
Recovery Strategies for Linear Replication∗

Technical Report ITI-ITE-06/06

Rubén de Juan-Marı́n, Luis Irún-Briz, Francesc D. Muñoz-Escoı́
Instituto Tecnológico de Informática - Universidad Politécnica de Valencia

Camino de Vera, s/n - 46022 Valencia, SPAIN

Email: {rjuan, lirun, fmunyoz}@iti.upv.es

Abstract

Replicated systems are commonly used to provide highly available applica-
tions. In last years, these systems have been mostly based on the use of atomic
broadcast protocols, and a wide range of solutions have been published. The use
of these atomic broadcast-based protocols also has aided to develop recovery pro-
tocols providing fault tolerance to replicated systems. However, this research has
been traditionally oriented to replication systems based on constant interaction for
ensuring 1-copy-serializability. This paper presents a general strategy for recovery
protocols based on linear interaction as well as providing other isolation levels as
snapshot isolation. Moreover, some conclusions of this work can be used to review
recovery protocols based on constant interaction.

Keywords: Recovery, Data Replication, Transactional Systems, Linear Interaction,
High Availability.

1 Introduction

Fault tolerance, high availability and performance are success keys in nowadays infor-
mation systems. Consequently, distributed systems have been widely expanded among
organizations and enterprises in order to provide these characteristics.

Particularly, replicated systems are the most common way used to reach these goals,
being replicated databases one of the typical applications. Therefore several replication
techniques have been largely studied and a wide range of proposals have been imple-
mented. Thus, latest trends in replication techniques are oriented to make use of group
communication system semantics. In fact most non-commercial solutions combine ea-
ger update propagation with constant interaction [1] using atomic broadcast protocols
[2], providing more efficient implementations. A wide number of approaches [3], [4],
[5] are described in the literature.

∗This work has been partially supported by the Spanish MCYT grant TIC2003-09420-C02-01.

1



Group communication systems make use of membership mechanisms, which are
often provided to the applications built atop of them (e.g. replication protocols). On
one hand, this mechanism excludes disconnected, failed or partitioned nodes from the
group, notifying the changes to survivor nodes. On the other hand, it allows new incor-
poration to the group or node reconnection, also notifying the membership changes to
the group members.

Usually, these membership changes may originate outdated nodes, i.e. replicas that
have lost some updates, and therefore without the last state. But traditionally, replica-
tion protocols do not give great relevance to the outdated nodes recovery, not being a
real fully-functional fault tolerant system. So it seems to be needed a new architecture
component that knows what to do when: a node failure occurs, a failed node rejoins
to the group or a new node is added to the replication system. The most important
function of this component consists of updating those replicas with an outdated sys-
tem state before they become full-functional system nodes. Examples of outdated sites
can be either new added replicas or previously failed nodes. In any case, membership
changes will properly describe the particular scenario. The recovery protocol must in-
clude in the replication protocol additional actions, in order to store and maintain the
information used in the recovery processes (whenever it is needed).

This recovery process of outdated nodes can be carried out in many ways, ranging
from the simplest one (a backup transfer) to more complex alternatives. But ideally,
this process must be performed without interfering the common work of the replicated
system. In this direction, a wide variety of recovery protocols has been presented in the
literature scoped on replicated databases, as [3], [6], [7] most of them based on group
communication.

This work presents a general strategy for recovery protocols based on linear inter-
action, in contrast of using the constant interaction [1] approach. Linear interaction,
in spite of its high performance cost, will be the only feasible alternative for object-
oriented replicated systems with large data states to transfer, and with a transactional
support, such as FT-CORBA with its complementary Transaction Service, where con-
stant interaction will either lead to huge messages or be impractical in case of partial
replication, since the state to be transferred should be collected from different source
nodes. But, as it will be shown, the management required by linear-recovery protocols
is more complex because it must include and process multiple messages per transac-
tion. In addition, for ensuring correctness under linear interaction, messages belong-
ing to not-yet-committed (as well as for rolled-back) transactions, must be adequately
treated.

In parallel, the traditional failure model adopted, the crash or fail-stop, which ig-
nores the outdated nodes recovery, presents a good behavior when the replicated sys-
tem manages few data state, but it is is not as good for replicated systems with large
data states where the outdated nodes recovery becomes a key point for building fully-
functional fault tolerant systems. Therefore, the proposed recovery strategy adopts
the crash-recovery with partial-amnesia failure model, supporting then the recovery of
outdated nodes.

The discussed strategy is intended to provide fault tolerance for replicated systems
based on linear interaction protocols. The background idea is to obtain a recovery
protocol which minimizes the effort and cost of the recovery process, without stopping

2



the replicated system work for primary partitions. It is also intended to perform partial
recoveries, when needed. Finally, as our design is performed as a middleware recovery
system, it can be easily applied to different transactional scenarios, specially including
database replicated systems. The proposed recovery protocol has been implemented in
an existing system, in order to study its real behavior and performance, although the
results are not included in this paper for space constraints. The results obtained in this
paper can be subsequently used to perform a generic revision of recovery protocols for
constant interaction replicated systems.

This paper is structured in the following sections. In section 2 it is detailed the
system model assumed in this work, the node system architecture, and the assumed
failure model, as well as the associated progress condition. The general schema fol-
lowed by the recovery is described in section 3. Afterwards, the recovery information
needed by the recovery process is explained in section 4. The following sections, 5,
6 and 7, present three important aspects: the amnesia recovery for realistic systems,
the consistency problem due to on-going transactions, and the recovery information
persistence policy respectively. Finally, some related work is given in section 8, and
section 9 concludes the paper.

2 System Model

Our model considers the replicated system as a compound of several replicas, where
each replica is located in a different node. These nodes belong to a partially syn-
chronous distributed system: their clocks are not synchronized but the message trans-
mission time is bounded. The state is fully replicated in each node, so each replica has
a copy of the whole state.

The replicated system uses a group communication system (GCS) providing differ-
ent communication semantics. Point-to-point and broadcast deliveries are supported.
The minimum guarantee provided is a FIFO and reliable communication.

It is also assumed the presence of a group membership service, who knows in ad-
vance the identity of all potential system nodes. These nodes can join the group and
leave it either explicitly or implicitly by crashing. The group membership service com-
bined with the GCS provides Virtual Synchrony[8] guarantees, thus each time a mem-
bership change happens, it supplies consistent information about the current set of
reachable members. This information is given in the format of views. Sites are notified
about a new view installation with view change events.

As shown in figure 1, the replication protocol performs its linear interaction by
broadcasting (typically with an abcast) the update operations among the application
view members. Also the membership service collaborates with the communications
system to detect changes in the group composition and notify these changes to the
group members. Finally, the recovery protocol utilizes the membership service to
detect outdated nodes and the communications system to send recovery information.
Also, the recovery protocol uses the membership service for triggering the process.

The view notification mechanism is extended with node application state infor-
mation providing the enriched view synchrony [9] approach. This makes simpler and
easier the support of system cascading reconfigurations. These enriched views (e-view)

3



Replication Protocol

Recovery Protocol

GCS

Recovery Module

View Management Algorithm

Membership Service

Figure 1: Node Architecture

not only inform about active nodes, but they also inform about the state of active nodes:
outdated or up-to-date. The use of e-views refines the primary partition model into the
primary subview model, therefore the system only can work when a progress condition
is fulfilled.1 At the same time the state consistency is ensured because only the pri-
mary subview is able to work in partition scenarios. Thus, this subview is the only one
allowed to generate recovery information, which will be afterwards used for recovery.
For simmilar reasons, a node can not start new transactions until it has not been fully
updated.

2.1 Failure Model

We consider the crash-recovery with partial-amnesia model instead of the crash or fail-
stop model[2] for node failures. This implies that an outdated node must be recovered
from two “different classes of up-to-dateness losses”: forgotten state and missed state.
This assumption supports a more realistic and precise way to perform the recovery
process. So the assumed model allows to recover failed nodes from their previous
crashing state maintaining their assigned node identifiers. Consequently, when a node
crashes, every active node must abort any transaction started by the failed node whose
commit messages have not been yet delivered. A similar behavior is adopted when the
system can not go on because the progress condition has been lost. In this situation, the
nodes in minority (e.g. disconnected) must also abort the started transactions whose
commit message has not been yet delivered. Thus, the whole activity that was not
committed during the working life is aborted.

2.2 Progress Condition

In order to determine whether the system can work or not, a progress condition is
defined. This condition must be fulfilled in order to avoid the existence of majority
partitions that, if they go on working, could lead to different information evolutions in
the replicated system. This definition is extended in order to guarantee that a majority
partition will be always able to reach a consistent up-to-date state for every composing

1This characteristic prevents the system from working in the starting phase until a primary subview is
reached, and therefore, during this initial phase, the recovery protocol must not perform any work.

4



node. The selected progress condition influences the recovery information needed by
the recovery protocol. In order to define these conditions a replicated system compound
by n replicas is assumed.

The most traditional condition consists of requiring n

2
+ 1 up-to-date nodes. Thus,

this condition will not let the system work until n

2
+ 1 nodes are fully up-to-date, even

if the partition contains N alive nodes. When this condition is required, in any possible
majority partition it will exist at least one node fully updated able to recover out-of-date
nodes, regardless the failure history.

A less restrictive condition consists of requiring n

2
+ 1 alive nodes to conform a

majority view. It lets the replicated system to work as soon as a majority partition is
achieved. However, since only up-to-date members are enabled to start transactions,
and a majority partition could contain no up-to-date node when this second progress
condition is assumed, it becomes possible for a majority partition to be unable to
progress if a cooperative recovery 2 is not guaranteed to be feasible. To this end, it
must be collected specific recovery information with particular policies.

3 Log-Based Recovery

Since the replication protocol we assume uses linear interaction for implementing its
functionality, the most natural way for performing the recovery will follow a log-based
strategy to recover outdated nodes.

The main dependency of using log-based recovery relies on the way the upper repli-
cation protocol broadcasts the transaction updates among replicas. Any recovery pro-
tocol extracts from the broadcast messages the recovery information. However, while
constant interaction protocols have typically a single message for each transaction, lin-
ear replication protocols manage multiple messages per transaction. Having multiple
messages per transaction will present several complications for the recovery protocol,
being shown the two more important in sections 6 and 7. Moreover, different storing
and recovery policies can be applied, being presented here the simplest one.

The log-based node recovery process is initiated by a node detected to be outdated
after its (re)connection to the replicated system. The outdated node starts selecting a
recovery master node (RMN), which must be one of the most up-to-date alive nodes,
and performs the following steps:

• missed recovery stage (MRS). Where outdated nodes update their missed views.

• current view recovery stage (CVRS). This last step is done if the replicated system
is working during the outdated node recovery. It is performed once the node has
applied all its missed views, and its goal is to apply in the recovering node any
message received during the previous stages (which could not be applied, since
the node was not updated yet).

In addition, the (re)connected node must always do the amnesia recovery stage
(ARS) priorly to any other stage. Notice that the ARS is always triggered by node

5



if the outdated node is the (re)connected node:
it performs its ARS

the outdated node performs its MRS:
for each non-applied view vi:

if the outdated node does not have the log-recovery view information for vi:
it demands the log-recovery information for vi to the RMN(vi)

the outdated node updates view vi

notify the alive nodes that vi has been recovered in this node
if the replicated system was working during the node recovery (all lost views were applied):

the outdated node performs its CVRS

Figure 2: Recovery Algorithm.

(re)connections. The used log-based recovery algorithm is summarized in figure 2.
The first step, the ARS, is used by (re)connected nodes to retrieve the right state

they had at their crash time. In this process, the outdated node must apply the messages
received and not yet committed before its failure. A deeper discussion of this recovery
step is done in section 5.

The MRS stage is performed by every outdated node. Each outdated node starts
the recovery of its missed views by selecting its RMN for such views (in a primary
partition, a single node can be used for every view 3). Since views are sequentially
numbered, the first view to be recovered is the next one to its last fully applied view,
and finishes when it reaches the last applied view in the RMN 4. As this recovery is
performed view by view, it is possible to request to the RMN just the log-recovery in-
formation for the lost views. Once the outdated node has this information (i.e. missed
messages), it applies them to recover this view. The application of these missed mes-
sages must be performed in the same order they were delivered in the replication system
total order. When the outdated node has finished the recovery of this view it must notify
all alive nodes that it has recovered this view, therefore they may discard the available
recovery information for such view.

Every time a membership change occurs it must be checked how it affects to each
recovery process started. Obviously if the outdated node crashes the recovery process
ends. If the RMN has failed the outdated node must look for a new RMN for going on
with the recovery process.

The third step, CVRS, is performed by outdated nodes recovered as long as the
system is working (i.e. if the (re)connection was into a primary partition). In this
scenario, the system generated activity during the recovery process, but the recovering
node delayed the application of such activity (it just persisted it in a queue as part of
a “seen view”). Thus, once all the non-previously-applied views are applied in the
recovering node, it must conclude its recovery by applying all these delayed messages

2This information can be spread among all alive nodes, so they must work together to reach the last
system data state.

3This approach allows partial recoveries if the outdated node is in a system which does not fulfil the
progress condition.

4If the system is in a working view the previous view to the current one is considered the last one applied
in the RMN.

6



in their delivery order. If a new working view is installed during the recovery of a node,
a new queue is created for the new view 5.

The generic log-based recovery protocol, as it has been described, is intended to
provide recovery support for replication systems based on linear interaction. But the
use of linear interaction rises several problems that must be considered for recovery
purposes. As we show in section 6, the consistency problem associated to ongoing
transactions must be emphasized as one of the main problems to be treated.

4 Recovery Information

As said, we assume a crash-recovery with partial-amnesia failure model. Conse-
quently, once a crashed node is reconnected, it neither knows anything about the work
performed during its disconnection nor can remember exactly which was its exact state
before the crash occurrence.

Thus, node recovery must include both the recovery of missed state, and the re-
covery of the “forgotten state”. The first one refers to the data state that the node has
not received because it was disconnected. The second one covers the state received but
later lost (due to the amnesia) when the node crashed. Therefore, the recovery system
must maintain information allowing it to handle these two out-of-date causes.

The log-based policies use the broadcast messages as recovery information. If the
amnesia is not considered, the recovery information only refers to messages missed
by non-connected nodes. Thus, in this case, the recovery information must be created
when the membership monitor detects non-connected nodes in the system. The infor-
mation must be maintained until the outdated nodes have applied the missed messages.

r1

r2

r3

A

B

X

t1 t2

Figure 3: Log Recovery Information.

However, the amnesia recovery information for log-based policies relates to those
messages belonging to transactions not-yet-committed at crashed nodes when they
failed. Therefore, the recovery system must store the received and not-yet-committed
messages at each node. These circumstances require from each node to maintain its
own log-based amnesia recovery information during its normal activity, whilst the rest
of recovery information is maintained in other nodes just when failed nodes exist.

Figure 3 shows the information needed to recover an outdated node using the log-
recovery strategy. In this figure node r2 crashes at time t1 and reconnects at time t2.
At this moment, the system must start the r2 recovery. Firstly, it needs the A block
information recovery used to recover the amnesia, it contains the messages received

5Notice that in this case the outdated node has already the information of the previous view.

7



but not committed by r2 before its crash at t1. Secondly, the system needs B block
which contains the messages missed by r2 (either committed or not-yet-committed)
during its failure time. Obviously, the A block can be managed and maintained by r2
whilst the B block must be generated and managed by a non-failed node.

Complimentary to the above information the system must maintain information
about which nodes have missed which views. Thus each time a new view is installed
in the system the alive nodes must store the identifiers of the failed nodes in this view.
When a node recovers a view its identifier is deleted from the recovered view failed
nodes information. When the list of failed nodes in a view is emptied, the recovery
information of this view can be deleted.

5 Amnesia Recovery

As described above, the assumed failure model implies that on reconnection of crashed
nodes, they can not remember exactly which was their last state before the crash oc-
currence by themselves. Thus, extra information is needed to be maintained to this
particular end, being afterwards used in ARS.

The amnesia problem is manifested in different ways. The main amnesia effect
refers to the not-yet-committed transactions state which is lost when a node crashes.
This state must be recovered before performing the real recovery process in order to
reach consistent and non-diverging data states. This lost state can be recreated by reap-
plying the messages belonging to the on-going transactions existing at the failure time.
Therefore, to perform this amnesia recovery, the system must maintain two different
types of information. On one hand, the system must store the messages belonging to
non-committed transactions in order to reapply them when the node is reconnected. On
the other hand, the node must know precisely the identity of every committed transac-
tion in the underlying system of this replica. This is necessary because it is possible
for a transaction expected to be committed in the system to have not been actually
committed in this replica (e.g. due to overhead or because the node is being recovered
and could not apply the currently received replication messages). Thus, this amnesia
phenomenon can be observed at two levels:

The amnesia at the transport level implies that received messages non-persistently
stored are lost when the node crashes. If this occurs, the amnesia recovery could not
be performed. So the system must ensure these messages are available for recovery
purposes by storing them in a persistent way.

As long as there exist failed nodes in the system, the alive nodes must persistently
store the broadcast messages in order to perform the recovery of these failed nodes, as
it has been commented in 7. Thus, this information can be used in ARS. However, if
there are no failed nodes, each node can manage its own amnesia recovery information
persistently. This storage of received messages must be kept until the respective owner
transaction is either committed or aborted6. Moreover, if the messages must be main-
tained after its transaction commit, they must be marked in some way to remember that
they have been already applied.

6i.e. discarding them on transaction aborts, or maintaining them for committed transactions only when
failed nodes exist.

8



In addition, the permanent storing of a received message must be performed atomi-
cally with the group communications system message delivery. Under this principle, if
the node is not able to persistently store the message, the group communication system
(GCS) does not consider this message as delivered (thus ensuring that the delivery is
coupled with the persistent storage).

If other approaches are taken (i.e. maintaining the information in other nodes)
messages cannot be discarded without additional synchronization rounds, because the
other nodes do not know by themselves when a message could be discarded. This
implies a high memory cost, or network overheads.

The amnesia problem relates at the Replication Level to the fact that the system
can not remember which were the really committed transactions. Even for those trans-
actions for which the “commit” message was applied, it is possible for the system to
fail during the commit. Thus, the information about the success of such commit must
be also stored because it is needed by the recovery amnesia process in order to know
which are the messages that must be applied (as we discussed previously). So, at the
replicated system level, the problem is to know if a “commit” message was successfully
applied before the failure or not.

The mechanism for generating this information consists of maintaining some infor-
mation about the last committed transaction for each open connection. Thus, when a
transaction commit is performed in the replica, the system must write this information
in a single atomic step, as part of the transaction itself. Thus, on commit success, the
system contains the identity of this last committed transaction. Afterwards, when the
connection is closed, the entry corresponding to this connection is erased.

This information is useful in the recovery process to check if messages marked as
not committed have been really committed. When the node becomes alive again and
starts its ARS it will check if there are messages marked as not committed, but its
owner transaction is marked as committed in the replica.

A similar problem arises regarding the state associated to not committed messages
(messages belonging to not yet committed transactions), since it is lost at the crash
instant, since the replication system is also a transactional system. Therefore, these
messages applied by the replication system but not committed must be again reapplied.

There are three possible scenarios where messages maintained as non-committed
belong to a transaction whose owner connection does not have an entry in the table of
committed transactions:

• The node did not start to apply this connection and its transactions before the
node crash. Then, these messages must be applied in the ARS.

• The connection is closed before committing some of its related transactions (im-
plying that these transactions will be aborted) but the node crashes before the
system erases those messages. Thus, all the messages will be reapplied in the
ARS but they will be aborted again as it has happened in the normal work way.

• The transaction was really committed, the system has not marked yet its mes-
sages as committed, and it has already deleted its table connection entry. This
scenario must be avoided, because it will lead the system to apply twice a trans-
action if a recovery process is performed. So, when the “remove connection”

9



message is applied, the removal of the corresponding entry in the system must
be done after the middleware considers committed the transaction.

As a result, the ARS recovery stage will just consist of reapplying the messages
marked in the log recovery as “not applied” or “not committed”, first checking against
the replica if they were not really committed.

6 On-Going Transactions and Consistency

The use of linear interaction in replication protocols implies the broadcast of messages
belonging to not-yet-committed transactions. Therefore, this replication system will
interleave messages belonging to different transactions. These messages will be ap-
plied to the replica in their delivery total order. Finally, each transaction is committed
when its commit is applied. In this context, if a node crashes, all associated changes to
not-yet-committed transactions are lost whilst associated updates to committed trans-
actions remain permanent.

Afterwards, when the crashed node becomes again active, the recovery process up-
dates it, reapplying among others the messages associated to not-yet-committed trans-
actions at the crash time, while the committed transaction messages at the crash time
are non reapplied (since they were already persisted in the replica). In this scenario,
some inconsistencies could arise if these reapplied messages were interleaved with
committed transaction messages in the original work sequence, because this original
order is misunderstood in the recovered node. The inconsistencies appear if these trans-
actions conflict and the selected isolation level tolerates these conflicts.

It must be noticed that this problem only occurs when an outdated node reconnects
to the replicated system, and this last one has been working continuously during the
disconnection of the recovering node.

The following example shows this problem in a more intuitive way. Let us assume
a replicated system of three nodes, α = r1, r2, r3. At the beginning, the three nodes are
up-to-date and working. During a replicated system work lifetime period the sequence
of events shown in the figure 4 happen.

m1 (T1)

m2 (T2)

m3 (T1)

m4 (T2)

m5 (T1 commit)

m6 (T2 commit)E1 E2

T1 = {m1, m3, m5} (started in r1)
T2 = {m2, m4, m6} (started in r2)
E1 -> Node r3 crashes
E2 -> Node r3 recovery process starts

Figure 4: Timeline events

As it could be seen, in the original sequence order messages of T1 and T2 are
interleaved. The T1 commit is performed before the crash of node r3 while the T2
commit is done during the r3 failure time. Therefore the final messages sequence seen
in r1 and r2 is [m1, m2, m3, m4, m5, m6], whilst the final message applied sequence
in r3 once it has been recovered is [m1, m3, m5, m2, m4, m6].

This message order misunderstood in r3 is originated by the recovery protocol. In
fact the node r3 before E1 applies the same sequence message order as r1 and r2 that

10



is [m1, m2, m3, m4, m5]. However, when it fails, it loses non-committed changes (in
this case the changes performed by T2). When r3 reconnects to the system its data
state is [m1, m3, m5]

At this moment the recovery process applies the not-yet-applied updates in r3,
which are the messages regarding T2, which provokes the message order misunder-
stood. This different message order in T2 could lead to a different data state with
regard to the state in r1 and r2 if T1 and T2 conflict and the selected isolation level
tolerates it (for instance, when using Snapshot Isolation). In this example a conflict
could arise if m2 and m3 perform the following sentences respectively:

m2→ ”UPDATE employees SET salary=salary*1.05 WHERE points>10”
m3→ ”UPDATE employees SET points=points+1 WHERE points == 10”

With these sentences it is possible that in r3 some employees increase their salary
while in r1 and r2 their salaries are not increased. Thus the recovery protocol can
generate different data state evolutions in recovered nodes with regard to not recovered
nodes. This problem appears because the recovery protocol cannot store the original
context of on-going-transactions.

In order to avoid this problem two solutions can be applied. The first and more
natural one would be to select an isolation level that aborts this kind of conflicts, which
in fact implies to apply the SERIALIZABLE isolation level. Thus, this approach avoids
the problem presented above allowing to use the two proposed recovery strategies: the
log-based and the version-based.

Other option would be to relax the required consistency guarantees, which means
to tolerate this kind of conflicts, but in order to avoid the above presented problem
this approach requires to perform the recovery process under a special condition. This
mentioned condition requires that the recovery process must be done when the recovery
messages to apply (i.e. on-going transactions) does not conflict with transactions com-
mitted during its life. It means that the recovery messages to apply were not interleaved
with conflicting committed messages. As controlling the fulfilment of this condition is
difficult it must be selected an easiest control condition. This new condition would be
to select as base recovery point (BRP) a “timepoint” in the replicated system lifetime
where there does not exist on-going transactions. Obviously this BRP must be later
than the moment when the outdated node crashed. Thus, the outdated node recovery is
performed in two steps: In the first one the outdated node recovers the data state up to
the selected BRP 7. In the second step it will be applied the messages delivered after
the selected BRP (if there exist) using the log-based approach. This solution could be
implemented in two different ways: reactive (forcing the existence of a BRP after the
reconnection of the recovering node) and proactive (founding a suitable BRP during
the normal work of every node).

As conclusion, the only possible solution to use a log-based recovery approach
without using a version-based one forces the system to adopt the SERIALIZABLE
isolation level. Another aspect that must be considered is which recovery information
policy must be applied, and how it is affected by the linear recovery interaction. The
following section is devoted to the discussion of this aspect.

7It must be remarked that in this step it can not be used the log-based recovery strategy because the
problem of different state evolution would not be avoided.

11



7 Recovery Information Persistence

There exist some recovery situations, that depending on the progress condition and
the persistence policy for the recovery log-information adopted the system is unable to
guarantee the correct system data state progress.

Obviously, the messages of committed transactions must be persistently stored to
perform the recovery of failed nodes.

The further question is if messages belonging to ongoing transactions it must be
also persisted in all nodes. The answer depends on the adopted progress condition.
For instance, assume that the used progress condition is the majority partition and that
messages not committed are not persistently stored. Consider then the following case, a
replicated system α = {r1, r2, r3, r4, r5, r6, r7} which is working with r1, r2, r3, r4 as
alive replicas, and there exists a long term transaction T1 started in r1 which has already
broadcast some operations m1, m2. Then, a failed node (r7) reconnects and the system
starts its recovery while T1 broadcasts more messages (m3, m4) being received by all
alive nodes. Now, before T1 commit message is broadcast and r7 is being recovered,
one of the previous alive nodes (e.g. r4) fails momentarily, excluding the one that
started T1 (if r1 crashes T1 is aborted), and reconnects quickly. Thus r4 will lose the
messages belonging to T1. At this moment, after the r4 crash and reconnection, and
before the r4, r7 full recovery, the T1 commit is broadcast. Then, T1 is committed in
r1, r2, r3 while r4, r7 maintain this message to apply it afterwards because they have
not yet been fully recovered. Immediately, r1, r2, and r3 crash before the recovery
system has transferred m1, m2 to r4, r7. Thus, it would not be possible to reconstruct
T1 in r4 and r7. Moreover, if the next majority partition is reached because r5 and r6

reconnect, the system can not progress in an accurate manner because it will not be
able to commit T1 in r4, r5, r6, r7 since it has been committed in r1, r2, r3. Notice that
this second case is also related to the amnesia recovery process of node r4.

This case of non correct progression can be avoided if the selected progress condi-
tion only lets the system to go on working if n

2
+ 1 replicas are fully recovered instead

of going on working each time a majority partition has been reached. In this case this
proposed progress condition will abort T1 when the node r4 has crashed.

The other solution that can be adopted is to maintain the majority partition as
progress condition, but forcing the recovery system to persist messages belonging to
ongoing transactions. With this solution r4 would not have lost the m1, m2 messages
when it crashed, being afterwards the recovery system enabled to reconstruct T1 with-
out the participation of the nodes that have committed it.

Between these solutions, the second one is selected because it relaxes the progress
condition enabling the system to work any time a majority partition is reached. Ev-
idently, this adopted recovery system presents the necessity of storing permanently
broadcast messages as a drawback.

8 Related work

In the area of recovery protocols for replicated distributed systems two basic approaches
are used: version based and log based. The first one consists of transferring to outdated

12



nodes those data items changed during their failure period, whilst the second one con-
sists of transferring the messages missed by outdated nodes.

A wide range of proposals about this classic problem[10] have been presented for
a long time in the last years either version-based [3], [11] and log-based [3], [7], [6].
First ones are typically useful for long-term outages whilst the latter ones present better
performance for recovering short-term failures. Therefore, combining a version-based
technique with a log-based one to construct a recovery framework has been proposed
in several works as [3], [7] to improve the recovery features, choosing the recovery
strategy that presents a lower cost each time an outdated node is detected.

The most commonly assumed correctness criterion for replicated systems is 1-
copy-serializability, which consequently leads to recovery protocols intended to work
with such systems, often using log-based approaches [6], [3], [4]. However, the use
of other isolation levels has not been traditionally treated in recovery protocols, proba-
bly based on the assumption that replication protocols are intended to provide 1-copy-
serializability. In fact, this is the isolation level that best fits the consistency guarantee
in a general distributed system. But, when the replicated state requires high transfer
rates, its use implies a high cost in performance terms. Also, for transactional sys-
tems, where isolation must be enforcing by using specific concurrency control mecha-
nisms, this problem is even worst. These two drawbacks are specially problematic in
replicated databases, where the enforcement of 1-copy-serializability usually leads to
extremely inefficient systems. Therefore, relaxed isolation guarantees are used there
to alleviate the performance degradation associated to the highest isolation level. One
of the most widely adopted relaxed levels is Snapshot Isolation, having the interest-
ing property of allowing read-only transactions to proceed without being blocked or
delayed by any other transaction. In this direction, in recent publications[12], some
replication protocols have been designed to work providing Snapshot Isolation [13].
Moreover, the most extended DBMS (Postgres, MySQL,..) provide snapshot isolation
as the basic isolation guarantee.

On the other hand, recovery protocols are also typically designed to work for repli-
cated protocols based on constant interaction[3]. Others ,simply outline how these
protocols can work using linear interaction. In fact, a few works have designed re-
covery protocols[4] which work over linear-interaction-based systems. In [4], different
log-based recovery protocols are presented including proposals either for constant and
linear interaction, but always focused on SERIALIZABLE systems.

9 Conclusions

In this paper, we detail a middleware-based general log-based recovery strategy in-
tended to provide fault tolerance support for linear interaction-based replication sys-
tems. This obtained system lets to perform on-line recoveries, fulfilling one important
condition for building a high available system. Most important, this paper studies
which effects has the use of linear interaction on the recovery work, specially empha-
sizing the global data state consistency and the recovery information management.

Moreover, the paper also analyses and designs an amnesia recovery process as part
of the whole recovery strategy, supporting a more realistic failure scenario. This amne-

13



sia phenomenon has been discussed at the two different levels in which it could appear,
and a basic strategy to bound the amnesia problem has been also detailed.

In addition, the proposed strategy supports re-inclusions in minority partitions, per-
forming partial or full recoveries, helping the system to accelerate recoveries of out-
dated nodes.

Other important point considered in the paper is the progress condition, meaning
the requirements that the replicated system must fulfil for continuing working. Two
different progress conditions have been discussed: One following the stricter [3] ap-
proach and another more relaxed, based on the majority partition concept. This second
progress condition, as it has been shown in section 7, must be accompanied by a partic-
ular recovery information policy, required to avoid possible different state evolutions,
depending on the failure histories.

Another important aspect demonstrated in this work, in section 6, is that using a
linear-interaction replication protocol forces the system to use SERIALIZABLE isola-
tion level to avoid consistency problems after any log-based recovery process. In fact,
the use of any other isolation level could let different replicas to reach different data
states after applying the same transactions set.

In an indirect way, this paper also has highlighted that the existence and manage-
ment of on-going transactions (due to linear interaction) from a recovery point of view
presents several difficulties (replicated consistency, amnesia delimitation boundaries),
whose solution reduces the whole system performance and scalability. Therefore this
paper reinforces the traditional arguments (traffic net overhead) that discourage the use
of the linear interaction approach on replication systems.

A sequel of this work will be a generic revision of existing recovery protocols
based on constant interaction taking under account the results obtained in this work for
recovery systems working in linear interaction replicated systems.

References

[1] Wiesmann, M., Schiper, A., Pedone, F., Kemme, B., Alonso, G.: Database repli-
cation techniques: A three parameter classification. In: SRDS. (2000) 206–215

[2] Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and related problems. In
Mullender, S., ed.: Distributed Systems. 2nd edn. ACM Press (1993) 97–145

[3] Kemme, B., Bartoli, A., Babaoǧlu, O.: Online reconfiguration in replicated
databases based on group communication. In: Intl.Conf.on Dependable Systems
and Networks, Washington, DC, USA, IEEE Computer Society (2001) 117–130

[4] Holliday, J.: Replicated database recovery using multicast communication. In:
NCA, IEEE Computer Society (2001) 104–107

[5] Wiesmann, M., Schiper, A.: Comparison of database replication techniques based
on total order broadcast. IEEE Trans. Knowl. Data Eng. 17(4) (2005) 551–566

[6] Jim énez-Peris, R., Patiño-Mart ı́nez, M., Alonso, G.: Non-intrusive, parallel re-
covery of replicated data. In: SRDS, IEEE Computer Society (2002) 150–159

14



[7] Castro, F., Esparza, J., Ruiz, M., Ir ún, L., Decker, H., Muñoz, F.: CLOB: Com-
munication support for efficient replicated database recovery. In: 13th Euromicro
PDP, Lugano, Sw, IEEE Computer Society (2005) 314–321

[8] Birman, K.P., Renesse, R.V.: Reliable Distributed Computing with the ISIS
Toolkit. IEEE Computer Society Press, Los Alamitos, CA, USA (1993)

[9] Babaoǧlu, O., Bartoli, A., Dini, G.: Enriched view synchrony: A programming
paradigm for partitionable asynchronous distributed systems. IEEE Trans. Com-
put. 46(6) (1997) 642–658

[10] Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recov-
ery in Database Systems. Addison Wesley, Reading, MA, EE.UU. (1987)

[11] Castro, F., Ir ún, L., Garc ı́a, F., Muñoz, F.: FOBr: A version-based recovery
protocol for replicated databases. In: 13th Euromicro PDP, Lugano, Sw, IEEE
Computer Society (2005) 306–313

[12] Lin, Y., Kemme, B., Patiño-Mart ı́nez, M., Jim énez-Peris, R.: Middleware based
data replication providing snapshot isolation. In Ozcan, F., ed.: SIGMOD Conf.,
ACM (2005) 419–430

[13] Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil, P.E.: A
critique of ANSI SQL isolation levels. In: SIGMOD Conf., ACM Press (1995)
1–10

15


