
Of Malicious Motes and Suspicious Sensors

On the efficiency of malicious interference in

wireless networks

Seth Gilbert and Rachid Guerraoui and Calvin Newport

Abstract

How efficiently can a malicious device disrupt a single-hop wireless network? Imagine
two honest players attempting to exchange information in the presence of a malicious
adversary that can disrupt communication by jamming or overwriting messages.
Assume the adversary has a broadcast budget of β—unknown to the honest players.
We show that communication can be delayed for 2β + Θ(lg |V |) rounds, where
V is the set of values that the honest players may transmit. We then derive—
via reduction to this 3-player game—round complexity lower bounds for several
classical n-player problems: 2β + Ω(lg |V |) for reliable broadcast, 2β + Ω(log n) for
leader election, and 2β + Ω(k lg |V |/k) for static k-selection. We also consider an
extension of our adversary model that includes up to t crash failures. Here we show
a bound of 2β +Θ(t) rounds for binary consensus. We provide tight, or nearly tight,
upper bounds for all four problems. From these results we can derive bounds on
the efficiency of malicious disruption, stated in terms of two new metrics: jamming
gain (the ratio of rounds delayed to adversarial broadcasts) and disruption-free
complexity (the rounds required to terminate in the special case of no disruption).
Two key conclusions of this study: (1) all the problems considered feature semantic
vulnerabilities that allow an adversary to disrupt termination more efficiently than
simple jamming (i.e., all have a jamming gain greater than 1); and (2) for all the
problems considered, the round complexity grows linearly with the number of bits
to be communicated (i.e., all have a Ω(lg |V |) or Ω(lg n) disruption-free complexity.)

Key words: wireless radio networks, ad hoc networks, sensor networks, fault
tolerance, algorithms

Email addresses: seth.gilbert@epfl.ch, rachid.guerraoui@epfl.ch,
cnewport@mit.edu (Seth Gilbert and Rachid Guerraoui and Calvin Newport).

Preprint submitted to Elsevier 10 April 2008

1 Introduction

Ad hoc networks of wireless devices hold significant promise for the future
of ubiquitous computing. Unfortunately, such networks are particularly vul-
nerable to adversarial interference due to their use of a shared, public com-
munication medium and their deployment in unprotected environments. For
example, a committed adversary can disrupt an ad hoc network by jamming
the communication channel with noise. Continuous jamming, however, might
be unwise: it depletes the adversary’s energy, allows the honest devices to
detect its presence, and simplifies its localization—and subsequent destruc-
tion. The adversary, therefore, would rather be more efficient, disrupting the
protocol using a minimal number of transmissions.

1.1 Metrics for Adversarial Efficiency

We introduce two new metrics for measuring the efficiency with which an
adversary can disrupt a protocol: Jamming Gain and Disruption-Free Com-
plexity. Jamming gain captures how efficiently the adversary can disrupt the
long-term completion of the protocol; disruption-free complexity captures how
efficiently the adversary can delay the protocol in the short term.

Jamming Gain

The efficiency of the adversary can be quantified, roughly speaking, by com-
paring the duration of the disruption to the adversary’s cost for causing the
disruption. In the systems literature, this metric has been informally referred
to as jamming gain (e.g., [1]). In the context of round-based protocols (time-
slotted wireless radio channels), the jamming gain can be defined as follows.
Let DP (t) be the minimal number of broadcasts needed by the adversary to
delay protocol P from terminating for t rounds, for some initial value. Then
the jamming gain of protocol P is:

JG(P) = lim
T→∞

T

max(DP (T), 1)

For example, if the adversary must broadcast in every round, the jamming gain
is 1. By contrast, if the adversary need never broadcast to prevent termination,
then the jamming gain is infinite.

2

Disruption-Free Complexity

A second metric, disruption-free complexity, measures how long the adversary
can disrupt a protocol without performing any broadcasts. The uncertainty
introduced by the possibility of adversarial broadcasts is sufficient to slow down
many protocols. We formalize this metric as:

DF(P) = max{t : DP (t) = 0}

If a protocol has large disruption-free complexity, then the adversary can
significantly reduce the throughput of multiple consecutive executions, while
avoiding the disadvantages of actually jamming. For example, if the fear of po-
tential adversarial interference required the addition of a complex initialization
procedure to your protocol, this would be captured by a large disruption-free
complexity value.

1.2 The 3-Player Game

We begin by analyzing a 3-player game that captures many of the fundamen-
tal difficulties of wireless coordination in this setting. We will then extend
these results to several classical n-player problems: reliable broadcast, leader
election, static k-selection and consensus.

The 3-player game consists of two honest players—Alice and Bob, and a third
malicious player, Collin (the Collider). All three players share a time-slotted
single-hop wireless radio channel. Alice and Bob each begin with a value to
communicate. Collin is determined to prevent them from communicating, in
either direction, for as long as possible. Collin can broadcast in any time slot
(i.e., round), potentially destroying honest messages or overwhelming them
with malicious data. In order to precisely measure the efficiency of a malicious
adversary, we endow Collin with a budget of β messages, and analyze how
long Alice and Bob can be disrupted. The size of β is not known a priori to
Alice and Bob. (If it were, then Alice and Bob could communicate reliably by
repeating each message 2β + 1 times.)

1.3 The 3-Player Game Lower Bounds

We show that Collin can delay Alice and Bob’s communication for

2β + log |V |/2

rounds, where V is the set of possible values that Alice and Bob may com-
municate. An immediate corollary is that no protocol for Alice and Bob can

3

achieve a jamming gain better than 2. This result is surprising as it implies
that every such communication protocol has some semantic vulnerability that
the adversary can exploit to gain extra efficiency. A second corollary is that
the disruption-free complexity is Ω(log |V |). Therefore for large V , the passive
presence of Collin can significantly reduce Alice and Bob’s communication
throughput. We prove these lower bounds (in Section 4) by exhibiting a strat-
egy for Collin to delay Alice and Bob, exploiting the fact that they can never
trust any message, since Collin could have overwhelmed it with a fake message.

In Section 5 we focus on the natural sub-problem of Alice communicating to
Bob, who does not broadcast. We explicitly model Alice’s broadcast budget as
β+ ∆ (note, in the bounds of Section 4, no restrictions are placed on Alice or
Bob’s broadcast budget). We first show that communication is impossible for
∆ ≤ 0, as, in this circumstance, Collin can effectively simulate Alice starting
from a different value—confusing Bob. We then show for ∆ ≥ 1 that no
communication protocol can terminate in less than

2β + max

2∆|V | 1
2∆

e
− 2∆,

log |V |
2


rounds. This implies that for ∆ = Ω(log |V |) the lower bound is the same
as the infinite-energy bound of Section 4. For ∆ = o(log |V |), however, the
disruption-free complexity increases toward O(|V |) as ∆ approaches 1. This
highlights an inherent tradeoff between Alice’s message complexity and her
throughput.

1.4 The 3-Player Game Upper Bounds

For our upper bound (Section 6), we consider the setting where Alice needs
to transmit a value to Bob, who does not broadcast any messages. We exhibit
a protocol that allows Alice—using β + ∆ broadcasts—to transmit her value
to Bob in

2β + max{2∆|V |
1

2∆ , 4 log |V |}

rounds. (Notice that if ∆ < 1, Alice’s task is impossible.) For ∆ = Ω(log |V |),
the protocol matches our un-restricted lower bound of Section 4. For smaller
∆, it matches the limited-energy bound of Section 5.

Finally, we consider a variant of the 3-player game in which Alice and Bob do
not start in the same round; Bob is activated asynchronously by the adversary.
We present a protocol that solves this problem and still terminates within
2β + Θ(log |V |) rounds (assuming Alice has an unrestricted message budget).

4

1.5 The n-Player Implications

The trials and tribulations of Alice and Bob capture something fundamental
about how efficiently malicious devices can disrupt wireless coordination in
more general problems.

Lower Bounds for n-Player Problems

In Section 8, we derive new lower bounds—via reduction to our 3-player
game—for several classical n-player problems:

Reliable broadcast: 2β + Ω(log |V |);

Leader election: 2β + Ω(log n);

Static k-selection: 2β + Ω(k log |V |
k

) .

For the last problem, k represents the number of participants contending to
transmit their initial value. These represent, to the best of our knowledge,
the first complexity bounds for these problems in a wireless network with
an adversary that can arbitrarily disrupt communication. As before, we draw
immediate corollaries regarding the jamming gain and disruption-free com-
plexity, resulting in a jamming gain of 2, and disruption-free complexity of
Ω(log |V |), Ω(log n), and Ω(k log |V |

k
), respectively.

Consensus Lower Bound for Model with Crash Failures

We next consider a more general framework that also includes crash failures:
the malicious adversary can both broadcast β messages and crash up to t
honest devices. We study binary consensus as an archetypal problem in this
framework, and derive a lower bound of

2β + Θ(t)

rounds. The Θ(t) term is established by a tree-based technique that maintains
the indistinguishability of two univalent configurations for t rounds. The 2β
term then follows from a (partial) reduction of the three-player game to con-
sensus. This shows a jamming gain of 2, as before. By contrast, the disruption-
free complexity, Θ(t), is significantly larger than for the crash-free models:
notice that if no nodes are allowed to crash, then consensus can be solved

5

by a simple reliable broadcast of only one bit. (By contrast, if the adversary
cannot disrupt communication, then crash failures have no effect on the round
complexity as we are in a synchronous broadcast model in which each message
is delivered to every other node).

Upper Bounds

Finally, in Section 9, we present tight upper bounds for reliable broadcast and
consensus and nearly tight bounds for leader election and static k-selection.

1.6 Motivations

Underlying our results on jamming gain and disruption-free complexity is an
analysis of how long the adversary can disrupt communication given a limited
broadcast budget. This interpretation is interesting in its own right: a limited
broadcast budget models the (limited) energy available to a set of malicious
devices. (Notice, when we assume one malicious adversary with a budget of
β messages, we might model a network with several malicious devices with a
combined broadcast budget of β.)

Authentication—for example, using cryptographic keys—impacts our lower
bounds. With authentication, the 3-player communication game completes in
β + 1 rounds, resulting in a jamming gain and disruption-free complexity of
1. Intuitively, jamming gain arises from semantic vulnerabilities in the proto-
col; cryptographic techniques can eliminate this vulnerability by preventing
Collin from spoofing honest communication. In general, however, deploying
cryptographic solutions in wireless networks can be difficult. Public key au-
thentication schemes are often expensive both in computation and, to some
extent, communication. Symmetric key schemes (such as MACs) have been
deployed in wireless networks (see, e.g., [2, 3]), yet the focus has generally
been link-level security, rather than authenticated broadcast, and there re-
main issues with key distribution. For example, if only a single key is used,
the system is easily compromised by a single corrupted node; if multiple keys
are used, then keys must be exchanged and communication is complicated.

One interpretation of our bound is that authentication should be deployed
only if its cost is less than the cost of waiting the additional β + Θ(log |V |)
rounds imposed in settings without this capability. In fact, our protocols can
be viewed as low-cost (in terms of computation and setup) alternatives to
cryptographic authentication. The output of a value by our reliable broadcast
protocol, for example, confirms its validity. Further efficiency can be achieved
by first broadcasting a message directly, and then using our “secure” reliable
broadcast protocol to transmit a short hash of the message.

6

2 Related Work

This paper explores the damage that can be caused by a genuinely malicious
(Byzantine) device that can reliably disrupt communication in a wireless ad
hoc network. Koo [4], Bhandari and Vaidya [5], as well as Pelc and Peleg [6],
study “t-locally bounded” Byzantine failures in wireless networks, in which the
number of Byzantine nodes in a region is bounded. In these papers, the Byzan-
tine devices are required to follow a strict TDMA schedule, thus preventing
them from interfering with honest communication. Others have considered
models with probabilistic message corruption [7, 8]. Wireless networks with
crash failures (but not Byzantine failures) have also been studied extensively
in both single hop (e.g., [9,10]) and multihop (e.g., [11,12]) contexts. By con-
trast, we consider a malicious adversary that can choose to send a message
in any round, potentially destroying honest messages or overwhelming them
with malicious data.

Koo, Bhandari, Katz, and Vaidya [13] have recently considered a model where
the adversary has a limited broadcast budget and can send a message in any
round, overwhelming honest messages. A key difference, however, is that they
assume that the adversary’s budget is fixed a priori and known to all partici-
pants. By contrast, we do not assume that β is known in advance. Due to this
assumption, it is no longer sufficient to simply repeat each message 2β+1 times
as is done in [13]. Furthermore, an unknown β allows us to directly derive effi-
ciency bounds (e.g., in terms of jamming gain and disruption free complexity).
In addition, this lack of knowledge better captures real world systems; we can-
not always assume that devices know such details about adversaries. We also
note that [13] focuses primarily on feasibility, that is, determining the thresh-
old density of dishonest players for which multihop broadcast is possible. By
contrast, our paper focuses on the time complexity of the protocols and the
efficiency of the adversary. Furthermore, we also consider the impact of com-
bining crash failures with a malicious adversary, and move beyond broadcast
to consider other problems such as leader election and consensus.

Adversarial jamming of physical layer radio communication is a well studied
problem in the electrical engineering community (see, e.g., [14]). In the con-
text of wireless ad hoc networks, there has been recent interest in studying the
jamming problem at the MAC layer and above. See, for example, [1, 15–17],
which analyze specific MAC and network layer protocols, highlighting seman-
tic vulnerabilities that can be leveraged to gain increased jamming efficiency.

7

3 Preliminaries

We now specify the details of our communication model. and highlight the
assumptions underlying our tight bound and its corollaries. We then describe
the 3-player game that forms the foundation for the results to follow.

3.1 Network Model

We assume a synchronous round-based Multiple Access Channel (MAC) model
with receiver collision detection. We consider n honest devices, the players,
named from the set [1, n], and one additional malicious device incarnating the
adversary. In each round, each device can decide to broadcast a message or
listen. If there are no broadcasts in a round, then none of the players receive
a message. If exactly one message is broadcast, then all players receive the
message 1 . If two or more messages are broadcast, then each player can ei-
ther: (1) receive exactly one of the broadcast messages; or (2) detect noise
on the channel, i.e., a collision. (This channel behavior represents the unpre-
dictability of real networks, for example, shadowing effects [18].) Without loss
of generality, we assume that the adversary determines for each honest player
whether option 1 or 2 occurs; in case of option 1, we assume (without loss of
generality) that the adversary’s message is systematically received.

Throughout this paper, we endow the adversary with a budget of β broadcast
messages, where β is a priori unknown to the players. We assume no message
authentication capabilities. That is, a player cannot necessarily distinguish a
message sent from the adversary from a message sent by a fellow honest player.

3.2 The 3-Player Game

The basic game we consider involves two honest players, Alice and Bob, and
an adversary named Collin. For some value domain V , Alice is initialized with
value va ∈ V and Bob with vb ∈ V , where |V | > 1 and V is known to all. Each
player attempts to communicate its initial value to the other. Specifically,
the players can perform output(v) for any v ∈ V such that the following two
properties are satisfied:

(1) Safety: Bob only outputs va and Alice only outputs vb; and

1 For simplicity, we assume that a player receives its own messages; this is, if some
player sends message m in round r, then the player itself receives message m in
round r.

8

(2) Liveness: Eventually, either Alice or Bob outputs a value.

4 Lower Bound for the 3-Player Game

In this section, we prove a lower bound on the round complexity of the 3-
player communication game. The bound holds even if Alice and Bob have an
unlimited budget of messages. To obtain our result, we describe a strategy for
Collin to frugally use his β messages to prevent communication. Two assump-
tions are key to this strategy: (1) Collin’s budget of messages β is unknown
to Alice and Bob; (2) Alice and Bob cannot distinguish a message sent by
Collin from an honest message. Thus, when Bob (for example) receives a mes-
sage m, he cannot be certain that Alice sent message m. A silent round, on
the other hand, cannot be faked: if Bob (for example) receives no message and
no collision notification, then he can be certain that Alice did not broadcast a
message. Therefore, in order to prevent Alice and Bob from communicating,
it is sufficient, roughly speaking, for Collin to disturb silent rounds. The main
theorem shown in this section is as follows:

Theorem 1 Every three-player communication protocol for Alice, Bob, and
Collin requires at least 2β + log |V |/2 rounds to terminate.

The proof proceeds as follows. First, we identify two values, v and w, for which
Alice and Bob both behave in a similar manner for the first log |V |/2 − 1
rounds. We then describe a set of behavioral rules for Collin to delay Alice
and Bob by filling in silent rounds. We next show that neither Alice nor Bob
can output a value while Collin continues to follow this strategy. Finally, we
argue that Collin can afford to pursue this strategy for log |V |/2 + 2β − 1
rounds using only β broadcasts.

Assume, for the sake of contradiction, a protocol A that defies this worst-case
performance. For any value v ∈ V , denote by γ(v) the log |V |/2 − 1 round
execution prefix of A where Alice and Bob both begin with initial value v,
and Collin performs no broadcasts. We begin with the following lemma:

Lemma 2 There exist two values v, w ∈ V where v 6= w such that:

• Alice broadcasts in round r of γ(v) if and only if Alice broadcasts in round
r of γ(w).

• Bob broadcasts in round r of γ(v) if and only if Bob broadcasts in round r
of γ(w).

Proof. In each round, there are four possibilities: (1) Alice broadcasts alone,
(2) Bob broadcasts alone, (3) Alice and Bob both broadcast, and (4) neither

9

Rule
Alice Bob Collin Result

α(v) α(w) α(v) α(w) α(v) α(w) α(v) α(w)

1
m − − − − m m m

− m − − m − m m

2
m m′ − − − − m m′

− − m m′ − − m m′

3
− − m − − m m m

− − − m m − m m

4
m − m′ − − m′ m,m′ m′

− m − m′ m′ − m′ m,m′

5
m − − m′ − m m m,m′

− m m′ − m − m,m′ m

6
m m′ m′′ − − − m,m′′ m′

m m′ − m′′ − − m m′,m′′

7
m − m′ m′′ − − m,m′ m′′

− m m′ m′′ − − m′ m,m′′

8
m m′ m′′ m′′′ − − m,m′′ m′,m′′′

− − − − − − − −

Fig. 1. Collin’s behavioral rules for executions α(v) and α(w). For each of the possi-
ble behaviors of Alice and Bob in α(v) and α(w), Collin behaves in the α executions
as specified by the indicated row in the table. The “Result” column indicates the
total set of messages broadcast in the two executions under certain conditions. In
rounds where Collin broadcasts concurrently with Alice or Bob, assume that Collin’s
message is the only one received by the non-broadcasting player.

Alice nor Bob broadcasts. Accordingly, for a sequence of c rounds, there are 4c

possible patterns of broadcast behavior. Thus, there are at most 4log |V |/2−1 =
|V |
4

possible broadcast patterns that result from the |V | possible γ executions.
It follows by the pigeonhole principle that at least two such executions have
the same behavioral pattern. 2

Fix v and w to be the two values identified by Lemma 2. Define α(v) (resp.
α(w)) to be the execution of A in which Alice and Bob both begin with
initial value v (resp. w) and Collin applies the α-rules described in Figure 4
for as long as his broadcast budget persists (once Collin depletes his budget
he remains silent for every subsequent round). Specifically, we construct α(v)

10

Rule
Alice Bob Collin Result

α(v) α(w) α(v) α(w) ρ(w, v) ρ(v, w) ρ(w, v) ρ(v, w)

1
m − − − m − m m

− m − − − m m m

2
m m′ − − m m′ m,m′ m,m′

− − m m′ m′ m m,m′ m,m′

3
− − m − − m m m

− − − m m − m m

4
m − m′ − − m′ m′ m,m′

− m − m′ m′ − m,m′ m′

5
m − − m′ m − m m,m′

− m m′ − − m m,m′ m

6
m m′ m′′ − − m′ m′,m′′ m,m′

m m′ − m′′ m − m,m′ m,m′′

7
m − m′ m′′ m′′ − m′,m′′ m,m′′

− m m′ m′′ − m′ m,m′ m′,m′′

8
m m′ m′′ m′′′ − − m′,m′′ m,m′′′

− − − − − − − −

Fig. 2. Collin’s behavioral rules for ρ(w, v) and ρ(v, w) executions. For each of the
possible behaviors of Alice and Bob in α(v) and α(w), Collin behaves in the ρ execu-
tions as specified by the indicated row in the table. The “Result” column indicates
the total set of messages broadcast in the two executions under certain conditions.
In rounds where Collin broadcasts concurrently with Alice or Bob, assume that
Collin’s message is the only one received by the non-broadcasting player.

and α(w) one round at a time. At the beginning of a given round, we first
determine what behavior Alice and Bob will take in both executions. Find
the corresponding row in Figure 4 such that the two columns under “Alice”
describe Alice’s behavior during this round in the two executions, and the two
columns under “Bob” describe the same with respect to Bob. Reference the
first two columns under “Collin” to determine how Collin will behave in both
executions during this round.

The symbol “−” indicates silence, and m,m′,m′′,m′′′ represent different mes-
sages that Alice and Bob may broadcast. The first two columns under “Re-
sult” describe the resulting messages transmitted during this round in α(v)

11

and α(w), respectively.

For example, assume that in the current round Alice will broadcast in α(v) but
will be silent in α(w), and Bob will be silent in both executions. This behavior
is described by the first row of Rule #1. Looking to the Collin columns, we
see that the adversary will be silent in α(v) but will transmit m—the message
Alice broadcasts in α(v)—in α(w). The Result columns correctly indicate that
m is the single message broadcast in both executions during this round.

We define ρ(w, v) (resp. ρ(v, w)) to be the execution of A in which Alice begins
with initial value w (resp. v), Bob begins with initial value v (resp. w), and
Collin applies the ρ-rules described in Figure 4, for as long as his broadcast
budget persists. Specifically, Collin’s behavior in round r of a ρ execution is
determined entirely by Alice and Bob’s behavior in α(v) and α(w) during this
round. This construction relies on the fact (to be shown) that (1) ρ(w, v) is
indistinguishable from α(v) with respect to Bob and indistinguishable from
α(w) with respect to Alice, and (2) ρ(v, w) is indistinguishable from α(w) with
respect to Bob and indistinguishable from α(v) with respect to Alice.

For example, in the case considered above—Alice broadcasts only in α(v), and
Bob is silent in both—Collin broadcasts m in ρ(w, v) and broadcasts nothing
in ρ(v, w). In rounds when Collin transmits concurrently with either Alice or
Bob, we assume that Collin’s message is the only one received by the non-
broadcasting player.

We use the notation βα(v), βα(w), βρ(v,w), and βρ(w,v) to describe Collin’s broad-
cast budget in α(v), α(w), ρ(v, w), and ρ(w, v), respectively. We now make
the following claim:

Lemma 3 Assuming that Collin has sufficiently large values βα(v), βα(w), and
βρ(w,v) that allow him to follow the rules in Figure 4 and Figure 4 for t rounds
in all three executions α(v), α(w) and ρ(w, v). It follows that, through round t:
ρ(w, v) is indistinguishable from α(v) with respect to Bob and indistinguishable
from α(w) with respect to Alice.

Proof. We prove this result by induction on the round number, r, 0 ≤ r ≤ t.
Because Bob begins with value v in both ρ(w, v) and α(v), and Alice begins
with value w in both ρ(w, v) and α(w), the base case (r = 0) is immediate.
Consider the possible behaviors for Alice, Bob, and Collin during round r+1.
By the definition of our executions, Alice and Bob’s behavior is determined by
deterministic algorithm A, and Collin’s behavior is determined by the relevant
rule in Figure 4 and Figure 4.

We start with Alice. If she broadcasts in α(w) in round r + 1 then, by our
inductive hypothesis, she will also broadcast in ρ(w, v) in round r + 1 since
she cannot distinguish the two executions through round r. Thus, at the end

12

of round r + 1, Alice cannot distinguish the two executions: in each case, she
simply receives her message and nothing else. Assume, therefore, that Alice
does not broadcast in α(w) in round r + 1. This restricts our attention to
rules 1(a), 2(b), 3, 4(a), 5(a), 7(a) and 8(b) in Figure 4 and Figure 4. For each
row, consider the “Result” column for α(w) and ρ(w, v), which indicate the
messages broadcast in round r+1 (and thus received by Alice) in alpha(w) and
ρ(w, v), respectively. (In the case where two messages are indicated, consider
only the message broadcast by Collin—according to our execution definitions,
these will be the only messages received by Alice).

Specifically, the result column for α(w) in Figure 4 is the combination of Alice,
Bob, and Collin’s behavior in α(w), as described in this row. The result column
for ρ(w, v) in Figure 4 is the combination of Alice’s behavior in α(w), Bob’s
behavior in α(v), and Collin’s behavior as described by ρ(w, v). Since Alice
cannot distinguish ρ(w, v) from α(w) through the end of round r, and since
Bob cannot distinguish ρ(w, v) from α(v) through the end of round r, this
behavior captures Alice’s and Bob’s broadcasts in round r + 1.

Notice that these two result columns are equal for all the rows we are consid-
ering (or, in rows with more than one message, there is at least one message
that is sent in both cases). Therefore, Alice receives the same message in both
α(w) and ρ(w, v) in every case during which she does not broadcast. Indistin-
guishability is maintained. A symmetric arguments shows the same to hold
true for Bob with respect to α(v). 2

The symmetric claim is true for executions α(v), α(w), and ρ(v, w):

Lemma 4 Assuming that Collin has sufficiently large values of βα(v), βα(w),
and βρ(v,w) that allow him to follow the rules in Figure 4 for t rounds in all three
executions α(v), α(w), and ρ(v, w). It follows that, through round t: ρ(v, w)
is indistinguishable from α(w) with respect to Bob and indistinguishable from
α(v) with respect to Alice.

Proof. The argument is symmetric to Lemma 3. 2

Let β be the broadcast budget given by Theorem 1. To prove this theorem we
show that one of the two α executions requires only β broadcasts by Collin
during the first 2β + log |V |/2 − 1 rounds. Remember, due to our previously
established indistinguishability, neither Alice nor Bob can output during the
rounds in which Collin’s budget remains non-empty.

Proof (Theorem 1). Let βα(v), βα(w), βρ(v,w), and βρ(w,v) be sufficiently
large to allow Collin to broadcast, when required by the rules in Figure 4
and Figure 4, for the first t = 2β+log |V |/2−1 rounds of α(v), α(w), ρ(v, w),
and ρ(w, v), respectively. By Lemma 3 and Lemma 4, Alice cannot distin-
guish α(v) from ρ(v, w) or α(w) from ρ(w, v), and Bob cannot distinguish

13

α(v) from ρ(w, v) or α(w) from ρ(v, w), through round t. It follows that Al-
ice and Bob cannot output during the first t rounds of either α execution. If
one of the players did output a value, by the demonstrated indistinguishabil-
ity, the player would have to output the same value in the corresponding ρ
execution—violating the safety of A. For example, if Alice output v prior to
round t of α(v), then she would also output v prior to round t of ρ(w, v), thus
reporting the wrong value for Bob.

We start by considering rounds 1 through log |V |/2− 1 of α(v) and α(w). We
show by induction on the round number, r, 0 ≤ r < log |V |/2− 1, that Collin
does not broadcast in either α execution during these rounds.

The base case (r = 0) is immediate. For r + 1 we note that, by our inductive
hypothesis, Collin has not yet broadcast. Therefore, α(v) and α(w) are indis-
tinguishable from γ(v) and γ(w), respectively, through round r. We can apply
Lemma 2 to show that Alice (resp. Bob) broadcasts in round r + 1 of α(v) if
and only if Alice (resp. Bob) broadcasts in round r + 1 of α(w). Notice, how-
ever, that by the rules in Figure 4, Collin only broadcasts in an α execution in
situations of asymmetric silence; i.e., when Alice (resp. Bob) broadcasts in one
α execution but not the other. Therefore, Collin will not broadcast in either
α execution during r + 1.

We next turn our attention to the 2β rounds that follow. By the rules in Fig-
ure 4, Collin never broadcasts in both α(v) and α(w) during the same round.
Therefore, by a simple counting argument, it is impossible for Collin to broad-
cast in more than half of these 2β rounds in both α executions. Without loss of
generality, let α(v) be the execution requiring no more than β broadcasts dur-
ing the first 2β+log |V |/2−1 rounds. It is valid, therefore, to define βα(v) = β.
This makes α(v) a valid execution under the constraints of the theorem state-
ment. By our argument above neither Alice nor Bob can output during the
first 2β + log |V |/2− 1 rounds of this execution—proving our claim. 2

We conclude with an immediate corollary of Theorem 1:

Corollary 5 Any 3-player communication protocol has a jamming gain of at
least 2, and a disruption-free complexity of Ω(log |V |).

5 Energy-Aware Lower Bounds for the 3-Player Game

In Section 4 we proved a lower bound of 2β+Ω(log |V |) rounds for the commu-
nication game, regardless of the size of the honest players’ message budgets.
Here, we recast the bound to take into account this budget size. For simplic-
ity, we focus on the natural special case of the communication problem where

14

Alice is broadcasting a value to Bob, and Bob does not broadcast. (It remains
an interesting open problem to extend these bounds to the general case of
two-way communication.)

In the following, we assume Alice’s broadcast budget is expressed as β+∆. We
assume that Bob knows that Alice’s budget has at least ∆ more broadcasts
than Collin’s, but, as before, Bob does not know β. We must make a similar
assumption for Alice: she knows ∆, but does not know her total budget of
β + ∆ (as this would indicate the value of β, which is unknown).

In Section 5.1 we show that communication is impossible for ∆ ≤ 0. In Sec-
tion 5.2, we prove a lower bound of:

2β + max

2∆|V | 1
2∆

e
− 2∆,

log |V |
2


rounds for ∆ > 0. This implies that for ∆ = Ω(log |V |) the lower bound is the
same as the infinite-energy bound of Section 4. For ∆ = o(log |V |), however,
the first term in the max statement increases exponentially to Θ(|V |) as ∆
approaches 1.

5.1 Impossibility Result for ∆ ≤ 0

Theorem 6 There exists no protocol that allows Alice to transmit a value to
Bob using less than or equal to β broadcasts.

Proof. Assume, for the sake of contradiction, that such a protocol, A, exists.
Let α0 be an execution of A in which Alice is initialized with value 0 and
Collin simulates, using A, Alice starting with value 1. Let α1 be an execution
of A in which Alice is initialized with value 1 and Collin simulates, using
A, Alice starting with value 0. Because both Alice and Collin have the same
broadcast budgets, it is easy to see that these two executions will appear
indistinguishable with respect to Bob. Assume, without loss of generality, that
Bob outputs 0 in execution α0. Bob, therefore, also outputs 0 in α1, resulting
in a contradiction. 2

5.2 Lower Bound for ∆ > 0

We extend the lower bound of Theorem 1 to explicitly consider Alice’s broad-
cast budget. At the core of our argument is the observation that there should
not exist two sequences of rounds in which Alice behaves the same for two
different initial values, and uses ≥ 2∆ broadcasts. As we saw in Theorem 1,

15

for sequences in which Alice behaves the same for two different values, Collin
can maintain indistinguishability for Bob without having to broadcast. If Alice
uses up her budget advantage over Collin during rounds in which he does not
broadcast, then she has left him with enough power to effectively spoof her
until her budget expires during the rounds that follow. Accordingly, for small
∆ values, Alice must use many more silent rounds when communicating with
Bob to prevent exhausting her extra broadcasts with undue haste.

Theorem 7 Let:

k = max

2∆|V | 1
2∆

e
− 2∆,

log |V |
2

 .

If Alice has a budget of size β + ∆ where ∆ > 0, then there exists no protocol
that allows Alice to transmit her initial value to Bob in less than 2β+k rounds.

We are considering a restricted case of the general lower bound presented in
Section 4. If k = log |V |

2
, the theorem follows directly from our general bound.

We assume for the remainder of the proof that k = 2∆|V |
1

2∆

e
−2∆. Assume, for

the sake of contradiction, the existence of a protocol A that defies our bound.

We begin by defining γ(v), for all v ∈ V , as before, to be the execution that
results from starting Alice with value v and running the protocol A until
termination, with no interference from Collin (i.e., Collin never broadcasts).

To continue, we define t(v), for all v ∈ V , to be the minimum of: (1) the round
in γ(v) in which Alice uses her 2∆th broadcast; (2) round k − 1. Finally, let
γt(v), for all v ∈ V , to be the execution prefix of γ(v) through round t(v). We
claim the following:

Lemma 8 There exist two values v, w ∈ V where v 6= w, such that Alice
broadcasts in round r of γt(v) if and only if Alice broadcasts in round r of
γt(w).

Proof. We describe Alice’s broadcast behavior in the first k − 1 rounds of
some execution ψ as a binary string of at most k − 1 bits B(ψ, k − 1): bit i
in B(ψ, k− 1) equals 1 if and only if Alice broadcasts during round i of ψ. (If
ψ contains fewer than k − 1 rounds, then pad the string with 0 bits until it
reaches length k − 1). Consider the set of all possible executions γt:

S = {B(γt(v), k − 1) | v ∈ V } .

We want to bound the size of this set. By the definition of γt, we know that
there are no more that 2∆ broadcasts by Alice in any γt execution prefix.
Moreover, notice that there are at most

(
(k−1)+2∆

2∆

)
binary broadcast sequences

16

of length k − 1 that include no more than 2∆ ones. Thus, we bound the size
of the set S:

|S| ≤
(

(k − 1) + 2∆

2∆

)

<

(
k + 2∆

2∆

)

≤
(
e(k + 2∆)

2∆

)2∆

=

e
([(

|V |
1

2∆

e

)
2∆− 2∆

]
+ 2∆

)
2∆


2∆

=
(
|V |

1
2∆

)2∆

= |V |

Having established that |S| < |V |, it follows, by the pigeonhole principle, that
there must exist two distinct values v, w ∈ V such that B(γt(v), k − 1) =
B(γt(w), k − 1). It follows directly that for these two values v and w, if Alice
broadcasts in some round i in γt(v) (resp. γt(w)) then Alice broadcasts in
round i in γt(w) (resp. γt(v)). 2

Fix v and w to be the two values identified by Lemma 8. We next argue that
executions γt(v) and γt(w) are both of length k − 1.

Lemma 9 Both execution prefixes γt(v) and γt(w) are of length k−1 rounds.

Proof. Assume for the sake of contradiction that γt(v) is of length < k − 1
rounds; that is, t(v) < k−1. This implies that Alice broadcasts 2∆ messages in
execution γt(v). Since by Lemma 8, Alice broadcasts in some round r of γt(v)
if and only if she also broadcasts in round r of γt(w), we can also conclude
that Alice expends 2∆ messages in the first t(v) < k− 1 rounds of γt(w), and
hence t(w) = t(v) < k − 1 as well.

Define execution δ(v) of protocol A, as follows. Alice starts with initial value
v. For the first t(v) rounds Collin does not broadcast. After this prefix, Collin
simulates Alice running A with initial value w, until he exhausts his budget
(i.e., after β broadcasts). In the case where Collin and Alice broadcast si-
multaneously, assume Bob receives neither message—and therefore detects a
collision. We argue that Bob cannot output a value in execution δ(v), contra-
dicting the termination property of A.

17

To prove this claim, we first construct a second execution: δ(w). Alice starts
this execution with initial value w. During the first t(v) rounds, Collin simu-
lates Alice running A with initial value v, that is, Collin broadcasts the mes-
sage that Alice sends in δ(v). During these initial rounds we assume Collin’s
messages overwhelm Alice’s, and are, therefore, the only messages received
by Bob. Alice does not notice this behavior as they are broadcast on the
same schedule, since by assumption, Alice broadcasts a message in round r
when starting with initial value v if and only if Alice broadcasts a message
when starting with initial value w. For the rounds that follow, Collin continues
to simulate Alice running A with initial value v. As in δ(v), if simultaneous
broadcasts occur during these later rounds, both messages are lost.

Let β be Collin’s broadcast budget at the beginning of execution δ(v), and
β′ = β + ∆ be Collin’s broadcast budget at the beginning of δ(w). (Since
Collin’s broadcast budget is unknown to Alice and Bob, it can be different
in the two executions.) Thus, at the beginning of δ(v), Alice has a broadcast
budget of β + ∆, and at the beginning of δ(w), Alice has a broadcast budget
of β′ + ∆ = β + 2∆ messages.

We now argue that δ(v) and δ(w) are indistinguishable with respect to Bob at
all points during each execution. In both cases, Bob sees the same messages
during the first t(v) rounds: in δ(v), these messages are sent by Alice; in δ(w),
these messages are sent by Collin.

In δ(v), Bob receives up to β−∆ additional messages broadcast by Alice using
the β + ∆ − 2∆ = β − ∆ messages that remain in her budget after the t(v)
round prefix; these messages attempt to convince Bob to output v. Bob will
also receive up to β messages broadcast by Collin who is using his full budget
of size β; these messages attempt to convince Bob to output w. 2

In δ(w), after the initial t(v) rounds, Bob will then receive up to β −∆ addi-
tional messages broadcast by Collin with the β′−2∆ = (β+∆)−2∆ = β−∆
broadcasts that remain in his budget after the 2∆ expended during the t(v)
prefix; these are the same messages that Alice sent in δ(v) to try to convince
Bob to output v. Bob will also receive up to β messages broadcast by Alice
with the β′ + ∆ − 2∆ = (β + ∆) + ∆ − 2∆ = β broadcasts that remain in
her budget after the 2∆ expended during the t(v) round prefix); there are the
same messages that Collin sent in δ(v).

Notice, in both executions, Bob receives the same set of up to β−∆ messages
that recommend value v and the same set of up to β messages that recommend
value w, following the initial indistinguishable t(v) round prefix. Thus, the two

2 In both cases, as in the two that follow, “receive” means either receiving the
message or detecting a collision, which could only occur if both message types
where broadcast.

18

executions are indistinguishable. If Bob outputs v in δ(v) then this violates
safety in the context of δ(w); if Bob outputs w in δ(v) then Bob violates safety
in the context of δ(v). 2

We now define α(v), α(w), ρ(v, w) and ρ(w, v) in the same manner as in
Section 4. Notice, we can ignore the rows in Figure 4 that have Bob broadcast
as we are considering the special case where only Alice communicates.

Proof (Theorem 7). Let βα(v), βα(w), βρ(v,w) and βρ(w,v) be sufficiently large
to allow Collin to broadcast, when required by the rules in Figure 4, for the
first t = 2β+ k− 1 rounds of α(v), α(w), ρ(v, w) and ρ(w, v). Notice, because
Bob does not start with an initial value in the case we consider here, we can
disregard the second parameter to the ρ executions. For simplicity, we will refer
to ρ(v, w) as ρ(v) and ρ(w, v) as ρ(w). Because we defined these executions
the same as in Section 4, we can apply Lemma 3 and Lemma 4, which provide
that Bob cannot distinguish α(v) from ρ(w), or distinguish α(w) from ρ(v),
through round t. As in the proof for Theorem 1, it follows that Bob cannot
output during the first t rounds of either α execution.

Let ` = min{length(γt(v)), length(γt(w))}. Consider rounds 1 through ` of
α(v) and α(w). We show by induction on the round number, r, 0 ≤ r < `,
that Collin does not broadcast in either α execution during these rounds.

The base case (r = 0) is immediate. For r + 1 we note that, by our induc-
tive hypothesis, Collin has not yet broadcast. Therefore, α(v) and α(w) are
indistinguishable from γt(v) and γt(w), respectively, through round r. We can
apply Lemma 8 to show that Alice broadcasts in round r + 1 of α(v) if and
only if Alice broadcasts in round r + 1 of α(w). Notice, however, that by the
rules in Figure 4, Collin only broadcasts in an α execution in situations of
asymmetric silence; i.e., when Alice broadcasts in one α execution but not the
other. Therefore, Collin will not broadcast in either α execution during r+ 1.

We now turn our attention to the 2β rounds that follow. By the rules in
Figure 4, Collin never broadcasts in both α(v) and α(w) during the same
round. Therefore, as with the proof of 1, we note that by a simple counting
argument, it is impossible for Collin to broadcast in more than half of these
2β rounds in both α executions. Without loss of generality, let α(v) be the
execution requiring no more than β broadcasts during the first 2β+ ` rounds.
It is valid, therefore, to define βα(v) = β. This makes α(v) a valid execution
under the constraints of the Theorem statement. Remember, by our argument
above Bob can output during the first 2β + ` rounds of this execution.

Recall that we have already shown in Lemma 9 that ` ≥ k − 1, since both
γt(v) and γt(w) are at least k − 1 rounds, concluding the proof.

2

19

Algorithm 1: Single-Bit Transmission Protocol

1 � Alice transmits bit b ∈ {0, 1} to Bob:
2 Alice-bcast(b)
3 � Repeat the data and veto phases until done.
4 Repeat:
5 � Data phase:
6 do-veto ← false
7 if (b = 0) then
8 m ← bcast-rcv(⊥)
9 if (m 6= ⊥) then do-veto ← true

10 else if (b = 1) then
11 m ← bcast-rcv(vote)
12

13 � Veto phase:
14 if (do-veto = false) then
15 m ← bcast-rcv(⊥)
16 else
17 m ← bcast-rcv(veto)
18

19 � Check if success:
20 if (m = ⊥) then
21 return success

1 � Bob receives a bit b ∈ {0, 1} from Alice:
2 Bob-recv()
3 � Repeat the data and veto phases until done.
4 Repeat:
5 � Data phase:
6 m1 ← bcast-rcv(⊥)
7

8 � Veto phase:
9 m2 ← bcast-rcv(⊥)

10 if (m2 = ⊥) then
11 if (m1 = ⊥) then return 0
12 else if (m1 6= ⊥) then return 1

6 Upper Bounds for the 3-Player Game

We prove in this section that our round complexity lower bounds are tight
(within a constant factor) by demonstrating a protocol that achieves a match-
ing running time. To strengthen our result, we consider the (seemingly) harder
problem of Alice transmitting her value to Bob in a setting where Bob does
not broadcast. Specifically, we give a protocol that, assuming Alice has a

20

budget of β + ∆ messages, ∆ > 0, transmits Alice’s input value to Bob in
2β + max(log |V |,∆|V | 1∆) rounds. As in Section 5, the value of ∆ is known to
Alice and Bob, while β is unknown.

We begin in Section 6.1 by presenting a protocol that transmits a single bit
from Alice to Bob. Then, in Section 6.2, we show how Alice encodes her
message to Bob as a sequence of bits so that it can be sent using at most
β + ∆ messages. (If ∆ = Ω(log |V |), then the natural binary encoding is
used.)

Throughout the rest of this paper, we use the following pseudocode conven-
tion: for a given value v, each invocation of bcast-rcv(v) executes a single
round of wireless communication. If value v = ⊥, then no message is broad-
cast. The bcast-rcv invocation returns any messages received in that round,
or ⊥ if no message is received. Moreover if a collision is detected during the
communication round, the bcast-rcv invocation returns the special symbol ±.

6.1 Transmitting One Bit

The basic protocol, described in Algorithm 1, transmits a single bit b from
Alice to Bob. The key idea is to alternate data rounds and veto rounds, us-
ing the former to transmit data, and the later to verify that the data has
arrived correctly. (Each iteration of lines 5–21 by Alice and lines 5–12 by Bob
implements two rounds of communication.)

In the data phase, Alice transmits a message if b = 1 and remains silent
otherwise. (Lines 7–9 describe the case where b = 0 and Alice broadcasts
nothing; lines 10–11 describe the case where b = 1 and Alice broadcasts a vote
message.) The veto phase is used to confirm the accuracy of the preceding
data phase. Silence in the veto phase indicates that the preceding data phase
was accurate and Alice can terminate (lines 20–21). A broadcast in the veto
phase, on the other hand, indicates potential trouble, therefore requiring Alice
to try again with a new pair of data and veto rounds.

This provides Collin two means by which to delay termination. First, he can
broadcast in the data phase when Alice would otherwise be silent (i.e., when
b = 0). Alice will detect this phony data phase broadcast and subsequently
indicate this deception by broadcasting in the veto phase (line 9). Second,
Collin can broadcast in the veto phase when Alice would have remained silent.
Alice will detect this phony veto (lines 20–21) and then try again with a
new pair of rounds. (Note: Alice knows the veto is phony, but Bob does not,
necessitating that Alice continues with two further rounds, just as if she had
sent the veto. A minor optimization would be to have Bob ignore a veto
message if the preceding data round was empty. In this instance it is clear

21

that Alice did not send the veto message.)

Bob simply listens in both the data and veto phases, broadcasting nothing.
If the veto phase is silent, he returns a value based on the message (or lack
thereof) from the data phase. Notice that Alice and Bob terminate the protocol
at the same round: the first silent veto phase round.

We now discuss some properties of Algorithm 1:

Lemma 10 Assume that Alice has at least one more transmission in her
broadcast budget than Collin, and that Alice begins with initial value b ∈ {0, 1}.
If Alice and Bob both invoke Algorithm 1 in the same round, then:

(1) Termination: Alice returns at the end of round r if and only if Bob returns
at the end of round r.

(2) Safety: Assume Bob terminates at the end of round r. Then Bob returns
value b.

(3) Alice’s Energy Consumption: If Alice has not terminated by the end of
round r, where r is a veto-phase, then Alice has expended at most r/2
broadcasts. If Alice has terminated by the end of round r then:
• Case 1: b = 0: Alice expends at most r/2− 1 broadcasts;
• Case 2: b = 1: Alice expends at most r/2 broadcasts.

(4) Collin’s Energy Consumption: If Alice and Bob have not terminated by
the end of round r, where r is a veto-phase, then Collin has expended at
least r/2 broadcasts.

Proof. We address each of the properties in turn:

(1) Termination: Notice that Alice and Bob both terminate after the first
silent veto phase (lines 20–21 for Alice, lines 10–12 for Bob). By the defi-
nition of our model, a silent round cannot be faked by Collin: either both
processes receive something (be it a message or collision notification), or
both processes receive nothing.

(2) Alice’s Energy Consumption: Notice that Alice never broadcasts in both
the data phase and the veto phase: if b = 0, Alice will broadcast only in
the veto phase (see lines 7–8); if b = 1, then Alice will broadcast only
in the data phase. We conclude that if Alice has not terminated by the
end of round r, a veto-phase, then Alice has expended no more than r/2
broadcasts.

If Alice does terminate at the end of round r, a veto-phase, we first note
that by the above argument, through round r− 2 Alice has expended at
most (r−2)/2 broadcasts. By our assumption that Alice terminates after
r and the fact that Alice and Bob terminate only after a silent round, we
know that Alice does not broadcast in round r. (A broadcast in r would
indicate a veto, requiring the protocol to continue.) If b = 0, then Alice
does not broadcast in round r − 1. If b = 1, then Alice does broadcast

22

in r − 1. In the former case, Alice expends at most (r − 2)/2 = r/2 − 1
broadcasts (note that r is even). In the latter, Alice expends at most r/2
broadcasts.

(3) Collin’s Energy Consumption: If Collin does not broadcast in either the
data phase or the veto phase, then the protocol terminates: if there is no
broadcast in the veto phase, then Alice and Bob both terminate; more-
over, Alice only broadcasts in the veto phase if Collin broadcasts in the
data phase when b = 0. It follows: if the protocol has not terminated at
the end of round r, a veto-phase, then Collin has broadcast in either the
data or the veto round for each pair of proceeding rounds, leading to the
conclusion that Collin has expended at least r/2 broadcasts.

(4) Safety: Assume that Alice and Bob terminate at the end of round r. By
definition, round r is a veto-phase. If Alice and Bob terminate after round
r, then they had not terminated by the end of round r − 2, also a veto
phase. By our two claims regarding energy consumption, shown above,
Alice has expended at most (r − 2)/2 broadcasts through round r − 2
and Collin has expended at least the same amount. By assumption, Alice
begins with at least one more broadcast in her budget than Collin, and
thus has at least one broadcast left in her budget at the beginning of
round r − 1. Consider the two cases for b:

If b = 1, Alice broadcasts in round r − 1. Bob either receives this
message or detects a collision. Because Alice and Bob terminate in round
r we know that round r, the veto phase, is silent. Thus Bob outputs ‘1’.

If b = 0, Alice is silent in round r − 1. If Collin had broadcast in
round r − 1 then Alice would have received this broadcast or detected a
collision, and in this case, she would have used her (at least) one remaining
broadcast to veto in round r. Because Alice and Bob terminate, however,
we know that round r is silent. This implies that Collin did not broadcast
in round r − 1. Both rounds, therefore, are silent, and Bob correctly
outputs ‘0’.

2

6.2 Encoding the Message One Bit at a Time

In order to transmit a non-binary value, Alice transmits her message to Bob
one bit at a time using Algorithm 1. If the value to transmit is encoded as a
binary string in the natural manner, this leads to a string of length log |V |.

Notice, however, that in order to successfully transmit a ‘1’, Alice expends
one more broadcast than Collin. Consider, for example, the case where Alice
is transmitting a ‘1’ to Bob, and both Alice and Bob terminate in round r. By
Lemma 10: through (veto-phase) round r− 2, Alice and Collin have expended

23

the same number of broadcasts (assuming Collin is being as frugal as possible);
in order to terminate in round r, Alice must broadcast in r − 1, while Collin
does not. By contrast, to transmit a ‘0’, Alice does not need to broadcast in
r − 1. Thus it is cheaper for Alice to transmit ‘0’s than ‘1’s.

If ∆ ≥ log |V |, Alice can use the standard binary encoding for a value v. In the
worst-case, value v consists of a sequence of log |V | 1’s. Since Alice’s broadcast
budget is at least log |V | larger than Collin’s, she can afford to transmit this
value v.

If ∆ < log |V |, then it is necessary to encode the value v more carefully.
Specifically, Alice and Bob both know that Alice has a broadcast budget at
least ∆ larger then Collin. Thus Alice encodes her messages as a bit string of
length k containing at most ∆ bits with value ‘1’. If the bit string is of length
k, this implies it can encode up to

(
k
∆

)
messages. Some simple approximation

allows us to calculate that if k = ∆|V |
1
∆ then:

(
k

∆

)
=

(
∆|V |

1
∆

∆

)

≥

∆|V | 1∆
∆

∆

≥ |V |

Thus, using bit strings of length ∆|V |
1
∆ , Alice can encode all the messages in

the set V using no more than ∆ bits with value ‘1’ in each encoding.

Once Alice and Bob have chosen an encoding based on the relationship be-
tween ∆ and the size of V , Alice then sends the encoded message one bit at
a time using the single bit transmission protocol in Algorithm 1, at which
point Bob decodes it in the natural way. From this, we conclude the following
theorem:

Theorem 11 If Alice begins with a budget of β + ∆ broadcasts, ∆ > 0, and
encodes her message v ∈ V as a bit string of length max(log |V |,∆|V | 1∆) with
at most ∆ bit of value ‘1’, and transmits it to Bob one bit at a time using
Algorithm 1, then:

(1) Safety: Bob outputs value v.
(2) Liveness: Alice terminates and Bob produces an output in at most:

2β + 2 max(log |V |,∆|V |
1
∆)

rounds.

24

Proof. Fix sequence S for Alice to transmit to Bob. By Lemma 10, we
know that each bit of S will be transmitted correctly as long as Alice has
more transmissions remaining in her broadcast budget than Collin when the
single-bit protocol begins for that bit. For the first bit, this is true by definition
as we assume ∆ > 1. If this bit is 0, then by Lemma 10 Alice will expend no
more broadcasts than Collin to transmit it to Bob. If this bit is 1, then by
the same lemma Alice must expend at most one more broadcast then Collin
to transmit it to Bob. By definition, no more than ∆ bits in S are 1. Because
Alice has ∆ more broadcasts than Collin, it follows by simple induction that
Alice will have sufficient budget to transmit each bit. Safety follows from this
observation.

We now proceed to calculate the number of rounds required to transmit all the
bits. Let R be the total number of rounds required to send the full sequence.
We divide the rounds into R/2 pairs of consecutive data and veto rounds.
Each such pair of rounds either: (1) terminates Algorithm 1 for one of the bits
in the sequence; (2) does not terminate Algorithm 1 due to interference from
Collin. Given Collin’s budget of β, at most β of these pairs fall into the second

category. Because there are max(log |V |,∆|V |
1
∆) bits to transmit, exactly this

many pairs fall under the first option. It follows that:

R/2 ≤ β + max(log |V |,∆|V |
1
∆)

Therefore:
R ≤ 2β + 2 max(log |V |,∆|V |

1
∆)

which concludes the proof.

2

7 Synchronizing Alice and Bob: the Wake-Up Case

In this section, we consider a variation of the basic broadcast problem where
Alice and Bob need to synchronize, that is, where Alice and Bob do not
necessarily begin the broadcast protocol in the same round.

We assume that Alice is always awake, that is, Alice begins her protocol at
the very beginning of the execution. At this point, Alice may not yet have
received a value to transmit to Bob; however she still may need to counter
Collin’s malicious behavior, preventing Collin from tricking Bob into receiving
an incorrect value. In some round rb ≥ 0, Bob arrives and begins executing his
protocol. Consider, for example, the case where Alice is a base station, and
Bob is a sensor or mobile device that occasionally wakes up to receive data
from Alice.

25

Algorithm 2: Alice Transmission Protocol

1 State:
2 size, initially, the size of the bit string to send
3 value ∈ {0, 1}size ∪ {⊥}, initially, ⊥
4 phase ∈ {synch, not-in-synch}, initially, not-in-synch
5 count ∈ Z, initially, 0
6 bit ∈ [−1, size], initially, −1
7 m, a message
8

9 Alice()
10 Repeat:
11 � Check whether Alice’s value is ready to send
12 if (value = ⊥) then value ← get-value()
13

14 � Choose which case to perform:
15 if (value = ⊥) then
16 � Alice’s value is not ready:
17 if (phase = in-synch) then
18 � Prevent false synch.
19 if (Alice-bcast(0) = success) then
20 phase ← not-in-synch
21 else if (phase = not-in-synch) then
22 � Listen for a round:
23 m ← bcast-rcv(⊥)
24 synch-check(m)
25 else if (value 6= ⊥) then
26 � Alice’s value is ready:
27 if (phase = not-in-synch) then
28 � Perform synchronization.
29 synch-Alice()
30 else if (phase = in-synch) and (bit = −1) then
31 � Finish synchronization:
32 if (Alice-bcast(1) = success) then
33 bit ← bit + 1
34 else if (phase = in-synch) and (bit ≥ 0) and (bit ≤ size) then
35 � Transmit a bit:
36 if (Alice-bcast(value[bit]) = success) then
37 bit ← bit + 1
38 else if (phase = in-synch) and (bit > size) then
39 � Start again:
40 phase ← not-in-synch

26

Algorithm 3: Bob Receive Protocol

1 State:
2 size, initially, the size of the bit string to send
3 value ∈ {0, 1}size ∪ {⊥}, initially, ⊥
4 phase ∈ {synch, not-in-synch}, initially, not-in-synch
5 count ∈ Z, initially, 0
6 bit ∈ [−1, size], initially, −1
7 m, a message
8

9 Bob()
10 Repeat:
11 � Check whether synchronized or not:
12 if (phase = not-in-synch) then
13 synch-Bob()
14 else if (phase = in-synch) then
15 m ← Bob-recv()
16 if (bit = −1) then
17 if (m = 1) then
18 � Get ready to received real data:
19 bit ← bit + 1
20 else if (m = 0) then
21 � Abort the false synchronization:
22 phase ← not-in-synch
23 else if (bit ≥ 0) and (bit ≤ size) and (m 6= ⊥) then
24 value[bit] ← m
25 bit ← bit + 1
26 if (bit > size) then
27 return value

At some point (either before or after Bob arrives) in round ra ≥ 0, Alice is
provided with a value v to transmit. (We model this in the pseudocode as
Alice requesting the value in each round via a call to get-value(); once the
value is available, this function returns the value; until then, it returns ⊥.)

The goal is that Bob receives this value as soon as possible. The duration of
the protocol is rout − max(ra, rb), where rout is the round during which Bob
first outputs Alice’s value. For the purpose of this section, we assume that
Alice has sufficient energy to complete the protocol, i.e., ∆ = Ω(log |V |). The
presented protocol has a duration of 2β +O(log |V |) rounds.

As in Section 6, the basis of our protocol is a simple subroutine that transmits
a single bit of information from Alice to Bob. It is necessary, however, that
Alice and Bob synchronize, and they must continually monitor the channel
for Collin’s attempts to disrupt synchronization. The synchronization com-

27

Algorithm 4: Synchronization Protocol

1 synch-Alice()
2 Repeat:
3 if (count ≤ 5·size) then
4 m ← bcast-rcv(synch)
5 count ← count + 1
6 else
7 m ← bcast-rcv(⊥)
8 if (m = ⊥) then
9 phase ← in-synch

10 bit ← −1
11 count ← 0
12 return synched
13

14 synch-Bob()
15 Repeat:
16 m ← bcast-rcv(⊥)
17 if (synch-check(m) = restart) then
18 return synched
19

20 synch-check(m)
21 if (m = ⊥) and (count > 5·size) then � If synch complete:
22 phase ← in-synch � (Re)start phase.
23 bit ← −1
24 count ← 0
25 return restart
26 if (m 6= ⊥) then count ← count + 1 � Increment synch count.
27 else count ← 0 � Reset synch count.
28 return ok

pensates for Alice and Bob’s different starting rounds, and is used to help
them start the single-bit subroutine at the same time.

Notice that in the pseudocode (Algorithm 2–Algorithm 5), the state for Alice
is presented in Algorithm 2 and is shared by all the subroutines used by Alice;
similarly, the state for Bob is presented in Algorithm 3 and is shared by all
the subroutines used by Bob.

7.1 Synchronization

The synchronization protocol is presented in Algorithm 4. Alice and Bob syn-
chronize via a long sequence of broadcasts. The key idea is that the number

28

Algorithm 5: Modified Single-Bit Transmission Protocol

1 � Alice transmits bit b ∈ {0, 1} to Bob:
2 Alice-bcast(b)
3 � Repeat the data and veto phases until done.
4 Repeat:
5 � Data phase:
6 do-veto ← false
7 if (b = 0) then
8 m ← bcast-rcv(⊥)
9 if (m 6= ⊥) then do-veto ← true

10 else if (b = 1) then
11 m ← bcast-rcv(vote)
12

13 � Check if synchronized:
14 if (synch-check(m) = restart) then return failed
15

16 � Veto phase:
17 if (do-veto = false) then
18 m ← bcast-rcv(⊥)
19 else
20 m ← bcast-rcv(veto)
21

22 � Check if synchronized:
23 if (synch-check(m) = restart) then return failed
24

25 � Check if success:
26 if (m = ⊥) then return success

1 � Bob receives a bit b ∈ {0, 1} from Alice:
2 Bob-recv()
3 � Repeat the data and veto phases until done.
4 Repeat:
5 � Data phase:
6 m1 ← bcast-rcv(⊥)
7 if (synch-check(m1) = restart) then return ⊥
8

9 � Veto phase:
10 m2 ← bcast-rcv(⊥)
11 if (synch-check(m2) = restart) then return ⊥
12 if (m2 = ⊥) then
13 if (m1 = ⊥) then return 0
14 else if (m1 6= ⊥) then return 1

29

of broadcasts is sufficiently long that it is prohibitively expensive for Collin to
fake the synchronization sequence.

Specifically, when Alice wants to begin synchronization, she first broadcasts a
synch message for 5 log |V | rounds, and then remains silent in round 5 log |V |+1
of the sequence (see lines 3–12, Algorithm 4). Notice that the Alice’s synchro-
nization only completes when there is a silent round (lines 8–12, Algorithm 4);
Collin can delay the completion of Alice’s synchronization by disrupting the
last round.

When Bob wants to synchronize, he listens for a long sequence of broadcasts,
followed by a silent round. Whenever he observes 5 log |V | consecutive rounds
in which a message is broadcast, followed by a single silent round, he starts
(or re-starts) the protocol. The synch-check routine (lines 20–28, Algorithm 4)
counts the number of consecutive rounds in which a non-⊥ message has been
received; when the count has reached 5 log |V |, it waits for a silent round and
then initiates the restart, resetting the phase, bit and count .

If Alice begins a synch-Alice() any time after Bob begins a synch-Bob(), then
both Alice and Bob will return from the synchronization protocol in the same
round, and both will begin their respective transmission/receive protocols at
the same time.

7.2 The Single-Bit Transmission Sub-Protocol

The pseudo-code for the single-bit transmission protocol is depicted in Al-
gorithm 5, and is nearly identical to the single-bit protocol presented in Al-
gorithm 1 for the case where Alice and Bob are already synchronized. As
before, Alice alternates data and veto rounds until Bob successfully receives
the specified bit of information.

In this case, however, the basic protocol is complicated by the need to de-
tect “false synchronization.” In particular, Collin may choose to broadcast in
5 log |V | consecutive rounds, thus faking the synchronization sequence. More-
over, Bob may wake up just in time to detect this synchronization sequence,
and hence may begin receiving data bits (via Bob-recv) immediately after hear-
ing the 5 log |V | + 1 synchronization sequence. Thus, Alice too must restart
the protocol in this case, retransmitting the entire bit sequence.

The main difference, then, between algorithm Algorithm 1 and Algorithm 5 is
that Alice and Bob each call the synch-check routine after each round, checking
whether a restart is necessary. If so, they abort the transmission/reception of
this particular bit (see lines 13–14 and 22–23 for Alice, Algorithm 5; line 7
and 11 for Bob, Algorithm 5).

30

7.3 The Overall Protocol

The overall protocol is presented in Algorithm 2 (for Alice) and Algorithm 3
(for Bob). Alice and Bob begin by synchronizing, and then Alice transmits
the value to Bob one bit at a time.

There is one further step needed to ensure that Collin cannot trick Bob. Con-
sider the case where Alice has not yet received the value to transmit. In this
case, if Collin broadcasts the synchronization sequence, then Alice must con-
tinually be on guard to prevent Bob from receiving false data. In particular,
Alice must broadcast in every veto round to indicate that she is not ready to
transmit data; this would be very costly, in terms of Alice’s energy budget.
Instead, we use the following technique: in order to ensure that the string is
coming from Alice, rather than Collin, Alice appends a ‘1’ to the beginning of
her string; if Bob receives a string beginning with a ‘0’ then he knows that it
is not coming from Alice. Moreover, if Alice detects a false synchronization,
she transmits a ’0’ to Bob, ensuring that Bob can determine that she is not
ready to send the value. In this way, Alice can abort a false synchronization
in an energy-efficient manner.

We now proceed to describe Alice’s protocol (Algorithm 2) in more detail. The
protocol has two stages:

• Pre-value: Initially, Alice has not yet received a value to transmit; at this
point (lines 15–24, Algorithm 2), her only goal is to prevent Bob from re-
ceiving an incorrect value. Thus, if Collin has successfully faked a synchro-
nization (line 17, Algorithm 2), then Alice broadcasts a ‘0’ to indicate that
she is not ready to transmit her value. Otherwise (lines 21–24, Algorithm 2),
Alice listens passively to any messages broadcast by Collin in order to detect
fake synchronization.
• Post-value: Eventually, Alice receives the value to transmit (line 12, Algo-

rithm 2), and attempts to transmit it to Bob (lines 25–40, Algorithm 2). In
this case, there are three sub-cases. (1) If Alice and Bob are not yet syn-
chronized (lines 27–29, Algorithm 2), then Alice calls synch-Alice in order to
synchronize. (2) If Alice and Bob have completed the synchronization pro-
tocol, but Alice has not yet sent an initial bit (lines 30–33, Algorithm 2),
then she broadcasts a ‘1’ indicating a valid synchronization. (3) If Alice and
Bob are synchronized, and if they have completed the initial validation bit,
then Alice transmits her value bit-by-bit (lines 34–37, Algorithm 2). When
this is complete, Alice resets the synchronization and begins again (38–40).

Bob’s protocol (Algorithm 3) is somewhat simpler. Initially, Bob waits to
detect a synchronization sequence by Alice (lines 12–13, Algorithm 3). Once
synchronization is complete, Bob tries to receive a single-bit; (lines 16–22,

31

Algorithm 3). If the bit is a ‘1’, then Bob prepares to receive data; otherwise,
if the bit is a ‘0’, then Bob resets the phase (line 22, Algorithm 3), and again
waits for synchronization. Once fully synchronized, Bob continues to receive
bits (lines 23–25, Algorithm 3) until the entire value is received.

7.4 Analysis

We now demonstrate that Alice successfully transmits her value to Bob, and
that the protocol terminates in at most 2β+Θ(log |V |) rounds. As a notational
convention, we use the subscript A to indicate Alice’s state and B to indicate
Bob’s state. For example, valueA represent’s Alice’s view of the value, while
valueB represent’s Bob’s view.

We begin by examining the modified single-bit transmission protocol (Algo-
rithm 5). The following lemma is almost identical to Lemma 10 with three
caveats: (1) No assumption is made regarding Alice’s broadcast budget, as
we have already assumed that Alice has a sufficient number of broadcasts re-
maining in her budget. (2) Unlike Algorithm 1, however, Alice or Bob may
terminate without succeeding (when one of the players detects a synchroniza-
tion sequence); in this case, we show that either both succeed or both fail in the
transmission protocol. (3) We assume that initially, Alice and Bob begin with
the same view of the current synchronization protocol, i.e., countA = countB.

Lemma 12 Assume that Alice begins with initial value b ∈ {0, 1}. If Alice
and Bob both invoke Algorithm 5 in the same round and countA = countB,
then:

(1) Termination 1: Alice returns at the end of round r if and only if Bob
returns at the end of round r.

(2) Termination 2: Alice returns success if and only if Bob returns a value
6= ⊥.

(3) Safety: Assume Bob terminates at the end of round r. Then Bob either
returns value b or ⊥.

(4) Alice’s Energy Consumption: If Alice has not terminated by the end of
round r, where r is a veto phase, then Alice has expended at most r/2
broadcasts. If Alice has terminated by the end of round r then:
• Case 1: b = 0: Alice expends at most r/2− 1 broadcasts;
• Case 2: b = 1: Alice expends at most r/2 broadcasts.

(5) Collin’s Energy Consumption: If Alice and Bob have not terminated by
the end of round r, where r is a veto phase, then Collin has expended at
least r/2 broadcasts.

Proof. The only modifications from the proof in Lemma 10 involve checking
for synchronization; the safety and energy consumption properties follow ex-

32

actly as in Lemma 10. The added synchronization checks, however, can effect
termination, and hence we must argue that they hold.

First, we observe that throughout the invocation of Algorithm 5, we know
that countA = countB. This fact holds initially. In each round, the count
variable is modified only by synch-check, which depends only on whether Alice
or Bob received a message or silence. Since Collin cannot fake a silent round,
we know that Alice and Bob either both receive a message or both receive
silence. Thus, Alice and Bob both update count in the same manner when
they call synch-check in each round.

Next, we observe that if either Alice or Bob terminates without succeeding,
then both Alice and Bob terminate in the same round without succeeding.
This follows immediately from the observation that countA = countB at the
end of each round, and thus if synch-check returns restart for one player, then
it returns restart for both players in the same round.

Finally, if neither player returns without succeeding, then it follows exactly as
in Lemma 10 that Alice and Bob terminate in the same round. 2

We next show that the synchronization protocol works correctly, that is, if
Bob has phase set to in-synch, then Alice also believes that the system is
synchronized, and both Alice and Bob have identical values of count .

Lemma 13 Assume that at the end of round r, phaseB = in-synch and also
that neither Alice nor Bob have terminated at the end of round r. Then (1)
phaseA = in-synch, (2) countA = countB, and (3) bitA = bitB.

Proof. First, we argue that countA ≥ countB throughout the entire exe-
cution (regardless of the phase). Notice that when Bob is first awakened, he
has countB = 0 and Alice has countA ≥ 0; we need to show that the desired
inequality is maintained. There are two cases to consider:

• Assume that Bob increments countB: In this case, Bob has received a mes-
sage 6= ⊥ that causes him to increment the count. We can conclude that
either Alice or Collin must have broadcast a message, and hence Alice also
must have received a message or detected a collision in that round. Thus,
Alice also increments countA.
• Assume that Alice decreases countA in some round: In this case, Alice must

have received a message m = ⊥ (either line 11 or 24 of Algorithm 4). Thus
we can conclude that Bob also received m = ⊥ (due to the collision detector
functionality), and hence also resest countB = 0 (line 24, Algorithm 4).

Thus in either case, countA remains no smaller than countB.

We now prove inductively that the three claims hold. First, we consider the

33

round r in which Bob sets phaseB = in-synch. In this case, we can conclude
that countB = 0 and bit b = −1 at the end of round r, since the count is
reset whenever the phase is set to in-synch (see lines 21–25, Algorithm 4).
We now argue that Alice also executes either lines 21–25 of synch-check or
lines 9–12 of synch-Alice (Algorithm 4), which result in appropriate values
for phaseA, countA, and bitA. Specifically, we know that in round r, Bob de-
tected only silence, and hence Alice too detected silence, since Collin cannot
fake a silent round. Moreover, we know that countA ≥ countB, and also that
countB ≥ 5 · size (since Bob detected a complete synchronization sequence).
Thus, countA ≥ 5 · size, and hence Alice also detects a complete synchroniza-
tion sequence. Thus, the three claims holds at the end of round r.

Next, we argue that the three claims continue to hold as long as phaseB =
in-synch. First, it is easy to see that bitA continues to equal bitB: by the
Termination 2 property of the single-bit transmission protoocol (Lemma 12),
we know that Alice-bcast returns success if and only if Bob-recv returns a value
6= ⊥; thus Alice increments bitA (lines 33 and 37, Algorithm 2) if and only if
Bob increments bitB (lines 19 and 25, Algorithm 3).

Next, observe that in each round, Alice receives a non-⊥ message if and only
if Bob receives a non-⊥ message, and hence the synch-check function modifies
the count and phase of Alice and Bob in the same way. Moreover, the count is
modified only by the synch-check function; thus countA = countB at the end
of each round.

There are, however, two other places in Algorithm 2 where phaseA is set to
not-in-synch: line 20 (Algorithm 2), where a false synchronization is detected,
and line 40 (Algorithm 2), where the transmission completes. In each case, it
remains to argue that Bob either sets phaseB to not-in-synch or terminates.

• False synchronization is detected (line 20, Algorithm 2): This can occur only
immediately after phaseA has been set to in-synch, which is also immediately
after Bob has set phaseB to in-synch. Moreover, it implies that Alice-bcast(0)
returned success. Thus, we conclude by Lemma 12 (Termination 1 and 2,
and Safety properties) that the function Bob-recv returns ‘0’, the value sent
by Alice. Hence Bob too sets phaseB = not-in-synch, as required.
• Transmission completes (line 40, Algorithm 2): If Alice sets phaseA to

not-in-synch because bitA > size, then we can conclude the bitB > size,
and hence Bob returns valueB (line 27, Algorithm 3), terminating the pro-
tocol.

2

We conclude the section with the main theorem:

Theorem 14 If Alice receives initial value v, then Algorithm 2 and Algo-

34

rithm 3 guarantee:

(1) Safety: Bob outputs value v.
(2) Liveness: Bob terminates at most 2β + Θ(log |V |) rounds after round

max ra, rb, i.e., after both Alice receives her initial value and Bob wakes
up.

Proof. By combining Lemma 12 with Lemma 13, it is easy to see that
Bob outputs value v only if Alice receives value v as her input. Specifically,
Lemma 13 shows that once synchronized, Alice and Bob continue to have the
same count . This implies (by induction) via Lemma 12 that each invocation
of the single-bit transmission protocol terminates in the same round, and
thus the following invocation of the single-bit transmission protocol begins in
the same round. Finally, from Lemma 12, we conclude that Bob outputs the
bit broadcast by Alice. Since bitA = bitB throughout, Bob correctly updates
value[bit] with the correct bit of Alice’s value.

We now argue that Bob eventually terminates. Specifically, the first time Alice
calls synch-Alice after Bob awakes, Bob will receive an appropriate synchro-
nization sequence and return synched. Moreover, each iteration of Alice-bcast
and Bob-recv terminate as per Lemma 12 and Lemma 13. With no disrup-
tion from Collin, the synchronization and data transmission require Θ(log |V |)
rounds. More specifically, with no delays by Collin, Alice and Bob will finish
in max(ra, rb) + 14 log |V |+ 5 round: in the worst case, Bob awakes one round
after Alice begins a synchronization sequence, resulting in two iterations of
synchronization (each of which takes 5 log |V |+ 3 rounds), and two iterations
of bit transmission (2 log |V |), less the round Bob arrived too late.

Collin’s β broadcasts may: (1) delay synchronization for up to β rounds; (2)
force Alice and Bob to resynchronize, or (3) disrupt an individual bit trans-
mission. In the first case, each broadcast by Collin causes one round of delay.
In the second case, we can amortize the delay against Collin’s broadcasts and
observe that each broadcast causes delay < 1. At worst, resynchronization
delays Alice and Bob by 2 log |V |+ 2, more specifically, the 2 log |V |+ 1 cost
of retransmitting all but the last bit in Alice’s initial value, and the cost of
the first “validation” bit when bit = −1. Bob’s cost for forcing the resyn-
chronization is at least 5 log |V |/2, more specifically, his optimal strategy is to
alternate broadcasts with Alice as she attempts (and fails) to broadcast a ‘1’
using 5 log |V |/2 broadcast. Thus each broadcast by Collin causes delay < 1.
Finally, in the third case, it follows from Lemma 12 that Collin can delay each
bit transmission by only two rounds with each broadcast.

Thus we conclude that the total running time is bounded by 2β+max(ra, rb)+
14 log |V |+ 5. 2

35

8 Lower Bounds for n-Player Problems

We now generalize our results to n-player coordination problems. In Sec-
tion 8.1, we show how to derive lower bounds for several problems by relating
them to the three player game that we have studied in previous sections. In
Section 8.2, we consider the impact of combining malicious behavior with crash
failures.

8.1 n-Player Reductions

We demonstrate how Alice and Bob can together simulate an arbitrary n-
player protocol. We then use this simulation to derive lower bounds, via re-
duction from the 3-player communication game, for several n-player problems:
reliable broadcast, leader election, and static k-selection. None of our round-
complexity lower bounds restrict the message budget of honest players.

Simulation

A simulation by Alice and Bob is defined by a 5-tuple: {A, n, SA, SB, I}, where:
(1) A is the n-player protocol being simulated; (2) SA and SB partition the
n players into two non-empty and non-overlapping sets; (3) I is a mapping of
players to their respective initial values.

Alice simulates the players in SA, initializing them according to I. (Alice is
provided only the initial values for nodes in SA, i.e., I|SA.) In each round, if any
of the players in SA choose to broadcast, Alice arbitrarily chooses one of their
messages to broadcast (the remaining messages are ignored). She simulates
the receipt of this message at each of the players in SA. If no player in SA

broadcasts, then Alice listens during the round, receiving m, and simulates
the receipt of m at each player in SA (i.e., m is either: a message, a collision
notification, or silence). Alice outputs any values output by her simulated
players. Bob behaves symmetrically, with respect to SB. We prove the following
about the fidelity of these simulations.

Theorem 15 Consider simulation {A, n, SA, SB, I}. For all r-round execu-
tions of the simulation, there exists an r-round execution α of A, initialized
according to I, where the outputs of Alice and Bob are equivalent to the outputs
in α, and Collin broadcasts the same number of messages in the simulation
and α.

Proof. We prove this claim by a straightforward induction on the round
number, showing that after r′ rounds: (1) the state of the simulated play-

36

ers corresponds to some r′-round legal execution of A; and (2) Collin has
performed the same number of broadcasts in both the simulation and the
execution of A.

There are two cases of interest. First, consider the case where two or more of
Alice’s simulated players broadcast (resp. Bob’s players), and the simulation
algorithm has Alice (resp. Bob) choose only one message to broadcast. In
our α execution, this matches the case in which a single message overwhelms
others broadcast in the same round. Another interesting case occurs when
Collin broadcasts in the simulation. In our α execution, this matches the
case where Collin broadcasts the same message, overwhelming other messages
and/or causing collisions in the same pattern seen in the simulator (which will
depend on whether Alice (resp. Bob) receives Collin’s message or a collision
notification). This is the only case in which we require Collin to broadcast in
the α execution, preserving the second property of our hypothesis. 2

We now leverage our simulation to reduce the 3-player game to a several classic
n-player problems—obtaining new lower bounds.

Reliable Broadcast

In reliable broadcast, one player—the source—is provided with an input value
v0 ∈ V . The source must communicate this value to all other players. Safety
requires that each player output only v0, i.e., perform output(v) only if v = v0.
Liveness requires that all players eventually perform an output.

Theorem 16 Any reliable broadcast protocol requires at least 2β + log |V |/2
rounds to terminate.

Proof. Assume by contradiction that A is a reliable broadcast protocol that
terminates in R < 2β + log |V |/2 rounds for all initial values. We reduce 3-
player communication, for value domain V , to A. Alice and Bob simulate A for
n players, where: (1) SA contains the source, SB contains all other players, and
(2) I maps the source to va, Alice’s initial value. Bob outputs the first value
output by a simulated player. By Theorem 15, Bob always outputs v0 = va by
round R, contradicting Theorem 1. 2

Leader Election

In leader election, a group of participants from among the n players contend to
become the leader. All n players should learn the leader, i.e., perform output(`),
for the same participant `. To prevent trivial solutions, we assume the full set
of participants is not known a priori. Instead, each players begins with a binary
initial value that specifies whether or not it should participate in the election.

37

The remaining (non-participating) nodes may help with the protocol, but may
not be elected leader. Safety requires that no two processes output a different
leader, and that the common leader output is a participant (i.e., had an initial
value of 1). Liveness requires every player to perform an output.

Theorem 17 Any leader election protocol requires at least 2β+ log (n− 1)/2
rounds to terminate.

Proof. Assume by contradiction that A is a leader election protocol that
terminates in R < 2β+log (n− 1)/2 rounds for all choices of participants. Let
V be the value set containing every integer between 1 and n − 1. We reduce
the 3-player game, for value domain V , to A.

Alice and Bob simulate A for n players where: (1) SA contains players 1
through n− 1, SB contains player n, and (2) I designates player va ∈ SA (and
no one else) to be a participant. The single player in SB is designated as not
participating in the election. Let i be the leader output by Bob’s simulated
player. Bob outputs i = va, as required.

By Theorem 15 Bob always outputs va within R rounds, contradicting Theo-
rem 1, as 2β + log V/2 = 2β + log (n− 1)/2. 2

Static k-Selection

In static k-Selection, k participants are each provided with a (potentially dif-
ferent) value in V . Each player must receive and output all k values. Safety
requires that the first k outputs of a player equal the k initial values. Liveness
requires that all players eventually perform at least k output actions. The pro-
tocol terminates when all players have performed at least k output actions.
(The selection problem is well-studied in radio networks, e.g., [19, 20].) 3

Theorem 18 Any static k-selection protocol requires at least 2β+Ω(k log |V |
k

)
rounds to terminate.

Proof. Assume by contradiction that A is a protocol that terminates in
R < 2β+o(k log |V |/k) rounds, for all initial values and choices of participants.
Let value domain V ′ contain one unique value for every unique multiset of k
values drawn from value domain V . We assume a well-known mapping between
the values in V ′ and the multisets. We reduce the 3-player game, for value
domain V ′, to A.

Alice and Bob simulate A for n players where: (1) SA contains players 1

3 Often k-selection is oblivious to initial values. We allow a dependence on the
initial values, strengthening the lower bound.

38

through k, SB contains the remaining players, and (2) I activates players 1
through k, and provides each a different value from the multiset mapped to
va ∈ V ′. Given k simulated outputs, Bob can reconstruct and output the
unique multiset described by these values. By Theorem 15 Bob will always
output va in R rounds, contradicting Theorem 1, since 2β + log |V ′|/2 =

2β + log |V |k
k!
/2 = 2β + Θ(k log |V |

k
) rounds. 2

We conclude with an immediate corollary of the previous theorems:

Corollary 19 Any protocol for reliable broadcast, leader election or static k-
selection has a jamming gain of at least 2 and a disruption-free running time
of Ω(log |V |), Ω(log (n− 1)), and Ω(k log |V |

k
), respectively.

8.2 Combining Malicious and Crash Behavior

We now study the impact of combining malicious behavior with crash failures.
We assume that the adversary, in addition to having a budget of β messages,
can also crash up to t players. We consider binary consensus as an archetypal
problem in this context. In consensus, the the n honest players each propose
a value. The following properties must be maintained:

(1) Liveness: all non-crashed players eventually decide a value.
(2) Agreement: all players that decide choose the same value.
(3) Validity: if all non-crashed players propose the same value, then all de-

ciding players choose that value.

By a simple indistinguishability argument, it is easy to see that consensus is
impossible if n ≤ 2t: one cannot distinguish a correct player from a crashed
player that is simulated by the adversary; thus no player can decide in an
execution in which t players propose ‘0’ and t propose ‘1’.

We therefore assume that n = 2t+1, and establish a lower bound of 2β+Θ(t)
on the round complexity of consensus. Our bound reveals the interesting fact
that the possibility of crashed honest devices increases the power of the mali-
cious adversary. This is perhaps surprising as, if there is no malicious adver-
sary, crash-failures have no effect on termination (in a synchronous broadcast
network).

As before, we use a simulation by Alice and Bob of the (t-resilient) n-player
consensus protocol. The simulation, however, is more challenging than those
used for the n-player problems studied previously, as we must now compensate
for the crash failures. Indeed, we do not start the simulation from the initial
configuration of our consensus protocol, but instead from one of two univalent
configurations arising after t rounds. These configurations are constructed in

39

Lemma 21, which is interesting in its own right as it exhibits executions in
which information (about initial values) is transmitted at the rate of at most
one bit per round. By combining this with valency arguments, we show how
the 3-player game can then be employed to finalize our lower bound.

Theorem 20 Any t-resilient binary consensus protocol requires at least 2β+t
rounds to terminate.

Assume A is a protocol that defies our theorem. We fix the environment such
that if multiple messages are sent in a round, and the adversary does not
broadcast, then the message sent by the player with the smallest id is received
by everyone. An execution (or prefix) of A is failure-free if it includes no
crashes or broadcasts by the adversary.

Given these assumptions, it is clear that each initial configuration gives rise to
a single deterministic failure-free, disruption-free execution. We represent all
of these possible failure-free, disruption-free executions as a single tree T (A).
Every execution begins at the root, and a node at depth r represents the exe-
cution at the beginning of round r. Each node at depth r contains one outgoing
edge for every possible message m that may be received in round r. There is
also one outgoing edge for a silent round (labeled ⊥) if silence is possible in
round r in some execution that passes through this node. By definition, every
failure-free execution of A is represented by a single path in T (A), where the
edge between nodes at depth r and r+ 1 describe what message was received
in this execution during round r For each initial configuration c, we say that a
node x ∈ T (A) is reachable from c—with respect to A—if the path associated
with c’s failure-free execution includes node x.

Notice that if a depth r node x is reachable for two initial configurations
c and c′, and some player i has the same initial value in c and c′, then at
the beginning of round r, player i cannot distinguish a failure-free execution
starting from c with one starting from c′. Through this round, i has received
the same messages in both executions. If c is 0-valent (meaning that ‘0’ is
the only possible decision starting from configuration c), and c′ is 1-valent
(meaning that ‘1’ is the only possible decision starting from configuration c′),
then i cannot decide prior to round r.

Lemma 21 There exists a path of length t in T (A), starting at the root, and
ending at node Rt, where Rt is reachable from two initial configurations, c0
and c1, such that some player pt has the same initial value in c0 and c1, and
every crash-free extension of c0 is 0-valent and every crash-free extension of
c1 is 1-valent, with respect to A.

Proof. Starting at the root of T (A), given an initial configuration c0, con-
struct a path of length t by applying the following: (1) If there exists ≥ 1
outgoing message edges, choose the message from the player with the small-

40

est id. (2) Otherwise, follow the ⊥ edge. Let Rt be the node reached after t
iterations.

Configuration c0 contains either a majority of ‘0’s or a majority of ‘1’s. Notice
that a majority contains at least t+1 players, since n = 2t+1. Assume without
loss of generality that a majority of players (i.e., at least t+ 1) propose ‘0’ in
c0. This implies that any crash-free extension of c0 must decide ‘0’, since any
such execution is indistinguishable from one in which all players propose ‘0’,
and those ≤ t players that seem to be proposing ‘1’ are actually nodes that
crashed at the beginning of the execution and are now being emulated by the
adversary—in which case a decision of ‘1’ violates validity.

We now construct an initial configuration c1. Denote by P the set of players
that broadcast messages which were received along the path to Rt. Note that
P contains ≤ t players (one player for each non-⊥ edge followed in the path).
Choose c1 such that the players in P propose the same initial value as in c0,
and the remaining players (of which there are at least t + 1) all propose ‘1’.
Choose some pt ∈ P . (If |P | = 0, then arbitrarily choose one player pt to have
the same initial value in c0 and c1.) By the same reasoning applied to c0, all
crash-free extensions of c1 must decide ‘1’. (A majority of processes propose
‘1’, therefore the ≤ t that appear not to might be emulated by the adversary).
We can show, by a straightforward induction argument, that Rt is reachable
from c1. The base case (the root) is trivial. Our hypothesis posits a node Rt′ ,
on the path to Rt, such that Rt′ is reachable from c1. Let e be the outgoing
edge from Rt′ on the path to Rt. There are two cases:

(1) Edge e is associated with a message m broadcast by some player i ∈ P .
Since player i begins with the same initial value in both c0 and c1, and
has seen the same sequence of messages and silence up to this point, it
broadcasts the same message m in the failure-free execution generated
by c1. No player with a smaller id can also broadcast in this round of
the c1 execution as this contradicts the path construction (which would
have chosen that edge, not e, when constructing Rt).

(2) Edge e is labeled ⊥. By the path construction algorithm, ⊥ must be the
only outgoing edge from Rt′ (It is only chosen if no edges are labelled
with messages). Therefore, it must describe the behavior in this round
for the failure-free c1 execution as well.

In both cases we arrive at a new node, Rt′+1, that is one step closer to Rt on
our path.

2

With this lemma established, we can now prove our main theorem statement.
Our strategy will be to note that the failure-free execution prefixes described
by the path Rt are indistinguishable with respect to pt. Therefore, he cannot

41

have yet decided. This provides a t rounds delay.

To obtain the additional 2β rounds, we defer to our Alice and Bob simulation.
In this case, Alice is attempting to send a binary value va ∈ {0, 1} to Bob.
We have Bob simulate pt and Alice simulate the rest of the nodes, initializing
them with the initial values specified by c0, if va = 0, and the initial values
specified by c1, if va = 1. Instead, however, of starting the simulation from
the initial state of A, Alice and Bob start the simulation from the state after
the initial t rounds. (This state is the same for pt regardless of which case
Alice chooses, so Bob can perform this initialization without knowing Alice’s
initial value.) Bob outputs what pt decides. If pt can decide in less than 2β
rounds than Alice and Bob can solve binary communication in less than 2β
rounds—defying our bound on the 3-player communication game.

Proof (Theorem 20). Let α0 (resp. α1) denote the failure-free execution
prefix starting from c0 (resp. c1) and proceeding as described by the path to
the Rt in T (A). Executions α0 and α1 are indistinguishable with respect to
pt; hence pt has not decided prior to round t. To this point, the adversary has
expended no broadcasts. To achieve a further 2β delay, we defer to Alice and
Bob, who can solve the binary communication game by performing a crash-free
simulation of the n-player protocol A. Specifically, Alice simulates all players
except pt, starting them in their states at the end of α0, if va = 0, and their
states at the end of α1, if va = 1. Bob simulates pt, starting it in its state after
α0 (which is identical to its state after α1). Bob outputs the value decided by
node pt.

By Theorem 15, and our assumption that A defies our bound, pt will decide,
and Bob will therefore output, within no more than 2β rounds of the sim-
ulation. The execution of A generated by this simulation contains no crash-
failures. By our assumptions on the uni-valency of c0 and c1 in crash-free
executions (from Lemma 21), we know pt will decide va. Therefore, our simu-
lation solves the binary consensus problem in no more than 2β rounds. This
violates Theorem 1. A contradiction.

2

We conclude with an immediate corollary of Theorem 20:

Corollary 22 Any t-resilient binary consensus protocol has a jamming gain
of at least 2 and a disruption-free complexity of Ω(t).

42

9 Upper Bounds for the n-Player Problems

We now briefly present protocols for reliable broadcast, leader election, static
k-selection, and binary consensus. The round complexities for reliable broad-
cast and consensus match the lower bounds described in Section 8, within
constant factors. Those for leader election and k-selection leave a gap.

Reliable Broadcast

An algorithm for reliable broadcast follows immediately from the algorithm
in Section 6. The source runs Alice’s protocol, and all other players run Bob’s
protocol, resulting in a running time of 2β + O(log |V |), matching the lower
bound. This protocol requires the source to have a budget of β + log |V |.

Binary Consensus

Assuming t crashes, consensus can be achieved using reliable broadcast: each
of 2t + 1 players transmits their initial value, one at a time. Notice that if
one or more of these 2t + 1 are crashed, we can make no guarantee as to
which value an honest player will receive from the crashed player: if there is
no malicious interference, the protocol results in each honest player receiving
a ‘0’ (as silence is interpreted as ‘0’); on the other hand, Collin can maliciously
trick honest players into receiving a ‘1’ with only a single broadcast.

Each player, after receiving 2t + 1 values, decides the value received at least
t + 1 times, i.e., the majority value. The running time is 2β + Θ(t): each
broadcast by Collin can delay the honest nodes by at most 2 rounds. Each
player needs a budget of β + 1 broadcasts.

Leader Election

Recall that in the leader election problem, up to k players are initially contend-
ing to become the leader; we refer to these contending players as participants.
The goal of the algorithm is to elect one of the participants. The algorithm is
parameterized by an integer c ≥ 1.

In order to elect a leader, we use a tournament tree, a binary tree with n leaves,
each labeled with a player’s id. Each player maintains such a tournament
tree as a local data structure, and maintains a pointer into that tree. At the

43

beginning of the protocol, each player begins at the root of the tournament
tree, and at each step descends to a child or ascends to the parent. At each step,
the protocol determines whether any of the nodes represented by the leaves of
the left subtree are participants, or whether any of the nodes represented by
the leaves of the right subtree are participants. If there are any participants
in the left subtree, the protocol follows the edge to the left child; if there are
any participants in the right subtree, the protocol follows the edge to the right
subtree; otherwise, the protocol ascends to the parent. (The occurrence of this
case implies that there was some earlier malicious interference which led the
protocol to an incorrect subtree.)

In more detail, each step consists of two c-round phases—the left-child phase
and the right-child phase. In the left-child phase, every participating player
identified with a leaf of the left subtree broadcasts for at most c consecutive
rounds. Conversely, players in the right subtree broadcast up to c times during
the right-child phase. A phase ends after the first silent round, or after c non-
silent rounds. In the latter case, we say that the phase was successful. If the
left-child phase was successful, the protocol descends to the left; otherwise,
if the right-child phase was successful, the protocol descends to the right;
if neither round was successful, the protocol ascends to the parent. If there
is no parent—because the current tree node is the root—then there are no
participating players. If there is no malicious interference, the protocol reaches
a leaf in 2c log n rounds.

On reaching a leaf, the protocol ensures that the identified player is in fact a
participant—not simply a product of malicious interference. To achieve this,
the identified player uses reliable broadcast to transmit a ‘1’ if she is partic-
ipating, and a ‘0’ otherwise. In the latter case, the protocol ascends to the
parent and continues. The protocol requires each participant to have a budget
of 2c log n+ β + 1 broadcasts.

Theorem 23 The leader election protocol terminates after 2β c+1
c

+2c log n+2
rounds, for all c ≥ 1.

Proof (sketch). We say an edge in the tree connecting a parent to a child
is good if there is a participant in the subtree of the child. Once the protocol
traverses a good edge descending the tree, it never re-ascends that edge, since
the edge is good. Thus, at each of the log n levels of the tournament tree,
the protocol traverses only one good edge, resulting in a cost of 2c log n. The
traversal of each bad edge results in at most 2c + 2 rounds (amortized): 2c
rounds to descend and 2 rounds to later ascend. With β′ broadcasts, the
adversary can cause the protocol to traverse at most β′/c bad edges, resulting
in a cost of at most 2β′(c + 1)/c. Finally, the one-bit broadcast to identify
the leader takes 2β′′ + 2 rounds, assuming Collin expends β′′ broadcasts in
delaying it. Together, this implies the final running time. 2

44

Static k-Selection

In the problem of static k-selection, k players are provided with values to
transmit. Each player must receive and output each of the k values. In many
ways, this problem combines leader election and broadcast: each of the k
players must be identified, and then each should broadcast its value.

A protocol for static k-selection can be obtained by repeating the leader elec-
tion protocol k times: each time a leader is elected, it uses reliable broadcast
to transmit its value, and then ceases to contend in future iterations of leader
election. The protocol completes when leader election finds no further con-
tenders. Each participant needs a budget of 2kc log n+β+log |V | broadcasts.

Theorem 24 For all c ≥ 1, the k-selection protocol terminates in at most:

2β
c+ 1

c
+ 2kc log n+ k log V + 2k + 2

rounds. Under the (common) assumption that log n = O(log |V |), this implies
termination within:

2β
c+ 1

c
+O(ck log |V |)

rounds. 2

10 Concluding Remarks

We have shown how our 3-player game bounds can be interpreted in a larger
n-player context to help derive bounds for several classical problems in dis-
tributed computing. We discuss below other interpretations of our 3-player
game results.

One possible interpretation can be given in terms of the relative cost of sending
a message—as compared to listening—on a radio channel. Assume that it
takes s units of energy to send a message, and ` units of energy to listen
for a message. In real systems, the ratio of s to ` varies depending on the
network configuration and the underlying hardware. For example, by filtering
signals below a certain energy threshold, a network designer can increase the
cost of sending a message. In some networks, s is equal to `; in others, s is
larger than `. Assume that Alice, Bob, and Collin all begin with the same
amount of energy. Our result shows that Collin can prevent Alice and Bob
from communicating if and only if s ≤ 2`. In other words, communication
can be made more robust against malicious devices if the inherent cost of
broadcasting is high relative to listening.

45

Another possible interpretation can be given in terms of the cost of provoking
a collision versus the actual cost of spoofing messages. In our 3-player game, we
represented the energy available to the adversary, Collin, in terms of the total
number of messages, β, he can broadcast. In practice, one might distinguish
the cost of sending a message, K, from the cost of causing a collision, k, where
k would typically be smaller than K. In this sense, our tight bound indicates
that, if k < K/2, then the best strategy for Collin is to jam Alice and Bob
with collisions in every round; if k ≥ K/2, then the best strategy for Collin
is to follow the silence-filling approach described in Section 4. In other words,
for k < K/2, the cost of causing a collision in every round is less than the
cost of the deploying the strategy from our main lower bound (which requires
Collin to send spoofed messages).

Finally, it is important to recall that we assumed that Alice and Bob can
distinguish a “silent” round from a round in which a collision occurred. That
is, we assume Alice and Bob can detect some electromagnetic noise in the case
where all messages are lost due to collision, which is realistic in practice (carrier
sensing is well-studied). Without such an assumption, a silent round can no
longer be used to encode information. Collin can create any arbitrary sequence,
of length β, consisting of messages and silences. Because β is unknown, it’s
easy to see that no communication protocol can ever safely terminate. In this
sense, the absence of collision detection provides Collin with infinite power.

While the lower bounds proved in this paper were for deterministic players,
we conjecture that they hold even for randomized protocols. For example,
consider the case where Alice and Bob are non-adaptive, i.e., the broadcast
schedules and the contents of the messages are determined only as a function
of the initial values and the random choices. In this case, Collin can delay
Alice and Bob for 2β + Θ(log V) rounds by ignoring rounds in which the
behavior is strictly probabilistic, and filling-in rounds (as in the deterministic
lower bound) where the behavior is guaranteed. Following a similar argument
as presented in Section 4, it is possible to show that, in expectation, Alice and
Bob do not terminate for 2β rounds. Deriving an adaptive lower bound is an
interesting open problem.

Interestingly, it is straight-forward to demonstrate that our lower bounds hold
for weaker games. That is, Lemmas 2 and 3 imply that calculating equality,
bitwise-and or bitwise-or have the same round complexity as the 3-player game.

An obvious future research direction is to extend our results to multihop en-
vironments. For example, when considering reliable broadcast over multiple
hops, will the single-hop bound scale naturally with the hop count, or are the
players (or adversary) able to gain additional advantage in this new setting?

46

Acknowledgments. We are grateful to H. Attiya for her helpful comments,
and to G. Chockler for many long discussions and key insights.

References

[1] Brown, T.X., James, J.E., Sethi, A.: Jamming and sensing of encrypted wireless
ad hoc networks. Technical Report CU-CS-1005-06, UC Boulder (2006)

[2] Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: Spins: Security
protocols for sensor networks. Wireless Networks 8(5) (2002) 521–534

[3] Karlof, C., Sastry, N., Wagner, D.: Tinysec: A link layer security architecture
for wireless sensor networks. In: Embedded Networked Sensor Systems. (2004)

[4] Koo, C.Y.: Broadcast in radio networks tolerating byzantine adversarial
behavior. In: Principles of Distributed Computing. (2004) 275–282

[5] Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In:
Principles of Distributed Computing. (2005) 138–147

[6] Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults.
Information Processing Letters 93(3) (2005) 109–115

[7] Drabkin, V., Friedman, R., Segal, M.: Efficient byzantine broadcast in wireless
ad hoc networks. In: Dependable Systems and Networks. (2005) 160–169

[8] Pelc, A., Peleg, D.: Feasibility and complexity of broadcasting with random
transmission failures. In: Principles of Distributed Computing. (2005) 334–341

[9] Clementi, A., Monti, A., Silvestri, R.: Optimal f-reliable protocols for the do-
all problem on single-hop wireless networks. In: Algorithms and Computation.
(2002) 320–331

[10] Chlebus, B.S., Kowalski, D.R., Lingas, A.: The do-all problem in broadcast
networks. In: Principles of Distributed Computing. (2001) 117–127

[11] Kranakis, E., Krizanc, D., Pelc, A.: Fault-tolerant broadcasting in radio
networks. In: European Symposium on Algorithms. (1998) 283–294

[12] Clementi, A., Monti, A., Silvestri, R.: Round robin is optimal for fault-tolerant
broadcasting on wireless networks. J. Parallel Distributed Computing 64(1)
(2004) 89–96

[13] Koo, C.Y., Bhandari, V., Katz, J., Vaidya, N.H.: Relibable broadcast in radio
networks: The bounded collision case. In: Principles of Distributed Computing.
(2006)

[14] Stahlberg, M.: Radio jamming attacks against two popular mobile networks.
In: Helsinki University of Technology Seminar on Network Security. (2000)

47

[15] Negi, R., Perrig, A.: Jamming analysis of mac protocols. Technical report,
Carnegie Mellon University (2003)

[16] Hu, Y., Perrig, A.: A survey of secure wireless ad hoc routing. IEEE Security
and Privacy Magazine 02(3) (2004) 28–39

[17] Gupta, V., Krishnamurthy, S., Faloutsos, S.: Denial of service attacks at the
mac layer in wireless ad hoc networks. In: Military Communications Conference.
(2002)

[18] Woo, A., Whitehouse, K., Jiang, F., Polastre, J., Culler, D.: Exploiting the
capture effect for collision detection and recovery. In: Workshop on Embedded
Networked Sensors. (2005) 45–52

[19] Clementi, A., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: Symposium on Discrete
algorithms, Philadelphia, PA, USA (2001) 709–718

[20] Kowalski, D.R.: On selection problem in radio networks. In: Principles of
Distributed Computing, New York, NY, USA, ACM Press (2005) 158–166

48

