A Study on the Locality Behavior of Minimum Spanning
Tree Algorithms

Guojing Cong and Simone Sbaraglia

IBM T.J. Watson Research Center
Yorktown Heights, NY, 10598
{gcong, ssharag}@s. i bm com

Abstract. Locality behavior study is crucial for achieving good penfiance for
irregular problems. Graph algorithms with large, spargeits, for example, of-
tentimes achieve only a tiny fraction of the potential peakgrmance on current
architectures. Compared with most numerical algorithmaplgralgorithms lay
higher pressure on the memory system. In this paper, usegithimum span-
ning tree problem as an example, we study the locality behafigraph algo-
rithms, both sequential and parallel, for arbitrary, spanstances. We show that
the inherent locality of graph algorithms may not be favdrgdhe current archi-
tecture, and parallel graph algorithms tend to have siguniflg poorer locality
behaviors than their sequential counterparts. As memamatihy gets deeper
and processors start to contain multi-cores, our studyesigghat architectural
support and new parallel algorithm designs are necesseagfieving good per-
formance for irregular graph problems.

Keywords: memory locality, graph algorithm, minimum spanning tree

1 Introduction

Graph abstractions are used in many science and engingedhtgms, for example,
data mining, determining gene function, clustering in seticavebs, and security appli-
cations. Graph problems with large arbitrary, sparse it&s are challenging to solve
on current architectures (e.g., see [3,4]). For densetialggbra packages near peak
performances are repeatedly reported. Yet we have not Bagargperformance results
for graph problems. Graph algorithms tend to lay highergueson the memory sys-
tem. For architectures with deep memory hierarchy, locédiatures are crucial to the
performance of the algorithms. In this paper, using the mimh spanning tree (MST)
problem as an example, we study the locality behaviors gilgedgorithms and com-
pare their performances with different cache configuration

The MST problem finds a spanning tree of a connected g@pith the minimum
sum of edge weights. MST is one of the most studied combiishtproblems with
practical applications in VLSI layout, wireless commurttion, distributed networks
[15, 24, 26], and recent problems in biology and medicind 8, and national security
[7]. MST is also often a key step in other graph problems [¥62B, 25].

Moret and Shapiro give an empirical analysis of MST alganistin [18]. Implemen-
tations of Prim’s, Kruskal’'s and Cheriton-Tarjan’s algbms on several architectures
are compared. Through extensive comparisons, Prim’sighgors found to be the best
candidate. Computer architectures have since evolvedPanus algorithm may no
longer be the fastest on current platforms. Moreover, mmtimes alone are generally
not sufficient to estimate the relative performance of athors on new architectural
configurations. As memory hierarchy gets deeper, cachemeaihce becomes crucial
to an application. Whether the locality behavior of an ailipon fits well with the cache
configuration affects the overall performance. Understeghe locality behavior helps
the adaptation of algorithms to target platforms and dycamonfigurations (e.g., shut-
down of a cache bank to reduce power consumption).

In this paper we study the locality behavior of three MST alfyons, that is, Prim’s,
Borlivka’s, and Kruskal’s, and show how cache configurati@ng., cache size and line
size) affect their performance. We include Borlivka’s sitipon as it can be easily par-
allelized to run in poly-log time under the PRAM model. As pegsors increasingly
adopt multi-core designs, solving a problem in parallehigpértant for performance.
The locality behavior of a parallel graph algorithm can beywdifferent from the se-
quential counterpart as the designs are drastically éiffeiComparison of their local-
ity behavior brings insight to efficient parallel algorittdasign and better architectural
support.

Cache-friendly algorithms, for example, external memdgodthms and cache-
oblivious algorithms, abound in the literature. These atgms assume some memory
hierarchy models, and minimize the number of block trarsdbetween hierarchy levels.
Common design techniques include divide-and-conquerangdential scan, for which
the I/O complexity (humber of blocks transfered) is relaljyeasy to analyze. For other
algorithms that do not employ these techniques, howevisrhiard to analyze for 1/10
complexity under these hierarchy models. Also the locdi#havior of an algorithm
is an inherent property that should not depend on the memierarchy of a target
platform (while its performance certainly depends on howl we locality behavior
fits with the cache configuration). In our study we do not analthe MST algorithms
under these existing memory models. Instead we charagtiexgality throughLeast-
Recently-Use@LRU) stack distance analysis that is discussed in Section 2

2 Characterizing Locality Behavior

LRU stack distance was first used in the “stack processingfirtiggue proposed by
Mattsonet al. for evaluating cost-performance of storage hierarchidé [1RU stack
distance is also referred to e=muse distanceand the two names are used interchange-
ably in the literature. Locality of a program can be studigdbmputing the LRU stack
distance histogram (e.g., see [21]).

Consider a trace ok memory accesse§, = T, To, ..., T, that access a set af
addresses. For a storage system Wwéhst-Recently-Use@placement policy, acce$s
is a hit if the size of the fast memory is larger than the stastadce\(T;). A histogram
can be derived if we compute for eashe [0 : ¢], the total number of accesses that
have reuse distan@e The LRU stack distance histogram has been used as a machine-

independent metric of locality (e.g., see [6]). With LRUtalistance analysis it is
possible to perform various optimizations on a program.{(seg [21, 27]).

In our study we use the binary rewriting approach to get a nmgraoccess trace.
We intercept eacload andstoreinstruction using SIGMA [10], and compute the reuse
distance histogram on the fly to avoid dumping huge traces.

3 Comparison of Three MST Algorithms

In this section we compare the locality behavior of the thvi&T algorithms, that is,
Prim’s, Kruskal's and Bortivka's. For each algorithm th@exprocess of constructing
an MST is influenced by the topology, edge density, and wedgttibution of the in-
put graph. We focus on sparse random graphs with randorsigreed edge weights.
We choose random graphs because they are the most chafleéongsolve on paral-
lel computers. As memory access pattern is highly deperatettie inputs, the study
of arbitrary graphs can expose regular memory patternseolfjorithms. A random
graph ofn vertices andn edges is generated by randomly picking a pair of vertices and
connecting them with an edge umiledges are generated.

For Prim’s algorithm (denoted as Prim), we use the impligieby heap described
[9]. For Kruskal’s algorithm (denoted as Kruskal), we us@-mecursive merge sort as
the sorting routine. The union-find data structure is usedamtain the disjoint sets of
elements. Borlivka’s algorithm (denoted as Borlivka) imposed of Borlivka iterations
that have three stepind-min connect-componen@ndcompact-graphThe algorithm
iterates until only isolated vertices are left. All MST inephentations run i®@(mlogn)
time. Fig. 1 shows the LRU stack distance histograms for esgdrithm with an input
graph of K vertices and K edges (we useKLto denote 1024).

Fig. 1. Histograms of stack distances for three MST implementation

One common feature of the three plots in Fig. 1 is the blankisérhistogram. The
ratio of the number of observed distinct stack distances thheememory footprint size
is 40% for Prim, 54% for Kruskal, and 73% for Boruvka. In eadbtpthe minimum
reuse distance is 0, and the maximuntjghe size of the footprint. Large concen-
trations of distribution are observed around certain dists. For example, there are
concentrations around small reuse distances in all platsh glot has a different shape.
For Prim the histogram monotonously decreases with theerdissance. For Borlivka
and Kruskal, there are concentrations of distribution addarge reuse distances.

o 5000 10000 15000 20000 25000 30000 35000 40000 o 20 40 60 80 100 120 140
sackdisance . gad K distance

Fig. 2. The ratio plots for three implementation of MST algorithmighwan input of K
vertices, K edges.

The plot on the left of Fig. 2 presents a different view of taeng histogram data.
Thex axis is the stack distance. Thi@alue shows the percentage of accesses with stack
distance no bigger thax Alternatively,y can also be viewed as a cache hit ratio for
a fully associative cache of sizewith the LRU replacement policy. In the rest of the
paper we refer to such plots as ratio plots. For each of threethlgorithms, the shape
of the line in the ratio plots is different. Prim and Kruskah#ve fairly good cache
hit ratios with small cache sizes. The curve of Borlivka remd#at at low ratios for
a range of reuse distances, and jump abruptly at relatiaefjeldistances. The plot on
the right of Fig. 2 is a zoomed-in view for reuse distancesierainge of [0:150]. Prim
achieves a hit ratio of over 80% at a cache size of only 120 svord

3.1 Locality of Prim

Starting from a single vertex, Prim grows an MST one edge iat@. tPrim maintains a
heap to retrieve the lightest-weight edge. During the ettecufor sparse inputs, most
memory accesses occur around accessing the heap datargtriiztch heap operation
incursO(logh) memory accesses, whére= O(n) is the size of the heap. We focus our
analysis on the heap operations.

In our experiments, for all graphs of different sizes, raggirom 1K vertices to
10K vertices, a hit ratio of more than 70% is achieved with fewant20 words. In
fact hit ratios of more than 80% are achieved with around 1@fe (integers), for all
input sizes. Within the reuse distance rangé®50], the curves are nearly identical
and the hit ratio appear to be independent of the input size.

The magic numbers observed (i.e., 70% and 50 words) are depenot only the
topology, edge density, and weight distribution of the ifpput also the actual program-
ming of the algorithm. Instead of modeling the tree congiomcprocess and giving
rough bounds, we show that a significant percentage of memmrgsses incur short
reuse distances.

Recall that a reuse distance is associated with each memoega We now con-
sider the reuse distance for the memory accesses incurredtgctMin, Insertand
DecreaseKey. ExtractMin removes the top element of the heap, and places the last
element as the new top. It then iteratively inspects a nodatariwo children starting

from the top. If the parent has larger weight, it then is sveapwith one of the children.
During each iteration there are three reads (reading thght®iand two writes (swap-
ping). The parent and one of the children are accessed tamzkthe second access
has a distance dd(1). More exactly, the distance will be 1 or 2 depending on whethe
the left or right child gets swapped. Here we do not consideriniterference of other
auxiliary data structures, for example, a temporary lacatd facilitate the swap. So
at Ieast% of the accesses generatedixtract Min are within a constant distanda-
sertappends an element to the end of the heap and then compaatisélg from the
end whether an element is larger than its parent. If the paselarger, it then gets
sifted down. Successive sifting incurs constant reuseuoiist, and% of the accesses
have distanc®(1). DecreaseKeyworks similarly asExtractMin, and abou% of the
accesses have distan©€¢l). Note that although the distances are constant, in practice
they can take a range of values due to book-keeping activitier example, to enable
DecreaseKey, the positions of each vertex in the heap are recorded in ray.ddp-
dating the positions increases reuse distances @Gtll) though) for heap accesses in
DecreaseKey. According to our analysis, an estimate of 40 to 50 percemicobsses
have constant reuse distances (disregarding book-keagpiivifies).

In addition to constant reuse distances, some operatiom @dogn) distance. For
example, to maintain the size of the heap, after dadhact Min or Insert, a counter is
either incremented or decremented. Access to the countergtes reuse distance of
O(logn) asExtractMin andInsertincur O(logn) accesses to different memory loca-
tions. The top of the heap is accessed every timexmact Min, and the largest reuse
distance incurred bixtractMin is O(dlogn), whered is the largest degree of all ver-
tices. The distribution of reuse distances for the rest ahory operations is governed
by the random process of constructing an MST. It is easy tatcoct scenarios that
incur large (e.g.Q(n)) reuse distances.

As the ratio plots show good locality of the simple binary fngais then interest-
ing to compare with other more sophisticated implemematiof heaps. Heaps (and
priority queues) have been studied extensively, and guitevalata structures are pro-
posed, for example, Fibonacci heap, pairing heap, and d¢pag. Sanders presents
a data structure callesequence heaj20] and shows that for a cache configuration
with size M and block sizeB, | insertions and deletions can be performed with
I(2R/B+ O(1/k+ (logk)/m)) 1/Os andl(logl +logR+logm+ O(1)) comparisons,
wherem=0(M), k=0©(M/B), R= [logy r'T—]]. The motivation oequence hedp based
on the fact that merging sequences is 1/O efficient under the external memory model.
Arge et al. designed cache-oblivious priority queues based on simblaervations [2].

In his study Sanders has four heap implementations, demasteslow (implicit binary
heap),h2 (binary heap with the “bounce” heuristic [124(4-ary heap), an#énh (the
sequence hedprespectively.

In Fig. 3 are the ratio plots for the four different heap impéntations. Surpris-
ingly, the textbook binary heap¢low) has the best locality behavior in terms of reuse
distances. At each distance, the ratio fstowis consistently higher than the ratios
for other implementations. In practice, howevas|owis found to be the slowest for
most inputs on current architectures, for example, SUN SPAR and IBM Power 4.

In fact, knhare four times faster thamslowfor many inputs. Althouginslowtends to

' oo oo l
w2 e
ha x 1 e
o s
08 /
08
| f
o5] *
i T £
> 1 ; > £F
g [o g o6
T | I [&
g 1 f
g | e £ | j";
04 T
| if 04 [f-igf
| | o
: |
i
02“ i o2l ¢
i
M? i
0

0
) 20 40 60 80 100 120 140) 20

Fig. 3. The ratio plots for four heap implementations. The plot issiack distance in
range [0:150]. On the left are the plots for 10@8ertfollowed by 1000Extract Min.
On the right are the plots for 100@sert, ExtractMin, andInsert followed by 1000
ExtractMin, Insert, Extract Min.

make more memory accesses (about 1.5 times as mdmhagshe difference does not
fully explain the observed poor performancehsfow especially considering its good
locality behavior. The fastest implementatiorkigh As it mostly works with sorted se-
guences, it exhibits good spatial locality. Current aesttiires that typically have long
cache lines and long latency to main memory impose the rexpgint of spatial locality

for good performance. Unfortunately, spatial localityésice inhslow

All heap operations start with a certain nogeand inspect’s parent and/or chil-
dren. Due to the layout of the implicit binary heap in memarihenever a block is
brought into the cache, except for nodthat is currently being accessed, it is unlikely
that the rest of the block contains parent or children unlessis near the top of the
heap. In this case, long cache line causes fetching dates thatt used in the near future
and wastes memory bandwidth.

There is no machine-independent metric in the literatumaeéasure the spatial lo-
cality of a program. Recently Snir and Yu studied the theécakaspects of temporal
and spatial locality [22]. While they acknowledge that LREck distance analysis cap-
tures well temporal locality, they also point out that innbarof predicting cache miss
bandwidth, temporal locality and spatial locality can netdiudied in isolation. We
present further experimental results in Section 4.

3.2 Locality of Kruskal

For Kruskal, sorting dominates the execution time, andatist the shape of the plot.
For the implementation with merge sort, the hit ratio reradinv until the distance and
hence cache size becomes very large. In fact only at a sizedhahold all the data
structures used for sorting does the hit ratio reach abo%e. $0g. 4 shows the ratio
plots for Kruskal with three different inputs. The vertidisle in each plot isA = 6m.
Recall that non-recursive merge sort employs an auxiliaffen For an input with

m edges, as each edge in the data structure has three eletwentge(tices and the
weight), the size of the total memory usage 823 = 6mwords. The plots show that
a cache has to be of size at leastwords in order to have reasonably good hit ratios.

Otherwise the hit ratio is as low as 30%, even for cache sme-@. Unfortunately,
6m is in direct proportion to the input size, and the algorithxhibits poor temporal
locality behavior.

In practice, for many inputs, Kruskal with merge sort is thstést among all imple-
mentations. As long as the the data structure fits in main mgroar implementation
with merge sort beats the version with quick sort for largmuis on all tested platforms.
This is largely due to the fact that merge sort has very goatiadocality that are es-
pecially advantageous for long cache lines. Rgassumingn = 2% k € N) elements,
merge sort takek iterations. In iteration K i < k, 5'] pairs of consecutive sequences
(each of length Y are merged. Whenever a block is brought into cache, it aostiata
that is soon to be used. We further presents experimentdtseés Section. 4.

Fig. 4. The ratio plots for Kruskal with three inputs. The input siZeom left to right
are K, 5K, and 1K verticesm=4n.

3.3 Locality of Borlivka

With Borlivka, the surges in the ratio plots are at distamcehrect proportion to the
input size, as shown in Fig. 5. In Fig. 5 we show the ratio plotshree different input
sizes, that is, random graphs witK 15K, and 1& vertices, andn = 4n edges. The
vertical line in each plot id = nx 3+ m=4. That is exactly the size of the input. With
our adjacency list representation, for each vertex thezdhaee data fields. Each data
field takes a word of memory. For each edge incident to vestidiere are two elements:
u, the other vertex, and, the edge weight. Each edge appears twice in the adjacency
list. The size of the input is thum3- 4m.

Algorithms with such reuse behavior as shown in Fig. 5 gdlyesaans through
the data structures repeatedly for multiple runs, and eacttan be considered as an
algorithmic phase that may have similar or different chemastics. These algorithms
generally lend themselves to parallelization as in the césorlivka’s algorithm. In
fact the Borlivka iteratiorfind-min connected-componergadcompact-graphis em-
ployed in other parallel MST algorithms (e.g., see [8, 11]).

As shown in Fig. 5, even with a fully associative cache, theheaneeds to be at
least of the size of the input in order to have good hit ratatherwise, the hit ratio is
well below 90%. The vertical line on the left of each plét-€ 4n) crosses the curve
at aboutfrequency60%. The line corresponds nicely to the size of the four laryi
data structures used in the algorithm, thatlis, Min_ind, D, Alive. Consistently, with

a cache size oflwords, the hit ratio is around 60%. In order not to contraetghaph
which is costly as it involves memory allocation and copyiwg use théd andMin
arrays for each vertex (and supervertex) to record the caemtat belongs to and the
smallest weight of the adjacent edgiln_ind records the other vertex (or supervertex)
thatis incident to the edge with smallest weight. Rtiee array shows whether a vertex
should be considered in the Borlivka iteration. With a cazihe of 4, most accesses
to D in our implementation are cache hits. We refer interestades to [4] for details
of the algorithm.

There are two cache sizes for Borlivka that can achieve mah®hit ratios. More
specifically, one is dand the second isB3+ 4m. The effectiveness of caching is highly
dependent on the input size. In contrast to Prim and sinolédrtiskal, Borlivka does
not exhibit good temporal locality. What is worse is that Bdea does not exhibit good
spatial locality either, and most accesses to the arrayisrageilar.

f
H H H

04 o4 04

03 03 03

02 02 02

sack dtance s cistance sack dtance

Fig. 5. ratio plots for Borlivka with three different inputs.

The reuse distance analysis of Borlivka suggests poor tafipoality for parallel
graph algorithms (we mainly focus on PRAM algorithms sinaeshinteresting parallel
graph algorithms are based on PRAM) due to the inherent dhetsavior. In addition,
the irregular nature of the input dictates poor spatiallibchehavior.

3.4 Locality of Parallel MST Algorithms

In this section we consider the locality of parallel Bor&igkalgorithm. The local-
ity of parallel Borlivka’'s algorithm is representative fat least some stages in the
more complex MST algorithms. In fact, the graft-and-shatrgpproach used in par-
allel Borlivka’s algorithm is also frequently used in otparallel graph algorithms, for
this class of algorithms, we expect to see similar localéidior.

The parallel implementations dihd-minandconnect-componengse straightfor-
ward. We have two implementations of tbempact-graptstep. One of them contracts
the graph using parallel sorting routines, while the otltads a data structure called
flexible adjacency listhat avoids large scale sorting. We refer interested readgn]
for details of the implementations.

Fig. 6 shows the ratio plots for two implementations of pataBorlivka’s algo-
rithm. Again the input is a random graph witk vertices and K edges. We emulate
the parallel algorithm with one thread. The locality beloa¥or each thread with mul-
tiple threads should be similar. The two ratio plots of Figo@&k roughly like the plots

in Fig. 5, and show poor locality in terms of reuse distandea Aarge distance about
130,000 words, the hit ratio reaches above 80%. The range of tlee distance is sig-
nificantly larger than that of the sequential implementatibhis is due to the fact in
both implementations, after each iteration new instanée¢kengraph (either fully or
partially compacted) are generated and the next iteratimiksvon the new instances.
Fig. 6 partly explains why it is difficult to achieve good plebspeedup for sparse
arbitrary instances on current parallel computers. Thallghialgorithms have poorer
locality than the sequential algorithms, and as far as waweage of, there are no mature
techniques for improving the locality behavior of paralighph algorithms. As cache
performance becomes even more crucial, the gap betweeretizabresults and actual
performances can be increasing.

Random Graph, 1K vertices, 4K edges

o 20000 40000 60OOD 80000 100000 120000 140000 160000 180000

Fig. 6. The ratio plots for two implementations of parallel Boréaskalgorithm. The
implementation labeled a®mpacttompacts the graph using parallel sorting routines.
Theno-compactersion uses thiéexible adjacency listepresentation.

4 Simulation Results

We next present our experimental results with differenheamonfigurations that sup-
port our analysis in the prior section. We run the algorittemshe RSIM simulator [19]
that simulates modern processors and memory sub-syststeathof giving pages of
specifications for the processor, we use similar settings @sor studies (e.g., see [1]).
The important features include instruction-level pataie, out-of-order scheduling,
non-blocking reads and speculative execution. As we onyseguential algorithms,
we do not use any of the multiprocessor features such as nyemosistency protocols.
In our study we use directly-mapped L1 cache and 2-way set&give L2 cache, and
the input is a random graph withKlvertices and K edges.

First we vary the cache line size, and measure the perforena@scthe cache line
size increases, each transfer brings more data into cacti¢ha spatial locality of an
algorithm becomes more important for performance.

In Fig. 7, the plot on the left shows how the performance arnigh different cache
line sizes. The size of the cache is kept constakB(11 and KB L2) in the experi-
ments. The smallest cache line size that can be simulatédagtés. With the increase

IPC vs. Cache Size
Execution Time vs. Cache Line Size

|
|

(cyel
IPC

Time (cycles;

14 2.8 416 832 16.64 32_128 64_256 128512
Cache line size (words)
Cache Size (L1_L2)

Fig. 7.Performance of MST algorithms with different cache confégians. For the plot
on the left, we experiment with cache line sizes of 16 byta4)\Bes and 64 bytes. The
plot on the right shows performance for different cachessize

of line size, the performance of both Prim and Borlivka deses while that of Kruskal
improves. The results support our analysis that both PrichBorlivka do not have
good spatial locality and is not favored by long cache lines.

The plot on the right of Fig. 7 shows the performance of thewtlgms with dif-
ferent cache sizes, fromrKB L1 and KB L2 to 12&B L1 and 51KB L2. The per-
formance, measured as instruction per cycle (IPC), impasube cache size increases.
The performance curves in this plot are correlated with #t® plots in Fig. 2. Yet it
is not straightforward to predict the performance with reathe configurations from
the ratio plots. According to the ratio plot we would expdw performance curve for
Prim’s algorithm rise sharply at a small cache size and res@inewhat flat afterwards.
This is obviously not true in the performance plot. The dépancy is mostly due to the
associativity of the cache and the cache line size. For Kiluklke IPC increases sharply
at 32K bytes (L1 cache size), and the whole input (of size np24K bytes) fits in L1.
For Boriivka, there are two sharp increases with the pedoo® curve. The increases
correspond roughly to the sharp increases in the ratio.plots

5 Conclusion and Future Work

In this paper we studied the locality behavior of MST aldaris. As memory hierarchy
deepens, locality is becoming even more important to theopaance. We show that
Prim with implicit binary heap has better temporal localiyan the cache-aware im-
plementations in our study. A significant percentage of tleenory accesses incurred
by the heap operation ha¥®(1) or O(logn) reuse distances. However, architectures
with long cache lines impose the requirement of spatialligcér good performance,
and penalize the performance of Prim with implicit binanapeKruskal (with non-
recursive merge sort) exhibits poor temporal locality asyn@use distances are in
the order ofO(n). Due to its good spatial locality, it runs fast on currentétectures.
Increasing cache line size in general improves its perfaseaComparing Prim and
Kruskal, it seems that good spatial locality fits better veitirent cache organizations.

Both the sequential and parallel implementations of Bkalishow poor temporal
and spatial locality. In future work we will further invegéte the locality behaviors
of parallel graph algorithms. This is especially meanihg&imany processors adopt
multi-core designs. Our study of Borlivka’s algorithm kitttat poor locality might be
inherent in the PRAM algorithms. In order to verify, we wiked to find a metric for
measuring spatial locality. On one hand, it is importantésign parallel algorithms
with reasonable locality behavior. On the other hand, sppecchitectural support, for
example, multi-threaded architecture, is necessary trdtd the memory access la-
tency for parallel algorithms. We will also investigate theact of locality enhancing
techniques such as vertex reordering on the performancarafl@ algorithms. For
Prim and Kruskal in our study, from the analysis of the altjonis, we do not expect
to see too big a difference in the stack distance distributir Borlivka, however,
there can be interesting findings, and we expect similattesith many other parallel
algorithms.

References

1. S.V. Adve, V.S. P, and P. Ranganathan. Recent advancesntom consistency models for
hardware shared-memory systemsptaceedings of the IEEE, special issue on distributed
shared-memorypages 445-455, 1999.

2. G. Aloupis, P. Bose, E.D. Demaine, S. Langerman, H. MdijferOvermars, and G.T. Tou-
ssaint. Computing signed permutations of polygonsPioc. of the 14th Canadian Conf.
on Computational Geometry (CCCQ)ages 68-71, Lethbridge, Alberta, Canada, August
2002.

3. D.A.Baderand G. Cong. A fast, parallel spanning treeritlym for symmetric multiproces-
sors (SMPs). IrProceedings of the 18th International Parallel and Distribd Processing
Symposium (IPDPS 20043anta Fe, New Mexico, Apr 2004.

4. D. A. Bader and G. Cong. Fast shared-memory algorithmgdarputing the minimum
spanning forest of sparse graphs. Aroc. 18th Int'| Parallel and Distributed Processing
Symp. (IPDPS 2004panta Fe, New Mexico, 2004.

5. M. Brinkhuis, G.A. Meijer, P.J. van Diest, L.T. Schuurrsaand J.P. Baak. Minimum span-
ning tree analysis in advanced ovarian carcinoraal. Quant. Cytol. Histo).19(3):194—
201, 1997.

6. C. CaΒcaval and D.A. Padua. Estimating cache missddocality using stack dis-
tances. InProceedings of the 17th annual international conferenceSapercomputing
pages 150-159, San Francisco, CA, 2003.

7. C. Chen and S. Morris. Visualizing evolving networks: Miam spanning trees versus
pathfinder networks. IWEEE Symp. on Information VisualizatioBeattle, WA, October
2003. to appear.

8. R. Cole, P.N. Klein, and R.E. Tarjan. A linear-work pagh#lgorithm for finding minimum
spanning trees. IRroceedings of the 6th Annual ACM Symposium on Parallel iklgus
and Architecturespages 11-15, Cape May, NJ, 1994.

9. T. H. Cormen, C. E. Leiserson, and R. L. Rivebitroduction to Algorithms MIT Press,
Inc., Cambridge, MA, 1990.

10. L. DeRose, K. Ekanadham, J.K. Hollingsworth, and S. &lle. Sigma: a simulator infras-
tructure to guide memory analysis. Rroceedings of the 2002 ACM/IEEE conference on
Supercomputingpages 1-13, 2002.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

D.R. Karger, P.N. Klein, and R.E. Tarjan. A randomizeér-time algorithm to find mini-
mum spanning treed. ACM 42(2):321-328, 1995.

D.E. Knuth.The Art of Computer Programming: Sorting and Searchirgume 3. Addison-
Wesley Publishing Company, Reading, MA, 1973.

M. Matos, B.N. Raby, J.M. Zahm, M. Polette, P. Birembaug N. Bonnet. Cell migra-
tion and proliferation are not discriminatory factors iretim vitro sociologic behavior of
bronchial epithelial cell linesCell Motility and the Cytoskeleto®3(1):53—-65, 2002.

R.L. Mattson, J. Gecsei, D.R. Slutz, and I.L. Traiger.algation techniques for storage
hierarchiesIBM Systems Journa9:78-117, 1970.

S. Meguerdichian, F. Koushanfar, M. Potkonjak, and Ni&Stava. Coverage problems in
wireless ad-hoc sensor networks. Proc. INFOCOM ’'01 pages 1380-1387, Anchorage,
AK, April 2001. IEEE Press.

G. L. Miller and V. Ramachandran. Efficient parallel eacamposition with applications.
Manuscript, UC Berkeley, MSRI, January 1986.

Y. Moan, B. Schieber, and U. Vishkin. Parallel ear decositipn search (EDS) and st-
numbering in graphsTheoretical Computer Scienc#7(3):277-296, 1986.

B.M.E. Moret and H.D. Shapiro. An empirical assessméraigorithms for constructing
a minimal spanning tree. IBIMACS Monographs in Discrete Mathematics and Theoreti-
cal Computer Science: Computational Support for Discretsghdmaticsl5, pages 99-117.
American Mathematical Society, 1994.

V.S. Pai, P. Ranganathan, and S.V. Adve. RSIM: an ex@egtiiven simulator for ILP-based
shared-memory multiprocessors and uniprocessoPrageedings of the 3rd workshop on
computer architecture educatiph997.

P. Sanders. Fast priority queues for cached mema6M J. Experimental Algorithmics
5(7), 2000.www. j ea. acm or g/ 2000/ Sander sPriority/.

X. Shen, Y. Zhong, and C. Ding. Locality phase predictidn Proceedings of the 11th
international conference on Architectural support for gramming languages and operating
systemspages 165-176, Bostaon, MA, 2004.

M. Snir and J. Yu. On the theory of spatial and temporaélipc Technical Report
UIUCDCS-R-2005-2611, University of lllinois at Urbana-&hpaign, 2005.

R.E. Tarjan and U. Vishkin. An efficient parallel bicootigity algorithm. SIAM J. Comput-
ing, 14(4):862—-874, 1985.

Y.-C. Tseng, T.T.-Y. Juang, and M.-C. Du. Building a rinalsting tree in a high-speed
network. IEEE Concurrency6(4):57-67, 1998.

U. Vishkin. On efficient parallel strong orientationinformation Processing Letters
20(5):235-240, 1985.

S.Q. Zheng, J.S. Lim, and S.S. lyengar. Routing usindiéihponnection graphs. 18th
Int’l Conf. on VLSI Design: VLSI in Mobile Communicatj@eangalore, India, January 1996.
IEEE Computer Society Press.

Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array regrongpand structure splitting using
whole-program reference affinity. Proceedings of the ACM SIGPLAN 2004 conference on
Programming language design and implementatfmges 255-266, Washington, DC, 2004.

