project succeeds as a deterministic Boolean function of the success of the subtasks.
For example, the Boolean “AND” and “OR” functions represent the respective cases where
the agents are complementary (i.e., where the project succeeds if and only if all the agents
succeed) or substitutive (i.e., where the project succeeds if and only if at least one of the
agents succeeds). Yet, a more restricted subclass of problem instances are those technologies
that can be represented by “read-once” networks with two specified source and sink nodes,
in which every edge is labeled by a single agent, and the project succeeds (e.g., a packet
of information reaches the destination) if there is a successful path between the source and
the sink nodes.

1.2 This Paper: Mixed Equilibria

The focus in the work by Babaioff et al. (2006a) was on the notion of Nash-equilibrium in
pure strategies: we did not allow the principal to attempt inducing an equilibrium where
agents have mixed strategies over their actions. In the observable-actions case (where the
principal can condition the payments on the agents’ individual actions) the restriction to
pure strategies is without loss of generality: mixed actions can never help since they simply
provide a convex combination of what would be obtained by pure actions.

341



BABAIOFF, FELDMAN & NISAN

Yet, surprisingly, we show this is not the case for the hidden-actions case which we are
studying: in some cases, a Mixed-Nash equilibrium can provide better expected utility to
the principal than what he can obtain by equilibrium in pure strategies. In particular, this
already happens in the case of two substitutive agents with a certain (quite restricted) range
of parameters (see Section 3).

While inducing mixed strategy equilibria might be beneficial for the principal, mixed
Nash equilibrium is a much weaker solution concept than pure Nash equilibrium, as was
already observed by Harsanyi (1973). As opposed to Nash equilibria in pure strategies, the
guarantees that one obtains are only in expectation. In addition, any player can deviate from
his equilibrium strategy without lowering his expected payoff even if he expects all other
players to stick to their equilibrium strategies. Moreover, best-response dynamics converge
to pure profiles, and there is no natural dynamics leading to a mixed Nash equilibrium.
As a result, if the principal cannot gain much by inducing a Nash equilibrium in mixed
strategies, he might not be willing to tolerate the instability of this notion. Our main goal
is to quantify the principal’s gain from inducing mixed equilibrium, rather than pure. To do
that, we analyze the worst ratio (over all principal’s values) between the principal’s optimal
utility with mixed equilibrium, and his optimal utility with pure equilibrium. We term this
ratio “the price of purity” (POP) of the instance under study.

The price of purity is at least 1 by definition, and the larger it is, the more the principal
can gain by inducing a mixed equilibrium compared to a pure one. We prove that for
super-modular technologies (e.g. technologies with “increasing returns to scale”) which
contains in particular the AN D Boolean function, the price of purity is trivial (i.e., POP =
1). Moreover, we show that for any other Boolean function, there is an assignment of
the parameters (agents’ individual success probabilities) for which the obtained structured
technology has non trivial POP (i.e., POP > 1). (Section 4).

While the price of purity may be strictly greater than 1, we obtain quite a large number
of results bounding this ratio (Section 5). These bounds range from a linear bound for
very general families of technologies (e.g., POP < n for any anonymous or sub-modular
technology) to constant bounds for some restricted cases (e.g., POP < 1.154... for a family
of anonymous OR technologies, and POP < 2 for any technology with 2 agents).

Additionally, we study some other properties of mixed equilibrium. We show that mixed
Nash equilibria are more delicate than pure ones. In particular, we show that unlike the
pure case, in which the optimal contract is also a “strong equilibrium” (Aumann, 1959)
(i.e., resilient to deviations by coalitions), an optimal mixed contract (in which at least two
agents truly mix) never satisfies the requirements of a strong equilibrium (Section 6).

Finally, we study the computational hardness of the optimal mixed Nash equilibrium,
and show that the hardness results from the pure case hold for the mixed case as well
(Section 7).

2. Model and Preliminaries

We focus on the simple “binary action, binary outcome” scenario where each agent has two
possible actions (“exert effort” or “shirk”) and there are two possible outcomes (“failure”,
“success” ). We begin by presenting the model with pure actions (which is a generalization
of the model of Winter, 2004), and then move to the mixed case. A principal employs a set
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of agents N of size n. Each agent ¢ € N has a set of two possible actions A; = {0, 1} (binary
action), the low effort action (0) has a cost of 0 (¢;(0) = 0), while the high effort action (1) as
a cost of ¢; > 0 (¢;(1) = ¢;). The played profile of actions determine, in a probabilistic way,
a “contractible” outcome, o € {0, 1}, where the outcomes 0 and 1 denote project failure and
success, respectively (binary-outcome). The outcome is determined according to a success
function ¢ : A; x ... x A, — [0,1], where t(ai,...,a,) denotes the probability of project
success where players play with the action profile a = (ai,...,a,) € 41 X ... X A, = A.
We use the notation (¢, ¢) to denote a technology (a success function and a vector of costs,
one for each agent). We assume that everything but the effort of the agents is common
knowledge.

The principal’s value of a successful project is given by a scalar v > 0, where he gains
no value from a project failure. In this hidden-actions model the actions of the players are
invisible, but the final outcome is visible to him and to others, and he may design enforceable
contracts based on this outcome. We assume that the principal can pay the agents but not
fine them (known as the limited liability constraint). The contract to agent 7 is thus given
by a scalar value p; > 0 that denotes the payment that ¢ gets in case of project success. If
the project fails, the agent gets no money (this is in contrast to the “observable-actions”
model in which payment to an agent can be contingent on his action). The contracts to all
the agents public, all agents know them before making their effort decisions.

Given this setting, the agents have been put in a game, where the utility of agent ¢
under the profile of actions a = (a1,...,a,) € A is given by w;(a) = p; - t(a) — ci(a;). As
usual, we denote by a_; € A_; the (n — 1)-dimensional vector of the actions of all agents
excluding agent i. i.e., a—; = (ai,...,@i—1,841,...,a,). The agents will be assumed to
reach Nash equilibrium, if such an equilibrium exists. The principal’s problem (which is our
problem in this paper) is how to design the contracts p; as to maximize his own expected
utility u(a,v) = t(a) - (v — >,y pi), where the actions ar,...,a, are at Nash-equilibrium.
In the case of multiple Nash equilibria, in our model we let the principal choose the desired
one, and “suggest” it to the agents, thus focusing on the “best” Nash equilibrium.?

As we wish to concentrate on motivating agents, rather than on the coordination between
agents, we assume that more effort by an agent always leads to a better probability of
success. Formally, Vi € N,Va_; € A_; we have that ¢(1,a_;) > ¢(0,a_;). We also assume
that t(a) > 0 for any a € A.

We next consider the extended game in which an agent can mix between exerting effort
and shirking (randomize over the two possible pure actions). Let ¢; denote the probability
that agent i exerts effort, and let g_; denote the (n — 1)-dimensional vector of investment
probabilities of all agents except for agent i. We can extend the definition of the success
function ¢ to the range of mixed strategies, by taking the expectation.

t(qr, .- qn) = Z (Hq;-“ (1= )t (as, ..., an)

ac{0,1}n i=1

2. While in the pure case (Babaioff, Feldman, & Nisan, 2006b), the best Nash equilibrium is also a strong
equilibrium, this is not the case in the more delicate mixed case (see Section 6). Other variants of NE
exist. One variant, which is similar in spirit to “strong implementation” in mechanism design, would be
to take the worst Nash equilibrium, or even, stronger yet, to require that only a single equilibrium exists
(as in the work of Winter, 2004).
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Note that for any agent ¢ and any (g;,¢—;) it holds that ¢(¢;,q—i) = ¢i - t(1,q—;) + (1 — ¢) -
t(0,g—;). A mixed equilibrium profile in which at least one agent mixes with probability
pi € [0,1] is called a non-degenerate mixed equilibrium.

In pure strategies, the marginal contribution of agent ¢, given a_; € A_;, is defined to
be: Aj(a—;) =t(1,a—;) —t(0,a—;). For the mixed case we define the marginal contribution
of agent i, given q_; to be: A;(q—;) = t(1,q—;) — t(0,q—;). Since t is monotone, A; is a
positive function.

We next characterize what payment can result in an agent mixing between exerting
effort and shirking.

Claim 2.1 Agent i’s best response is to miz between exerting effort and shirking with prob-
ability q; € (0,1) only if he is indifferent between a; = 1 and a; = 0. Thus, given a profile
of strategies q_;, agent i mixes only if:

Ci Ci

Ailg—i)  t(1,q1) — (0, q—;)

which is the payment that makes him indifferent between exerting effort and shirking. The

pi =

expected utility of agent i, who exerts effort with probability q; is: u;(q) = ¢; - (A:((gii) — qi).
Proof: Recall that u;(q) = t(q) - pi — ¢ - ¢i, thus u;(q) = ¢; - uw;(1,q—;) + (1 — q;) - u; (0, g—;).
Since ¢ maximizes his utility, if ¢; € (0, 1), it must be the case that u;(1,q—;) = u;(0,q—;).
Solving for p; we get that p; = m O

A profile of mixed strategies ¢ = (q1,. .., qn) is a Mized Nash equilibrium if for any agent
1, q; is agent i’s best response, given q_;.

The principal’s expected utility under the mixed Nash profile ¢ is given by u(q,v) =
(v—P)-t(q), where P is the total payment in case of success, given by P =3, . m.
An optimal mized contract for the principal is an equilibrium mixed strategy profile ¢*(v)
that maximizes the principal’s utility at the value v. In Babaioff et al. (2006a) we show a
similar characterization of optimal pure contract a € A. An agent that exerts effort is paid
m, and the utilities are the same as the above, when given the pure profile. In the
pure Nash case, given a value v, an optimal pure contract for the principal is a set of agents
S*(v) that exert effort in equilibrium, and this set maximizes the principal’s utility at the
value v.

A simple but crucial observation, generalizing a similar one in the work of Babaioff
et al. (2006a) for the pure Nash case, shows that the optimal mixed contract exhibits some

monotonicity properties in the value.

Lemma 2.2 (Monotonicity lemma): For any technology (t,¢) the expected utility of
the principal at the optimal mized contract, the success probability of the optimal mized
contract, and the expected payment of the optimal mized contract, are all monotonically
non-decreasing with the value.

The proof is postponed to Appendix A, and it also shows that the same monotonicity
also holds in the observable-actions case. Additionally, the lemma holds in more general
settings, where each agent has an arbitrary action set (not restricted to the binary-actions
model considered here).
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We wish to quantify the gain by inducing mixed Nash equilibrium, over inducing pure
Nash. We define the price of purity as the worse ratio (over v) between the maximum
utilities that are obtained in mixed and pure strategies.

Definition 2.3 The price of purity POP(t,¢) of a technology (t,¢) is defined as the worse
ratio, over v, between the principal’s optimal utility in the mized case and his optimal utility
in the pure case. Formally,

(¢ ) (v~ gz >0 sy
HS* @) (v~ Tiese 565

where S*(v) denotes an optimal pure contract and g*(v) denotes an optimal mized contract,
for the value v.

POP(t,¢) = Supy=o

The price of purity is at least 1, and may be greater than 1, as we later show. Addi-
tionally, it is obtained at some value that is a transition point of the pure case (a point in
which the principal is indifferent between two optimal pure contracts).

Lemma 2.4 For any technology (t, ), the price of purity is obtained at a finite v that is a
transition point between two optimal pure contracts.

2.1 Structured Technology Functions

In order to be more concrete, we next present technology functions whose structure can be
described easily as being derived from independent agent tasks — we call these structured
technology functions. This subclass gives us some natural examples of technology functions,
and also provides a succinct and natural way to represent technology success functions.

In a structured technology function, each individual succeeds or fails in his own “task”
independently. The project’s success or failure deterministically depends, maybe in a com-
plex way, on the set of successful sub-tasks. Thus we will assume a monotone Boolean
function f :{0,1}™ — {0,1} which indicates whether the project succeeds as a function of
the success of the n agents’ tasks.

A structured technology function ¢ is defined by t(ai,...,a,) being the probability
that f(x1,...,2,) = 1 where the bits z1,...,x, are chosen according to the following
distribution: if a; = 0 then x; = 1 with probability 7; € [0,1) (and x; = 0 with probability
1 — ~;); otherwise, i.e. if a; = 1, then x; = 1 with probability ¢; > ~; (and z; = 0 with
probability 1 — §;). Thus, a structured technology is defined by n, f and the parameters
{6i,7i}ien-

Let us consider two simple structured technology functions, “AND” and “OR”. First
consider the “AND” technology: f(z1,...,x,) is the logical conjunction of z; (f(x) =
Nicn xi). Thus the project succeeds only if all agents succeed in their tasks. This is shown
graphically as a read-once network in Figure 1(a). For this technology, the probability
of success is the product of the individual success probabilities. Agent ¢ succeeds with
probability 07 - %.17(”, thus t(a) = [[;cny 07 72-17‘“.

Next, consider the “OR” technology: f(z1,...,z,) is the logical disjunction of z;
(f(z) = Vien ). Thus the project succeeds if at least one of the agents succeed in their
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E) 0% -+ 0B D

(a) AND technology (b) OR technology

Figure 1: AND and OR technologies. In AND (a), the project is successful if a packet is routed
along a linear path (where each agent controls an edge), and in OR (b), the project is
successful if a packet is routed at least along one edge.

tasks. This is shown graphically as a read-once network in Figure 1(b). For this technology,
the probability of success is 1 minus the probability that all of them fail. Agent ¢ fails with
probability (1 — ;)% - (1 — ;)% thus t(a) =1 — [[en(1 — &)% - (1 — ;)17

These are just two simple examples. One can consider other more interesting examples
as the Majority function (the project succeed if the majority of the agents are successful),
or the OR-Of-ANDs technology, which is a disjunction over conjunctions (several teams,
the project succeed if all the agents in any one of the teams are successful). For additional
examples see the work of Babaioff et al. (2006a).

A success function t is called anonymous if it is symmetric with respect to the players.
Le. t(a1,...,a,) depends only on >, a;. For example, in an anonymous OR technology
there are parameters 1 > & > v > 0 such that each agent i succeed with probability v
with no effort, and with probability § > v with effort. If m agents exert effort, the success
probability is 1 — (1 —§)™ - (1 — )"~ ™.

A technology has identical costs if there exists a ¢ such that for any agent i, ¢; = c.
As in the case of identical costs the POP is independent of ¢, we use POP(t) to denote
the POP for technology ¢ with identical costs. We abuse notation and denote a technology
with identical costs by its success function ¢. Throughout the paper, unless explicitly stated
otherwise, we assume identical costs. A technology ¢ with identical costs is anonymous if t
is anonymous.

3. Example: Mixed Nash Outperforms Pure Nash!

If the actions are observable (henceforth, the observable-actions case), then an agent that
exerts effort is paid exactly his cost, and the principal’s utility equals the social welfare.
In this case, the social welfare in mixed strategies is a convex combination of the social
welfare in pure strategies; thus, it is clear that the optimal utility is always obtained in pure
strategies. However, surprisingly enough, in the hidden-actions case, the principal might
gain higher utility when mixed strategies are allowed. This is demonstrated in the following
example:
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500,

100

Figure 2: Optimal mixed contracts in OR technologies with 2 agents. The areas indicated by “0”,
“1”, and “2” correspond to areas where it is optimal that 0, 1, or 2 agents, respectively,
exert effort with probability 1. The white area corresponds to both agents exert effort
with the same non-trivial probability, g. For any fixed -, ¢ increases in v.

Example 3.1 Consider an anonymous OR technology with two agents, where ¢ =1, v =
Y= =1-8 =1-08 =009 and v = 348. It holds that t(0,0) = 1 — (1 — )% =
0.172,¢(0,1) = t(1,0) =1 — (1 —4)(1 — §) = 0.9181, and t(1,1) =1 — (1 — §)? = 0.992.

Consider the mized strategy q1 = q2 = 0.92. It holds that: t(0,0.92) = 0.08 - £(0,0) +
0.92-¢(0,1) = 0.858, ¢(1,0.92) = 0.92 - ¢(1,1) 4+ 0.08 - t(1,0) = 0.986, and t(0.92,0.92) =
0.082 - £(0,0) 4+ 0.08 - 0.92 - t(0,1) - 2 + 0.922 - £(1,1) = 0.976. The payment to each player
under a successful project is p;(0.92,0.92) = m = 7.837, thus the principal’s
utility under the mized strategies g1 = g2 = 0.92 and v = 348 is 1((0.92,0.92),348) =
t(0.92,0.92) - (348 — 2 - 7.837) = 324.279.

While the principal’s utility under the mized profile 1 = qo = 0.92 is 324.279, the
optimal contract with pure strategies is obtained when both agents exert effort and achieves
a utility of 318.3. This implies that by moving from pure strategies to mix strategies, one
gains at least 324.27/318.3 > 1.0187 factor improvement (which is approzimately 1.8% ).

A worse ratio exists for the more general case (in which it does not necessarily hold that
d=1—7) of v =0.0001, 6 = 0.9 and v = 233. For this case we get that the optimal pure
contract is with one agent, gives utility of 208.7, while the mixed contract ¢ = g2 = 0.92
gives utility of 213.569, and the ratio is at least 1.0233 (approximately 2.3%).

To complete the example, Diagram 2 presents the optimal contract for OR of 2 agents,
as a function of v (when 6 =1 — ) and v. It shows that for some parameters of v and v,
the optimal contract is obtained when both agents exert effort with equal probabilities.

The following lemma (proved in Appendix A.1) shows that optimal mixed contracts in
any anonymous OR technology (with n agents) have this specific structure. That is, all
agents that do not shirk, mix with exactly the same probability.
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Lemma 3.2 For any anonymous OR technology (any § > v,c¢,n) and value v, either the
optimal mized contract is a pure contract, or, in the optimal mized contract k € {2,...n}
agents exert effort with equal probabilities g1 = ... = qx € (0,1), and the rest of the agents
exert no effort.

4. When is Pure Nash Good Enough?

Next, we identify a class of technologies for which the price of purity is 1; that is, the
principal cannot improve his utility by moving from pure Nash equilibrium to mixed Nash
equilibrium. These are technologies for which the marginal contribution of any agent is non-
decreasing in the effort of the other agents. Formally, for two pure action profiles a,b € A
we denote b > a if for all j, bj =; a; (effort b; is at least as high as the effort a;).

Definition 4.1 A technology success function t exhibits (weakly) increasing returns to
scale (IRS)? if for every i, and every pure profiles b = a

t(bi, b,Z) — t(ai, b,Z) Z t(bi, a,i) — t(ai, a,i)

Any AND technology exhibits IRS (Winter, 2004; Babaioff et al., 2006a). For IRS
technologies we show that POP = 1.

Theorem 4.2 Assume that t is super-modular. For any cost vector ¢, POP(t,¢) = 1.
Moreover, a non-degenerate mized contract is never optimal.

Proof. For a mixed profile ¢ = (q1, 2, - .., qn), let S(q) be the support of ¢, that is, i € S(q)
if and only if ¢; > 0, and for any agent i € S(q) let S_; = S(q) \ {i} be the support of ¢
excluding ¢. Similarly, for a pure profile a = (a1, ag, ..., a,) let S(a) be the support a. Under
the mixed profile ¢, agent i € S(q) is being paid p;(q—;) = m. Similarly, under
the pure profile a, agent ¢ € S(a) is being paid p;(S(a) \ {i}) = pi(a—;) = t(S(a))—tc(iS(a)\{i})’
where ¢(T) is the success probability when a; =1 for j € T, and a; = 0 for j ¢ T. We also
denote A;(T) = t(T) — (T \ {i}).

We show that if ¢ is a non-degenerate mixed profile (i.e., at least one agent in ¢ exerts
effort with probability ¢; € (0, 1)), the profile in which each agent in S(q) exerts effort with
probability 1 yields a higher utility to the principal.

By Lemma 5.3 (see Section 5), it holds that p;(¢—;) > minrcs , pi(T), where p;(T) =
%. But if ¢ exhibits IRS, then A;(7T) is an increasing function by definition (see Sec-
tion 4), therefore minrcg ;, pi(T) = pi(S—i). Therefore it holds that for any i € S(q),

pi(g—i) > pi(S—;), thus:
Z pi(q—i) > Z pi(S_;)

i€S(q) i€S(q)

3. Note that ¢ exhibits IRS if and only if it is super-modular.
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In addition, due to the monotonicity of ¢, it holds that ¢(¢) < ¢(S(gq)). Therefore,

u(q,v) = tq) |v— Z pi(g-i)

1€5(q)

AN

t(S(q) | v— Z pi(q-i)

i€S(q)

< HS(e) [v— Y pilS=)

i€S(q)
= u(S(q),v)
where u(S(q),v) is the principal’s utility under the pure profile in which all the agents in
S(q) exert effort with probability 1, and the rest exert no effort. O

We show that AN D (on some subset of bits) is the only function such that any structured
technology based on this function exhibits IRS, that is, this is the only function such that for
any choices of parameters (any n and any {d;,7; }icn), the structured technology exhibits
IRS. For any other Boolean function, there is an assignment for the parameters such that the
created structured technology is essentially OR over 2 inputs (Lemma B.1 in Appendix B),
thus it has non-trivial POP (recall Example 3.1). For the proof of the following theorem
see Appendix B.

Theorem 4.3 Let f be any monotone Boolean function with n > 2 inputs, that is not
constant and not a conjunction of some subset of the input bits. Then there exist parameters
{7i, 0i}1, such that the POP of the structured technology with the above parameters (and
identical cost ¢ =1) is greater than 1.0233.

Thus, our goal now is to give upper bounds on the POP for various technologies.

5. Quantifying the Gain by Mixing

In this section we present bounds on the price of purity for general technologies, following
by bounds for the special case of OR technology.

5.1 POP for General Technologies

We first show that the POP can be bounded by the principal’s price of unaccountabil-
ity (Babaioff et al., 2006b), whose definition follows.

Definition 5.1 The principal’s price of unaccountability POUp(t,¢) of a technology (t, )
is defined as the worst ratio (over v) between the principal’s utility in the observable-actions
case and the hidden-actions case:

t(Soa(v)) - v — Zz‘esga(v) Ci

(5*(0)) v = Xies+(v) Bracy)

where S}, (v) is the optimal pure contract in the observable-actions case, and S*(v) is the
optimal pure contract in the hidden-actions case.

POUp(t,c) = Supv>0t
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Theorem 5.2 For any technology t it holds that POUp(t) > POP(t).

Proof: Both POUp(t) and POP(t) are defined as supremum over utilities ratio for a given
value v. We present a bound for any v, thus it holds for the supremum. The denominator in
both case is the same: it is the optimal utility of the principal in the hidden-actions case with
pure strategies. The numerator in the POP is the optimal principal utility in the hidden-
actions case with mixed strategies. Obviously, this is at most the optimal principal utility
in the observable-actions case with mixed strategies. It has already been observed that in
the observable-actions case mixed strategies cannot help the principal (see Section 3), i.e
the principal utility with mixed strategies equals the principal utility with pure strategies.
The assertion of the theorem follows by observing that the optimal principal utility with
pure strategies in the observable-action case is the numerator of POUp. O

However, this bound is rather weak. To best see this, note that the principal’s price of
unaccountability for AND might be unbounded (e.g., Babaioff et al., 2006b). Yet, as shown
in Section 4.2, POP(AND) =

In this section we provide better bounds on technologies with identical costs. We begin
by characterizing the payments for a mixed contract. We show that under a mixed profile,
each agent in the support of the contract is paid at least the minimal payment to a single
agent under a pure profile with the same support, and at most the maximal payment.

For a mixed profile ¢ = (¢1,92,...,¢n), let S(¢g) be the support of ¢, that is, i € S(q)
if and only if ¢; > 0. Similarly, for a pure profile a = (a1,as2,...,a,) let S(a) be the
support a. Under the mixed profile ¢, agent i € S(q) is being paid p;(q—;) = m.
Similarly, under the pure profile a, agent ¢ € S(a) is being paid p;(S(a) \ {i}) = pi(a—;) =
t(S(a))_tc(iS(a)\{i}), where ¢(T") is the success probability when a; =1 for j € T, and a; =0

forj ¢ T.

Lemma 5.3 For a mized profile ¢ = (q1,q2,---,qn), and for any agent i € S(q) let S_; =
S(q) \ {i} be the support of q excluding i. It holds that

mazrcs_, pi(T) > pi(q-i) > minpcs_, pi(T)

Proof: We show that for any agent i € S(q), the increase in the success probability from him
exerting effort when some other players play mixed strategies, is a convex combination of
the increases in the success probability when the agents in the support play pure strategies.

Recall that: ¢(q1,...,qn) = X0y (TI2r 4" - (1 = a) 9Nt (ay, ..., an).

Let ¢’ be the technology ¢ restricted to the support S = S(q), that is, if 41,...,ig are
the agents in S then t'(a;,, @iy, . .., aiy) is defined to be the value of ¢ on a, when a; = 0
for any agent j ¢ S, and aj = a;, for j =i € S. ¢’ is defined on mixed strategies in the
expected way. Thus,

Ai(g-i) = t(1,q9-:) —t(0,q-)
= t'(1,q5_,) —t'(0,gs_,)

= > (I &-a-gpthraa— > (][] ¢ 1=g)" ) (0,a)

ac{0,1}151-1 j€S_; ac{0,1}151-1 j€S_;

= > (II 47 - =g =) (1,0) - #(0,a))

ac{0,1}151-1 jES_;
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We conclude that A;(¢g—;) is a convex combination of A;(b_;) for b with support S(b) C
S_;. Therefore, minpcs_, (t({i} UT) —t(T)) < Ai(q—i) < mazxpcs_, (t({i} UT)—t(T)).
Thus,

mazrcs_, 1/(t({i} UT) —U(T)) = 1/minpcs , ((({i}UT)—¢(T))
1/Ai(q-i) = pi(g—:)

/mazrcs_, (t({i} U T) —¢(T))
minrcs_, 1/(t({i} UT) —(T))

(AVANAY]

O
In what follows, we consider two general families of technologies with n agents: anony-
mous technologies and technologies that exhibit decreasing returns to scale (DRS). DRS
technologies are technologies with decreasing marginal contribution (more effort by others
decrease the contribution of an agent). For both families we present a bound of n on the
POP.
We begin with a formal definition of DRS technologies.

Definition 5.4 A technology success function t exhibits (weakly) decreasing returns to
scale (DRS)* if for every i, and every b = a

t(bi, bfi) — t(a,;, bfz) S t(bi, a,i) — t(ai, a,i)

Theorem 5.5 For any anonymous technology or a (non-anonymous) technology that ex-

hibits DRS, it holds that POP(t) < n.

For the proof of this theorem as well as the proofs of all claims that appear later in this
section, see Appendix C. We also prove a bound on the POP for any technology with 2
agents (even not anonymous), and an improved bound for the anonymous case.

Theorem 5.6 For any technology t (even non-anonymous) with 2 agents, it holds that
POP(t) <2. Ift is anonymous then POP(t) < 3/2.

We do not provide bounds for non-anonymous technologies, this is left as an open
problem for future research. We believe that the linear bound for anonymous and DRS
technologies are not tight and we conjecture that there exists a universal constant C' that
bounds the POP for any technology. Moreover, our simulations seem to indicate that a non-
anonymous OR technology with 2 agents yields the highest possible POP. This motivates
us to explore the POP for the OR technology in more detail.

5.2 POP for the OR Technology

As any OR technology (even non-anonymous) exhibits DRS (see Appendix A.1), this implies
a bound of n on the POP of the OR technology. Yet, for anonymous OR technology we
present improved bounds on the POP. In particular, if y =1 —§ < 1/2 we can bound the
POP by 1.154....

4. Note that ¢t exhibits DRS if and only if it is submodular.
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Theorem 5.7 For any anonymous OR technology with n agents:

1. If1 >0 >~v>0: (a)POP<#<n (n—1)3. (b) POP goes to 1 as n goes
to oo (for any fized 6) or when & goes to 1 (for any fivzed n > 2).
2. If1>~v=1-6>0: (a) POP < 2(3_72\/‘5’)(: 1.154..). (b) POP goes to 1 as y goes

3(V3-2)
to 0 or as v goes to & 5 (for any fived n > 2).

While the bounds for anonymous OR technologies for the case in which § =1 — v are
much better than the general bounds, they are still not tight. The highest POP we were able
to obtain by simulations was of 1.0233 for 6 > ~, and 1.0187 for § = 1 — ~ (see Section 3),
but deriving the exact bound analytically is left as an open problem.

6. The Robustness of Mixed Nash Equilibria

In order to induce an agent ¢ to truly mix between exerting effort and shirking, p; must
be equal exactly to ¢;/A;(q—;) (see claim 2.1). Even under an increase of € in p;, agent
1 is no longer indifferent between a; = 0 and a; = 1, and the equilibrium falls apart.
This is in contrast to the pure case, in which any p; > # will maintain the required
equilibrium. This delicacy exhibits itself through the robustness of the obtained equilibrium
to deviations in coalitions (as opposed to the unilateral deviations as in Nash). A “strong
equilibrium” (Aumann, 1959) requires that no subgroup of players (henceforth coalition)
can coordinate a joint deviation such that every member of the coalition strictly improves
his utility.

Definition 6.1 A mized strategy profile ¢ € [0,1]" is a strong equilibrium (SE) if there
does not exist any coalition I' C N and a strategy profile qf. € X;cr(0,1] such that for any
i€, ui(q p,ar) > ui(q).

In the work of Babaioff et al. (2006b) we show that under the payments that induce the
pure strategy profile S* as the best pure Nash equilibrium (i.e., the pure Nash equilibrium
that maximizes the principal’s utility), S* is also a strong equilibrium. In contrast to the
pure case, we next show that any non-degenerate mixed Nash equilibrium ¢ in which there
exist at least two agents that truly mix (i.e., 3i # j s.t. ¢;,q; € (0,1)), can never be a strong
equilibrium. This is because if the coalition I" = {i|¢; € (0,1)} deviate to ¢f in which each
i € I exerts effort with probability 1, each agent i € I' strictly improves his utility (see
proof in Appendix D).

Theorem 6.2 If the mized optimal contract q includes at least two agents that truly mix
(Fi # 37 st qi,q; € (0,1)), then q is not a strong equilibrium.

In any OR technology, for example, it holds that in any non-degenerate mixed equilib-
rium at least two agents truly mix (see lemma 3.2). Therefore, no non-degenerate contract
in the OR technology can be a strong equilibrium.

As generically a mixed Nash contract is not a strong equilibrium while a pure Nash
contract always is, if the pricipal wishes to induce a strong Nash equilibrium (e.g., when
the agents can coordinate their moves), he can restrict himself to inducing a pure Nash
equilibrium, and his loss from doing so is bounded by the POP (see Section 5).
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7. Algorithmic Aspects

The computational hardness of finding the optimal mixed contract depends on the repre-
sentation of the technology and how it is being accessed. For a black-box access and for
the special case of read-once networks, we generalize our hardness results of the pure case
(Babaioff et al., 2006b) to the mixed case. The main open question is whether it is possible
to find the optimal mixed contract in polynomial time, given a table representation of the
technology (the optimal pure contract can be found in polynomial time in this case). Our
generalization theorems follow (see proofs in Appendix E).

Theorem 7.1 Given as input a black box for a success function t (when the costs are
identical), and a value v, the number of queries that is needed, in the worst case, to find the
optimal mized contract is exponential in n.

Even if the technology is a structured technology and further restricted to be the source-
pair reliability of a read-once network (see (Babaioff et al., 2006b)), computing the optimal
mixed contract is hard.

Theorem 7.2 The optimal mixed contract problem for read once networks is #P-hard
(under Turing reductions).

8. Conclusions and Open Problems

This paper studies a model in which a principal induces a set of agents to exert effort through
individual contracts that are based on the final outcome of the project. The focus of this
paper is the question how much the principal can benefit when inducing a Nash equilibrium
in mixed strategies instead of being restricted to a pure Nash equilibrium (as was assumed
in the original model). We find that while in the case of observable actions mixed equilibria
cannot yield the principal a higher utility level than pure ones, this can indeed happen
under hidden actions. Yet, whether or not mixed equilibria improve the principal’s utility
depends on the technology of the project. We give sufficient conditions for technologies
in which mixed strategies yield no gain to the principal. Moreover, we provide bounds on
the principal’s gain for various families of technologies. Finally, we show that an optimal
contract in non-degenerated mixed Nash equilibrium is not a strong equilibrium (in contrast
to a pure one) and that finding such an optimal contract is computationally challenging.

Our model and results raise several open problems and directions for future work. It
would be interesting to study the principal’s gain (from mixed strategies) for different
families of technologies, such as series-parallel technologies. Additionally, the model can be
extended beyond the binary effort level used here. Moreover, our focus was on inducing some
mixed Nash equilibrium, but that equilibrium might not be unique. One can consider other
solution concepts such as a unique Nash equilibrium or iterative elimination of dominated
strategies. Finally, it might be of interest to study the performance gap between pure and
mixed Nash equilibria in domains beyond combinatorial agency.
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Appendix A. General

Lemma 2.2 (Monotonicity lemma) For any technology (t,¢) the expected utility of
the principal at the optimal mized contract, the success probability of the optimal mized
contract, and the expected payment of the optimal mixed contract, are all monotonically
non-decreasing with the value.
Proof: Suppose the profiles of mixed actions ¢! and ¢? are optimal for v; and vy < vy,
respectively. Let P! and P? be the total payment in case a successful project, corresponding
to the minimal payments that induce ¢* and ¢? as Nash equilibria, respectively. The utility
is a linear function of the value, u(a,v) = t(a) - (v — P) (P is the total payments in case
of successful project). As ¢! is optimal at vy, u(q',v1) > u(¢? v1), and as t(a) > 0 and
v1 > v2, u(g?,v1) > u(q?,v2). We conclude that u(q',v1) > u(q? v2), thus the utility is
monotonic non-decreasing in the value.

Next we show that the success probability is monotonic non-decreasing in the value. ¢!
is optimal at vy, thus:

Ha') - (v1 — PY) = (¢ - (v1 — P?)

¢? is optimal at v, thus:

t(q®) - (v2 — P?) 2 t(q") - (v2 — P*)

Summing these two equations, we get that (t(q') —t(¢?)) - (v1 —ve) > 0, which implies that
if v1 > vy then t(q!) > t(¢?).

Finally we show that the expected payment is monotonic non-decreasing in the value.
As ¢? is optimal at vy and t(q') > t(¢?), we observe that:

t(q?) - (va — P?) > t(q) - (va — PY) > t(¢?) - (v — PY)

or equivalently, P2 < P!, which is what we wanted to show. O
We note that the above lemma also holds for the case of profiles of pure actions, and
for the observable-actions case (by exactly the same arguments).

Lemma 2.4 For any technology (t, ), the price of purity is obtained at a finite v that is a
transition point between two optimal pure contracts.

Proof. Clearly for a large enough value v*, the ratio is 1, as in both cases all agents exert
maximal effort. For small enough values the principal will choose not to contract with any
agent in both cases (and the ratio is 1). This is true as at a value that is smaller than any
agent’s cost, an optimal contract is to contract with no agent in both cases. Let v be the
supremum on all values for which the principal will choose not to contract with any agent
in both cases. Now, the ratio is a continuous function on the compact range [v, v*], thus its
supremum is obtained, for some value that is at most v*.
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We have seen that the POP is obtained at some value v, we next prove that it is obtained
at a transition point of the pure case. If POP = 1 the claim clearly holds, thus we should
only consider the case that POP > 1. Let v be the mazimal value for which the POP is
obtained. Assume in contradiction that v is not a transition point between two optimal
pure contracts, and that a and g are optimal for the pure and mixed cases, respectively. As
POP > 1, q is non-degenerate and u(q,v) > u(a,v). Let P(a) and P(q) denote the total
payment in case of success for a and ¢, respectively. We next consider two options.

We first consider the case that ¢(a) > t(q). We show that in this case, the utilities ratio
for v — €, for some € > 0 is worse than the utilities ratio for v, and we get a contradiction.
For € > 0 small enough, the optimal pure contract is still a, and u(q,v —€) > 0. Let g_. be
the optimal mixed contract at v — e. It holds that

wg-c,v—€) _ ulgv—e) _ ulg,v) —taq)-

POP 2 wla,v—¢) ~ula,v—¢€) u(a,v)—ta)-

where the last strict inequality is by the following argument.

u(q,v) —t(q) - € - u(q,v)

u(a,v) — ta) € ula,) Hq) - u(a,v) <) -ulgv) & Plg) < Pla)

and P(q) < P(a) as u(q,v) =t(¢q)(v — P(q)) > t(a)(v — P(a)) = u(a,v) and t(a) > t(q).
Next we consider the case that t(q) > t(a). If P(q) < P(a), the argument that was
presented above shows that the utilities ratio for v — ¢, for some € > 0, is worse than the
utilities ratio for v, and we get a contradiction. On the other hand, if P(q) > P(a) we show
that the utilities ratio for v + €, for some € > 0, is at least as large as the utilities ratio for
v, in contradiction to v being the maximal value for which the POP is obtained. For € > 0
small enough, the optimal pure contract is still a (as v is not a transition point between
pure contracts). Let ¢. be the optimal mixed contract at v + €. It holds that
ulge,vte)  ulg,vte)  ulgw) +tg) e ulg,v)

POP 2 u(a,v+¢€) = u(a,v + €) - u(a,v) +t(a)-€ ~ ula,v)

where the last inequality is by the following argument.

ulg,v) +4(q) - €  ulg,v)

w(a,v) +i(a) €~ ula,v) < t(q) - u(a,v) > t(a) -u(q,v) < P(q) > Pla)

which holds by our assumption. O
The following corollary of Lemma 2.4 will be helpful in finding the POP for technologies
with 2 agents.

Corollary A.1 Assume that technology t with 2 agents and with identical costs exhibits
DRS, then the POP is obtained at the transition point of the pure case, to the contract with
both agents.

Proof: By Lemma 2.4 the POP is obtained at a transition point of the pure case. If there
is a single transition point, between 0 agents and 2 agents, the claim holds. If contracting
with a single agent is sometimes optimal, it must be the case that the single agent that is
contracted is the agent with the (possibly weakly) highest success probability (agent i such
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that ¢({i}) > t({j}) where j # ¢, which implies that A; = t({1})—t(0) > t({j})—t(0) = A;).
Thus we only need to show that the POP is not obtained at the transition point v between
0 agents and the contract with agent i. Assume that ¢ is the optimal mixed contract at
v, and that P(q) is the total payment in case of success. If ¢ gives the same utility as the
contract {i}, we are done.

Otherwise, u(g,v) > u({i},v) , and by Corollary C.9 it holds that P(q) > &, thus
t(q) > t({i}). This implies that the utilities ratio at the value v + € for € > 0 small enough
is worse than the ratio for v (by the argument presented in Lemma 2.4 for the case that

t(q) > t(a)). =

A.1 Analysis of the OR Technology

Lemma 3.2 For any anonymous OR technology (any 6 > v,¢,n) and value v, either the
optimal mized contract is a pure contract, or, in the optimal mized contract k € {2,...n}
agents exert effort with equal probabilities q1 = ... = q € (0,1), and the rest of the agents
exert no effort.

Proof: First, observe that it cannot by the case that all agents but one exert no effort, and
this single agent mix with probability 0 < ¢; < 1. This is so as the principal would rather
change the profile to ¢; = 1 (pays the same, but gets higher success probability). Suppose
by contradiction that a contract that induces a profile (g;, g;,¢—i;) such that g;,¢; € (0,1]
and ¢; # q; (¢ > q; without loss of generality) is optimal. For agent k, we denote the
probability of failure of agent k in his task by ¢(gx). That is, ¢(qx) = 1 — (gpd+ (1 —qr)y) =
1=+ (y—=0)ge = + Bar, where g =~ — 4.

We show that for a sufficiently small € > 0, the mixed profile ¢’ = (¢; —¢, g; +e¢(( )),q ij)

(for € such that ¢’ € [0,1]. ie., € < min{qg;, (1 — %)iég?%}, ) obtains a better contract, in
J

contradiction to the optimality of the original contract.

For the OR technology, t(q) = 1 — [[;cn ¢(ar) = 1 — ®(q), where ®(q) = [rcn (k)
We also denote ®_;;(q) = [];..; ; #(qr). The change in success probability is related to the

new product ¢(g; —€) - ¢ (QJ + % )

N ). . e(b(Qj)
o(d) - 6(d)) = dlai — ) ¢>(qj+ o ))

— (6(g:) — Bo) - <¢<qj n ﬁ"“Z]’)
¢

P(ai)
(QJ)

I, 6 2 26(0))
= $(a:)8(aj) — Bedla;) + B Bola) = B2 L
gt 3220
—¢(Qz)¢(fb) B o(qi)
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Therefore the new success probability ¢(¢’) has increased by the change:

t(q) =tlqi —e,q; + Z;e q—ij)
RN SR ) A N
=1-¢(q —e) ¢<q]+ ¢(qi)> ®_i;(q)
=1- (¢(q¢)¢(q3') — 5262328?))) - ®_;5(q)

B2 ®(q)

B B220(q)
COR (1 ") <¢<q@->>2>

We denote z(€) = %, thus ¢(¢") = t(q) - (1 + z(¢)), where z(€) > 0 for any e.

After showing that the success probability increases, we are left to show that for suffi-
ciently small €, the total payment decreases. The payment to agent [ is given by:

- c _ c _ c-o(q)
Pt go) = t(0,q-) (6= N TLna (am) (6 —1) t(q)

The change in the payment of agent k is

= t(q) +

e (cb(qk) - (1%()@))

- t(q) - (0 —~) - (1+ z(e)) ) (¢(Qk) — o(qp) + d(qr) - 2(6))

W(e) - (dlar) — ¢lar) + p(ar) - 2(€))

for W(e) = srgra=) ey

For agent k # 1, j, as ¢(qi) = ¢(q;,) we get p — pj, = W(e) - #(qx) - z(€). For agent i, as
¢(q:) — ¢(q;) = Be we get p; — p; = W(e) - (Be+ ¢(q;) - 2(€)). For agent j, as ¢(q;) — ¢(q)) =
~BeGu we get pj — 1y = W(e) - (=Be gl +6(ay) - 2(6)).

By summing over all agents we get

Dook=Y v = D (ok—pi)

keN keEN keN
= (i—p)+ =)+ > (o —1h)
ki)
B ®(g;
= Wi(e)- (56—56¢ Z¢Qk>
keN
— wiar. [ s o(gj
—W()<B< S 4 k;vqbqk)
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which is positive by the following observations. W (e) > 0 and z(e) > 0 for any €, and clearly
Sken ¢(gk) > 0. Additionally, Be(1 — S24) > 0 as f =5 — 6 < 0, and ¢(¢;) < b(qj) as
Di > pj-

To conclude, we have show that the success probability of ¢’ is greater than the success
probability of ¢, and the payments are lower, thus the utility of the principal increases when
he moves from ¢ to ¢’, which is a contradiction to the optimality of q. O

Observation A.2 The OR technology exhibits DRS.

Proof Let r%,7% € [0,1]" be two profiles of actions, such that r® > 7% (for any 4, r? > r%).
We need to show that for every 4, t;(r?,r%,) — ;(r&,7%,) < t;(rb,7%,) — t;(r%,r%,). Indeed,

ti(rf, ) —ti(rfrty) = 1= =) [Ja-r) - - - [ =)

i i
= (P JJa-"H
i
< (t-rH -9
i
= 1-1-JJa-rH-a-a-rH]Ja-rD)
i i

= tl (Tf, T’g» - tz (7“?, Ta_l')

Appendix B. When is Pure Nash Good Enough?

Lemma B.1 Let f : {0,1}" — {0,1} for n > 2 be a monotone Boolean function that is
not constant and not a conjunction of some subset of the input bits. Then there exist an
assignment to all but two of the bits such that the restricted function is a disjunction of the
two bits.

Proof: By induction on the number of bits the function depends on. The base case is n = 2,
where the only monotone function that is not constant and not a conjunction of some subset
of the input bits is the disjunction of two input bits.

Let x; be a variable on which f depends (which must exist since f is not constant). Let
flei=a — f(a,z_;) denote the function f restricted to z; = a. We denote h = fl#=0"and
g = fl*=1_ As f is monotone, f = x- fl#=1 4 fl#:=0 — .3 4 h where fl*i=1 > flzi=0 (that
is, for any z_;, if f(0,2_;) =1 then f(1,2_;) =1, and if f(1,2_;) = 0 then f(0,2_;) = 0).
If h is not constant and not a conjunction of some subset of the input bits, then we continue
by induction using h by setting = 0. Similarly If ¢ is not constant and not a conjunction
of some subset of the input bits, then we continue by induction using g by setting x = 1.

So we are left with the case where both h and g are conjunctions of some subset of
the variables (where the constant 1 is considered to be the conjunction of the empty set of
variables, and it is easy to verify that h and g cannot be the constant 0). Since f depends
on z;, we have that h # g, and since h < g, there exists some variable x; (j # 7) that is in
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the set of variables whose conjunction is h but not in that of g. Now set all variables but
z; and z; to 1, and we are left with x; + x;. O

Theorem B.2 Let f be any monotone Boolean function with n > 2 inputs, that is not
constant and not a conjunction of some subset of the input bits. Then there exist parameters
{7i,0i}1"1 such that the POP of the structured technology with the above parameters (and
identical cost ¢ = 1) is greater than 1.0233.

Proof: By Lemma B.1 there is an assignment to all but two variables such that the restricted
function over the two variables is an OR function. For these two variables we choose the
parameters according to the worst POP we know of for an OR technology (see Section 3).
For the rest of the variables we choose parameters such that for the value for which the
worst utilities ratio is achieved, all the rest of the agents exert no effort and provide success
probabilities that are (almost) the success probabilities dictated by the assignment. Next
we make this argument formal.

Recall that by Lemma B.1 there is an assignment to all but two variables such that the
restricted function over the two variables is an OR function. Let 71 and i be the indices of
these two variables. In Section 3 we have observed that for OR technology with two agents
with values v = 233, 11 = 79 = 0.0001 and §; = d2 = 0.9, the POP is at least 1.0233.
We embed this into an instance of an OR technology with n agents by considering a value
v = 233 and success probabilities as follows: For agents 41 and 1, let v;, = 73, = 0.0001 and
di; = 0i, = 0.9. For the rest of the agents, fix a sufficiently small € > 0. Then set §; =1 —¢
and ; = 1 — 2¢ if ¢ was set to 1 in the assignment, and set §; = 2¢ and ~; = € if ¢ was set
to 0 in the assignment.

When € > 0 is small enough the payment needed to induce every agent ¢ # i1,i9 to
exert effort (for any profile of efforts of the others) will be greater than v as it is inversely
proportional to the increase in the success probability due to i’s effort, and this goes to
zero with e. Thus, for a small enough e all agents ¢ # 1,42 will not exert effort in the
optimal contract, but each such agent ¢ will provide an almost sure success in the case
the assignment of variable ¢ is 1, and an almost sure failure in the case the assignment of
variable ¢ was zero. The created technology is essentially the same as the OR technology
with agents i1 and iy with 7;, = 7;, = 0.0001, ;; = d;, = 0.9, and for the value v = 233 the
POP will be at least 1.0233. O

Appendix C. Quantifying the Gain by Mixing
C.1 POP for n Agents

We observe that for any technology, the POP is bounded by the ratio between the success
probability when all agents exert effort, and the success probability when none of the agents
exert effort. This simple bound shows that if the success probability when none of the agents
exert effort is at least some positive constant, the POP is bounded by a constant.

Observation C.1 For any technology (t,¢) with set of agents N, POP(t) < %
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Proof: For any given value v, the utility of the principal with the optimal mixed Nash is
at most v - t(N), while the utility of the principal with the optimal pure Nash is at least
v - t(0), thus the POP is bounded by ”v'_tt((%) = % 0

From this point we only consider technologies with identical costs. The following lemma
shows that anonymous technologies as well as any technology that exhibits DRS have POP

at most n.

Lemma C.2 Assume that for a technology t with n agents the following holds: For any
optimal mized contract ¢ with support S, there is a pure profile a with support T C S such
that

o t(a) > %

e For each agenti € T, and any pure profile b with support R C S it holds that t(1,a_;)—
t(O, a_i) Z t(l, b_i) — t(O, b_i).

Then the POP(t) < n.

Proof: We first observe that P(a), the total payment under the profile a in the case of
success, is at most P(q), the total payment under the profile g. As T' C S, the set of agents
that are paid under a is a subset of the set of agents that are paid under ¢q. Each agent in
T is paid at least as much under ¢, as he is paid under a (by the second condition, as the
increase in success probability under ¢ is a convex combination of the increase in success
probability for pure profiles with support R C S). Thus, P(a) < P(q), and U(a) > 0. We

conclude that
ulg,v) _ U@~ Plg) _ ta) _ t(S)
u(a,v) = t(a)(v — P(a)) ~ t(a) ~ t(a)
where the last inequality is derived from the first condition. This implies that the POP is
bounded by n. O

<18]

Corollary C.3 For any anonymous technology t with n agents, POP(t) < n.

Proof. Assume that for the value v the mixed profile ¢ is optimal, and its support is of size
k. Let t,, be the success probability if m agents exert effort, and let A, = t,, — t;—1. Let
m* = argmaz,<pAm,.

By the definition of m* the second condition holds. The first condition holds as:

k-t > k-(to+tm—to) > to+k-(tm—1to) > totk - (tm—tm—1) = to+k-Ap, > to+(tk—t0) = tg

a

Corollary C.4 For any technology t with n agents that exhibits DRS and has identical
costs, POP(t) < n.

Proof: Let agent i € S be the agent with maximal individual contribution in S, the support
of ¢ (t({i}) > t({j}) for all j € S). DRS ensures that the two conditions of Lemma C.2
hold. O

The following holds for OR technology with n agents (even non-anonymous), as it ex-
hibits DRS. In particular, even if a single agent has §; > 1/2 we get a bound of 2 on the
POP.
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Observation C.5 Assume that the technology t with n agents (with identical costs) exhibits
DRS, then POP(t) < %, for agent i with mazximal individual contribution (t({i}) >
t({j}) for all j € N).

Proof: Let agent j € S be the agent with maximal individual contribution in S, the support
of ¢q. Following the proof of Lemma C.2, as t({i}) > t({j}) and P(q) > P({j}) > P({i}),
and u(g,v) > 0 ,this implies that u({i},v) > u({j},v) > 0. Thus the optimal pure contract
a* gives utility of at least u({i},v) > 0, therefore for any v we have the bound

ug.v) _ ulgv) _ @) —Pl) _ 1(S) _ H(N)
u(a*,v) =~ u({i},v)  t({ih) (v — P({i})) — t({i}) T t({d})
which implies that the POP is bounded by tt(({%)). O

Corollary C.6 For any anonymous technology with n agents that exhibits DRS, it holds
that POP(t) < .

C.2 POP for Anonymous OR
As OR exhibits DRS, the following in a direct corollary of Observation C.5.

Corollary C.7 For any anonymous OR technology with n agents, it holds that POP(OR) <
in

t1°

Theorem 5.7 For any anonymous OR technology with n agents:

1. If1 >0 >~>0: (a) POP < 1_(15_5)n <n—(n—-1)4. (b) POP goes to 1 as n goes
to oo (for any fized 6) or when & goes to 1 (for any fivzed n > 2).

2. IfL>~v=1-6>0: (a) POP < 2;5’\;;:[23)) (= 1.154..). (b) POP goes to 1 as ~y goes

to 0 or as 7y goes to % (for any fixed n > 2).

Proof. Based on Corollary C.7, POP < tt(lin) all the results are based on this bound.

(1,0”_1)’
1. Proof of part 1(a):
taan) 1—(1—-0)" <1—(1—5)”_1—(1—5)”
t(1,0m1) 1 - (1-6)1 -yt~ 1—-(1-05) 5

Additionally,

1—(1-6)" ‘X . -l ‘ n-1
m=2(1—5ﬁ =14+> (1-6Y <14> (1-8)=n—(n—1)d
J=1 j=1

j=0

and this concludes the proof.
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2. Proof of part 1(b):
tar) 1—(1-9)"

t(1,0n=1) 71— (1—6)(1 — )1

this expression goes to 1 for any fixed 6 > v > 0, when n goes to 0o, as (1 — §)™ and
(1 —~)""! goes to zero.

Additionally, we saw that POP < ﬂ, thus it is clear that if n is fixed and &
goes to 1, the POP goes to 1.

3. Proof of part 2(a): We first bound the POP for the case of anonymous OR with 2
agents and with v =1 — ¢ < 1/2. For this case the POP is bounded by

tH1,1)  6(2—94)

0,1)  02—6+1

The derivative of this ratio is %, which equals to zero at § = /3 — 1. This is

a maximum point since the second derivative is negative, and the ratio at this point
equals to 1.154... Therefore, ¢1L,1) < 1.154... Observation C.8 below shows that for

#(1,0)
any n > 2 it holds that t(f(gﬁl) < at B thus the same bound holds for any n.

1
#(0,

4. Proof of part 2(b): The expression t(lt(olﬁl) = 1_7%17_7:)”,1 goes to 1 when ~ goes to 0
1

or 5.

a

For anonymous OR technology with n agents and 7 = 1 — 4§ < 1/2 we can bound the
POP by 1.154...

Observation C.8 Let OR,, , denote the anonymous OR technology of n agents with v =
1 -9 <1/2. For any k > 3 it holds that

ORy, (1k) ORyj_4 (1k_1)
POP < Y < i
OP(ORky) < ORy,(1,01) = ORg_1(1,02)

thus for any k > 3 it holds that

ORy,.,(1F) ORs~(1,1)
POP < Y < Y\
OP(ORy,) < ORy~(1,05-1) = ORy(1,0)

< 1.154...

Proof. For the technology ORy 5 it holds that

ORL(%) 14
ORy, -(1,0F—1) S l—y- (1 =)kt

Thus we need to show that for any & > 3

1f7k 1*’7k_1

<
L=y (I=y)kt 71—y (1 —y)r2

362



MIXED STRATEGIES IN COMBINATORIAL AGENCY

which holds if and only if

A € ) L o R O o) Ll I L O € I ) L A € ) L

which holds if and only if
ANy A=) = (=) A A=) (=) =) 20
by dividing by 42 - (1 — «), this holds if and only if
TP+ A=) T =) -209) 2 0
which holds as 1 —~ > v thus (1 —¥)*™3 > ~+*3 and +#2. (1 —9)F 31 -2-4)>0. O

C.3 POP for 2 Agents

Let us now consider the case that n = 2, and prove a better bound on the POP. We have
shown that the POP for IRS technology is 1. Since an anonymous technology with 2 agents
exhibits either IRS or DRS, we only need to handle the DRS case. Let Ay = t; — tg and
Ag = tg — t1. Assume that A; = o+ Ag for some o > 1 (DRS).

The following is a corollary of Lemma 5.3.

Corollary C.9 For a DRS technology over 2 agents, assume w.l.o.g. that t({1}) > t({2})
and denote Ay = t({1}) — t(0). For any mized profile ¢ = (qi,q2) it holds that each agent
18 paid at least A%.

Proof: As t({1}) > t({2}) it implies that Ay = ¢({1}) — t(0) >
implies that A; = ¢({1}) — t(0) > t({1,2}) — t({1}) and t({2}) -
thus Lemma 5.3 implies that each agent is paid at least x-

t({2}) — t(0), and DRS
() 2 ¢1,2)) - e {2),
Theorem C.10 For any anonymous technology t with 2 agents, it holds that the POP(t) <
3/2.

Proof: Let u((q1,q2),v) be the utility of the principal for mixed profile (g1, g2) when his value
for the project is v. Let P(q1,q2) denote the total payment to both agents if the project is
successful. Similarly, let u((a1,as),v) be the utility of the principal for pure profile (a;, as)
when his value is v.

For a given value v, let (q1,¢2) be the optimal mixed contract, and let (aj,as) be the
optimal pure contract. We show that for any value v it holds that % < 3/2, which
is sufficient to prove the theorem.

If the optimal mixed profile is a pure profile, the ratio is 1, thus we only need to handle
the case that the profile (g1, ¢2) is not pure (a non-degenerate mixed contract). In this case,
asu((q1,492),v) = t(q1,92)-(v—P(q1,q2)) > 0, it holds that v—P(q1, g2) > 0. By corollary C.9
this implies that u((1,0),v) > 0 as P(q1,q2) > & Thus u((a1,a2),v) > u((1,0),v) > 0, so

u((q1,G2),v)
u((1,0),v)

u((q1,G2),v)
u((ay,az2),v)

<

<

t(q1,42) (v — P(q1, q2)) < t(q, 2) (171) _te
HLOw—2) = 0,
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Now we consider two cases. First we consider the case that tg > As. In this case

u((qth)”U) t2_t0+A1+A2<A2+Q'A2+A2_2+O¢_1+ 1 <

YTt to+AL T MAt+a-Ay 1+a 1+a

[\CR V]

u((a1,az2),v
to replace ty with As we use Lemma C.13.

Next we consider the case that tg < As. In this case we look at the value v* for which
the principal is independent between contracting with 1 or 2 agents. At v = v* it holds
that £(1,0) - (v — &) = t(1,1) - (v — 2%), thus v- Ag = v+ (bp — 1) = ta 35 — t1 - 7%, thus
it holds that v = (A B2 (2 - tg — t1). For a value v < v* it is enough to bound the ratio
ullana2)v) - ywe hound

Ua1:02)v) " hile for a value v > v* it is enough to bound the ratio )
ﬁlo) 'U) u((lvl)vv)
each of these ratios separately.
By Lemma C.13, for the case that 0 < tg < Ao, t1 tOJ{OAﬁLA? < (12‘2)?2 =1+ é
For a value v < v*
2
ullar, g2),v) _ ta,42)(v = Plar,q2)) _t2 v—Plaaz) _ [, PRED i A <
u((1,0),v) — t(1,0)(v — x7) Tt v— A o U—A% -
1+ L 1 L
« % : Al —1
Ay A A _ 1
Now, as t; t0+(1+2a)A2 > A2+(1ja)A2 = 574> We conclude that
1 1 Ag . Ay

%~A1—1 N a(ﬁ;)2(2a't2_t1)_1 _204't2—t1—A2 N (20&—1)~t2 -

1
(2a—1)(2+ «)

Thus
PO <”;><1‘Al—1> <(0) (- meia)

Lemma C.11 shows that the function on the RHS is bounded by 3/2 for any a > 1.
Finally, for a value v > v*, it is enough to bound the ratio %.

2 2

u((qr2),v) _ tHa@)(w—Plang)) _ V=X _ V- aa;
- ¢ <lTA E

u((1,1),v) t(1,1)(v — %) -2 v

Intuitively, as the fraction goes to 1 as « goes to 1, this implies that for sufficiently small «
the fraction is less than 3/2. Formally,

2c 2c 2¢c 1
- Ag 2(1— 4 —1 1
U= A v LAy —2 « Ay —2
—1 1 2(a — 1)A 2(a — 1)A
1+2(a ) - <1+ (@=1A2  _; 2a-DAs
@ a(Az) (204 ~tg — tl) -2 2a0 - tg —t1 — 200 - Ag (20( — ].)tl
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2(a—1
14 Mol

(2a — 1«
We find the maximum of the RHS. The derivative by « of 1+ (2227:11))& is 72((22.;%;)42:3;1) . The
maximum is obtained at « =1 + @ (it is a maximum as the second derivative is negative
fora=1+ ?), and the maximum is 1 + —Y2 < 1.35, o

(14+v2)-(1+%2)

Lemma C.11 For o« > 1 4t holds that

(“elv) | <1‘ (2a—1§<2+a>> =372

= (12) (- mnars) = (- ata) 205(223?1_)3

Let h(a) = 23?227370‘;)3 The derivative of h(a) by « is %, it has a maximum at
3+v3
1

Proof:

, and the value of the maximum is lower than 2.072.

We look at @ = 8/5. As the function 1 — %H is an increasing function of « (for a > 1),

+15) - 2,072 = 242,072 < 3/2 To conclude the
proof we show that f(«) is a decreasing function of «, for any o > & = 8/5. The derivative
of f(a) by av is

we get that for any a < &, f(a) < (1 —

—2(2a* + 403 — 4a% — 9o + 3)
a?(2a—1)2(2 + «)?

Thus we only need to show that 2a* +4a3 —4a? —9a+3 > 0 for any a > & = 8/5. This
holds as 4a®—4a? = 4a?(a—1) > 0 for any o > 1, and 2a* —9a+3 > 2a*—9a+3 = X7 >
for any a > & (as the function 2a* — 9« + 3 has derivative 8a® — 9 which is positive for any
o > 91/3 /2, thus it is a monotonically increasing function for o > & = 8/5 > 1.05 > 91/3/2

)- O

Theorem C.12 For any technology t (even non-anonymous) with 2 agents and identical
costs, it holds that the POP(t) < 2.

Proof: If the technology is anonymous, we have already proved a stronger claim. Assume
that it is not, then w.l.o.g. assume that ¢(1,0) > ¢(0,1). We have shown that the profile
(0,1) is never optimal, this implies (by the same argument as we have seen in the case that
the technology is anonymous), that

u((qla q2)7 U) < U((Qla q2)7 U) < t(la 1)
u((a1,a2),v) = u((1,0),v) T #(1,0)
If the technology exhibits IRS, then we know that POP=1. To conclude the proof we show

that if the technology does not exhibits IRS then igég < 2. Assume that igé; > 2, we
£(1,1)

show that the technology exhibits IRS. This is true since H(10)

POP <

> 2 implies:

#(1,1) — £(1,0) > #(1,0) > £(1,0) — £(0,0)
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and as t(1,0 > ¢(0,1) it also holds
t(1> 1) - t(ov 1) > t(1> 1) - t(1> O) > t(1> O) > t(07 1) > t(0> 1) - t(0> O)
which implies IRS. O

Lemma C.13 IfaZbZOandx2y>0then%§Zi—;,

Appendix D. The Robustness of Mixed Nash Equilibria

Theorem 6.2 If the mized optimal contract q includes at least two agents that truly mix
(3,5 s.t. ¢i,q; € (0,1)), then q is not a strong equilibrium.
Proof. Let @ be the support of g (i.e., @ = {ilg; > 0}), and let &k = |Q|. Recall that
the optimal payments that induce the strategy profile ¢ are p; = m (where A;(q—;) =
t(1,q9—;) — t(0,q—;)) for any i € @, and p; = 0 for any i € N\ Q. Let I' = {i|¢; € (0,1)}
(IT'] > 2 by assumption), and consider a deviation of the coalition I' into a pure strategy
profile gf-, in which for any i € I', ¢; = 1. ¢’ denote the new profile (i.e., ¢ = (¢, ¢-1)).
We next show that for any i € T, u;(q) < u;(q’), thus ¢ is not resilient to a deviation
by I'. Since ¢; € (0,1), ¢ must be indifferent between a; = 0 and a; = 1 (see claim 2.1);
therefore, i’s utility in ¢ is:

The utility of 7 in ¢’ is:

i) — it = td) 5 _Ci:Ci< td) 1>:q <t(q/)—t(1,Qi)+t(0,qi)>

Ai(g-i) Ai(g-:) Ai(g-i)
Therefore, u;(q") > u;(q) if and only if ¢(¢’) — ¢(1,g—;) > 0, which holds by the assumption
that |I'| > 2 and the monotonicity of t. O

Appendix E. Algorithmic Aspects
E.1 Results for the Mixed Case

We next show that in the black box model, exponential number of queries is needed to
determine the optimal mixed contract. We have proved this for the optimal pure contract
(for completeness we present the claim as Theorem E.2, taken from (Babaioff et al., 2006a)),
and now show that it also holds for the mixed case.

Theorem 7.1 Given as input a black box for a success function t (when the costs are
identical), and a value v, the number of queries that is needed, in the worst case, to find the
optimal mixed contract is exponential in n.

Proof: We show that the optimal mixed contract for the technology presented in Theo-
rem E.2 at the value ¢(k + 1/2) has support exactly 7', thus the claim is a direct result of
Theorem E.2.
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Assume that ¢ is optimal mixed contract at the value ¢(k+1/2). The support of ¢ must
be of size at most k, otherwise the payment in case of success is at least c(k+1) > c¢(k+1/2)
(as each agent in the support must be paid at least c¢), which implies negative utility. If he
support is of size at most k and is not exactly T, then there is at least one agent that is
paid ¢/e > ¢(k + 1/2) for sufficiently small € > 0. Thus in any such case the utility is again
negative. O

Next we show that for read-one network the optimal mixed contract is #P-hard. It is

based on a theorem from the work of Babaioff et al. (2006a) cited as Theorem E.3 below.
Theorem 7.2 The Optimal Mized Contract Problem for Read Once Networks is #P-hard
(under Turing reductions).
Proof.: We use the reduction presented in Theorem E.3. We prove that for v, close enough
to 1/2, at the transition point from E to E U {z} of the pure case, the optimal mixed
contract is pure (also £ and E U {z}). This implies that we can use the same argument
of Theorem E.3 to calculate the network reliability (which is # P-hard) using an algorithm
for the optimal mixed contract.

Lemma E.1 below presents a generalization of a lemma from the work of Babaioff et al.
(2006a) to the mixed case. The lemma implies that at the value v that x is first entered
to the support of the optimal mixed contract g, the contract for x is optimal for the value
v-t(E). But for a single edge, the only optimal mixed contracts are pure, thus x exerts
effort with probability 1. Additionally, the contract for the original graph (with edges F)
is optimal for the value v - (1 — ~,), thus for 7, close enough to 1/2, v is large enough such
that the optimal mixed contract is with all agents exerting effort with probability 1 (pure).

O

Let g and h be two Boolean functions on disjoint inputs and let f = g A h (i.e., take
their networks in series). The optimal mixed contract for f for some v, denoted by ¢g, is
composed of the h-part and the g-part, call them mixed profile for these parts ¢r and qgr
respectively.

Lemma E.1 Let g5 be an optimal mized contract for f = g/ \h on v. Then, qr is an
optimal mized contract for h on v - ty(qr), and qr is an optimal mized contract for g on

v - tr(qr)-

The proof is the same as the proof for the pure case, presented in the work of Babaioff et al.
(2006b).

E.2 Results from the work of Babaioff et al. (2006b) for the Pure Case
The following results are cited from the work of Babaioff et al. (2006b), for completeness.

Theorem E.2 Given as input a black box for a success function t (when the costs are
identical), and a value v, the number of queries that is needed, in the worst case, to find the
optimal contract is exponential in n.

Proof. Consider the following family of technologies. For some small € > 0 and k = [n/2]
we define the success probability for a given set 1" as follows. If |T'| < k, then ¢t(T") = |T'| - €.
If |T| > k, then ¢(T) = 1 — (n — |T)) - e. For each set of agents 1" of size k, the technology
ts is defined by t(T)=1—(n—|T|)-eand t(T) = |T| - € for any T # T of size k.
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For the value v = c- (k +1/2), the optimal contract for ¢; is T (for the contract 7' the
utility of the principal is about v —c-k = 1/2-¢ > 0, while for any other contract the utility
is negative).

If the algorithm queries about at most (M%]) — 2 sets of size k, then it cannot always
determine the optimal contract (as any of the sets that it has not queried about might be
the optimal one). We conclude that ((7;/121) — 1 queries are needed to determine the optimal
contract, and this is exponential in n. O

Let t(E) denote the probability of success when each edge succeeds with probability
de. We first notice that even computing the value ¢(F) is a hard problem: it is called the
network reliability problem and is known to be #P — hard (Provan & Ball, 1983). Just a
little effort will reveal that our problem is not easier:

Theorem E.3 The Optimal Contract Problem for Read Once Networks is # P-hard (under
Turing reductions).

Proof: We will show that an algorithm for this problem can be used to solve the network
reliability problem. Given an instance of a network reliability problem < G,{(.}ecp >
(where (. denotes e’s probability of success), we define an instance of the optimal contract
problem as follows: first define a new graph G’ which is obtained by ”And”ing G' with a
new player z, with v, very close to % and 0, = 1 — ~y,. For the other edges, we let d. = (.
and v, = (./2. By choosing 7, close enough to %, we can make sure that player x will enter
the optimal contract only for very large values of v, after all other agents are contracted (if
we can find the optimal contract for any value, it is easy to find a value for which in the
original network the optimal contract is E, by keep doubling the value and asking for the
optimal contract. Once we find such a value, we choose 7, s.t. 173% is larger than that
value). Let us denote 5, = 1 — 27,.

The critical value of v where player x enters the optimal contract of G’, can be found
using binary search over the algorithm that supposedly finds the optimal contract for any
network and any value. Note that at this critical value v, the principal is indifferent between
the set E and F U {z}. Now when we write the expression for this indifference, in terms of
t(E) and AL(E) , we observe the following.

“E)%(”_ ZM(E\)) ~ (”_ 2 T BB t<E>'ﬁz>

i€l

if and only if

thus, if we can always find the optimal contract we are also able to compute the value
of t(F). O
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