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Abstract

The minimum description length (MDL) principle was developed in the
context of computational complexity and coding theory. It states that the
best model to account for some data minimizes the sum of the lengths,
in bits, of the descriptions of the model and the data as encoded via the
model. The MDL principle gives a criterion for parameter selection, by
using the description length as a test statistic. Class I HLA genes play a
major role in the immune response to HIV, and are known to be associ-
ated with rates of progression to AIDS. However, these genes are highly
polymorphic, making it difficult to associate alleles with disease outcome,
given statistical issues of multiple testing. Application of the MDL prin-
ciple to immunogenetic data from a longitudinal cohort study (Chicago
MACS) enables classification of alleles associated with plasma HIV RNA
abundance, an indicator of infection progression. We recently reported
that MDL analysis of the relationship of HLA supertypes (a classifica-
tion of alleles by epitope-binding anchor motifs) with HIV RNA levels
identifies associations between human genotype and viral RNA. Details of
the MDL approach and more extended analyses of HLA and viral RNA
are described here. Variation in progression is strongly associated with
HLA-B. Allele associations with viral levels support and extend previous
studies. In particular, individuals without B58s supertype alleles average
viral RNA levels 3.6-fold greater than individuals with them. Mechanisms
for these associations include variation in epitope specificity and selection
that favors rare alleles.
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Progression of HIV infection is characterized by three phases: acute, or
early, chronic, and AIDS, the final phase of infection preceeding death [1]. The
chronic phase is variable in duration, lasting ten years on average, but varying
from two to twenty years. A good predictor of the duration of the chronic phase
is the viral RNA level during chronic infection, with higher levels consistently
associated with more rapid progression than lower levels [2]. A major challenge
for treating HIV and developing effective vaccination strategies is to understand
what contributes to variation in plasma viral RNA levels, and hence to infection
progression.

The cell-mediated immune response identifies and eliminates infected cells
from an individual. A central role in this response is played by the major
histocompatibility complex (MHC), in humans, also known as human leukocyte
antigens (HLA). Two classes of HLA genes code for co-dominately expressed
cell-surface glycoproteins, and present processed peptide to circulating T-cells,
which discriminate between self and non-self [3, 4].

Class I HLA molecules are expressed on all nucleated cells except germ cells.
In infected cells, they bind and present antigenic peptide fragments to T-cell
receptors on CD8+ T-lymphocytes, which are usually cytotoxic and cause lysis
of the infected cell. Class II HLA molecules are expressed on immunogenetically
reactive cells, such as dendritic cells, B-cells, macrophages, and activated T-
cells. They present antigen peptide fragments to T-cell receptors on CD4+

T-lymphocytes and the interaction results in release of cytokines that stimulate
the immune response.

Human HLA loci are among the most diverse known [5, 6]. This diversity
provides a repertoire to recognize evolving antigens [6, 7]. Previous studies of
associations between HLA alleles and variation in progression of HIV-1 infection
have established that within-host HLA diversity helps to inhibit viral infection,
by associating degrees of heterozygosity with rates of HIV disease progression
[8]. Thus, homozygous individuals, particularly at the HLA-B locus, suffer a
greater rate of progression than do heterozygotes [8, 9]. Identifying which alleles
are associated with variation in rates of infection progression has been difficult,
due in part to the compounding of error rates incurred when testing many
alternative hypotheses, and published results do not always agree [10, 11].

This study demonstrates the use of an information-based criterion for sta-
tistical inference. Its approach to multiple testing differs from that of standard
analytic techniques, and provides the ability to resolve associations between
variation in HIV RNA abundance and variation in HLA alleles.

As an application of computational complexity and optimal coding theory
to statistical inference, the minimum description length (MDL) principle states
that the best statistical model, or hypothesis, to account for some observed
data is the model that minimizes the sum of the number of bits required to
describe both the model and the data encoded via the model [12, 13, 14]. It
is a model-selection criterion that balances the need for parsimony and fidelity,
by penalizing equally for the information required to specify the model and the
information required to encode the residual error.

The analyses detailed below apply the MDL principle to the problem of
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partitioning individuals into groups having similar HIV RNA levels, based on
HLA alleles present in each case.

Chicago MACS HLA & HIV Data

The Chicago Multicenter AIDS Cohort Study (MACS) provided an opportunity
to analyze a detailed, long-term, longitudinal set of clinical HIV/HLA data [10].
Each participant provided informed consent in writing. Of 564 HIV-positive
cases sampled in the Chicago MACS, 479 provided information about both
the rate of disease progression and HLA genetic background. Progression was
indicated by the quasi-stationary “set-point” viral RNA level during chronic
infection. Immunogenetic background was obtained by determining which HLA
alleles from class I (HLA-A, -B, and -C) and class II (HLA-DRB1, -DQB1, and
-DPB1) loci were present in each individual.

Viral RNA set-point levels were determined after acute infection and prior
to any therapeutic intervention or the onset of AIDS, as defined by the pres-
ence of an opportunistic infection or CD4+ T-cell count below 200 per ml of
plasma. Because the assay has a detection threshold of 300 copies of virus per ml
[10], maximum-likelihood estimators were adjusted to avoid biased estimates of
population parameters from a truncated, or censored, sample distribution [15].
Viral RNA levels were log-transformed so as better to approximate a normal
distribution.

High-resolution class I and II HLA genotyping [10] provided four-digit allele
designations, though analyses were generally performed using two-digit allele
designations because of the resulting reduction of allelic diversity and increased
number of samples per allele. Because of the potential for results to be con-
founded by an effect associated with an individual’s ethnicity or revised sam-
pling protocol, two separate analyses were performed, one using data from the
entire cohort, and another using only data from Caucasian individuals. Sample
numbers were too small to study other subgroups independently.

HLA supertypes group class I alleles by their peptide-binding anchor mo-
tifs [16]. Assignment of four-digit allele designations to functionally related
groups of supertypes at HLA-A and -B loci facilitated further analysis. Where
they could be determined, HLA-A and HLA-B supertypes were assigned from
four-digit allele designations [10]. As with two-digit allele designations for each
locus, HLA-A and -B supertypes were assessed for association with viral RNA
levels. Cases having other alleles were withheld from classification and subse-
quent analysis of supertypes.

A description length analysis determined whether HIV RNA levels were non-
trivially associated with alleles at any HLA locus.

Description Lengths

The challenge of data classification is to find the best partition, such that ob-
servations within a group are well-described as independent draws from a single
population, but differences in population distributions exist between groups.
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Whether the data are better represented as two groups, or more, than as one
depends on the description lengths that result.

We use the family of Gaussian distributions to model viral RNA levels.
While the MDL strategy can be applied using any probabilistic model, a log-
normal distribution is a good choice for the observed plasma viral RNA values.
First, the description length of the model and of the data given the model is
calculated as described below, grouping all of the observations into one normal
distribution, L1. Next, the data are broken into two partitions, L2, and the
log-RNA values associated with HLA alleles are partitioned to minimize the
description length given the constraint that two Gaussian distributions, each
having their own mean and variance, are used to model the data.

For fixed n×n covariance matrix Σ, the description length is LΣ = 1
2 log |Σ|+

1
2Y

′Σ−1Y + C, where Y is the n-component vector of observations and C is
the quantity of information required to specify the partition. Logarithms are
computed in base two, with fractional values rounded upwards, so that the re-
sulting units are bits. The description length of interest results from integrating
L over all covariance matrices with the appropriate structure. In practice, we
use Laplace’s approximation for the integral [12, 17] which gives, asymptoti-
cally, L = 1

2 log |Σ̂| +
1
2Y

′Σ̂−1Y + k

2 logn + C, where k is the number of free

parameters in the covariance model, and Σ̂ is the specific covariance matrix of
the appropriate structure that minimizes LΣ. A more detailed account appears
in the Appendix.

The analog of a null hypothesis is the assumption that one group of alleles
is sufficient to account for the variation in viral RNA. The description length
for one group is: L1 = 1

2

(

n+ (n− 1) log s2 + lognx2 + 2 logn
)

, where n is the
total number of observations, s2 is the maximum-likelihood estimate of the
population variance and x is the sample mean, computed as the Winsorized
mean [15] because of truncation below the sensitivity limit of the RNA assay.

It follows that the description length for two groups can be computed as:

L2 =
1

2

2
∑

i=1

(

ni + (ni − 1) log s2i + lognix
2
i + 2 logni

)

+ C,

where C is an adjustment for performing multiple comparisons. Because ad-
ditional information is required to specify the optimum partition, the description
length is increased by a quantity related to the number of partitions evaluated,
such that C = N log k bits, where N is the number of alleles observed at the
partitioned locus. For k = 2, C = N .

Further partitions of alleles into more than two groups might yield a shorter
description length, computed as a summation over terms in the equation for L2

for each of the k distinct groups.
The shortest description length for any value of k indicates the best choice of

model parameters, including the number of parameters, and hence, the optimum
partition of N alleles into k groups. We denote this as L∗.
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Algorithm

The minimum description length is found by iteratively computing the descrip-
tion length for each possible partition of alleles into groups and taking the mini-
mum as optimal. Iteration consists first of determining the number of alleles, N ,
at a particular locus, and then incrementing through each of the k(N−1) possible
partitions of alleles into k groups, computing the associated description length,
and reporting the best results. Each iteration evaluates one possible mapping
of alleles to groups. Searching through all possible partitions using the descrip-
tion length as an optimality criterion ensures selection of the best partition as
a result of the search.

In this mapping, the ordering of groups is informative, because the ordering
gives the relative dominance of alleles for diploid loci. An individual having an
allele assigned to the first-order group is assigned to that group. Otherwise, the
individual is assigned to the next appropriate group. Two individuals sharing
one allele might be placed in either the same group or different groups, depend-
ing on the mapping of alleles to groups in a particular iterate. For example,
consider how one might group two individuals, one with alleles A1 and A2 at
some locus, and another with alleles A2 and A3. Whether or not they are
grouped together depends on the assignment of alleles to groups, and can be
done several different ways. The algorithm enumerates each possible assignment
of alleles to groups.

The extent of the search scales as kN . In practice, the most diverse locus
was HLA-B, with 30 alleles when analyzed using two-digit allele designations.
For two groups, this gives 230 ≈ 108 possible partitions. Serial iteration on an
UltraSPARC-IIi 440MHz CPU (Sun Microsystems) requires roughly 36 hours
for completion. A parallel implementation requires no message passing, so com-
puting time scales inversely with an increasing number of CPUs, or doubling
available processors halves the time for iteration. With many CPUs, the search
space of 230 partitions can be exhaustively evaluated in an hour or less. Un-
fortunately, exhaustively evaluating all three-way partitions is prohibitive, as
330 ≈ 2 × 1014, over a million-fold increase in computational effort! Supertype
classification reduced the diversity of possible partitions and enabled partition-
ing of the data into more than two groups.

The algorithm was implemented in C and will be distributed on request.

Class I & II HLA Results

The description length for the entire cohort as one group is L1 = 934 bits; for
the Caucasian subsample, it is L1 = 721 bits. In general, L1 < L2 at most loci
(Table 1), so the MDL criterion does not support partitioning alleles into groups
that are predictive of high or low RNA levels, except at HLA-B, where L2 < L1.
In the subsample, partitioning HLA-C or HLA-DQB1 alleles can also provide
preferred two-way splits, though not as well as HLA-B. Further partitioning was
intractable because of great allelic diversity, as previously mentioned. Partitions
of HLA-B alleles provide the best groupings among all loci. Because L∗

2 < L1,
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two groups, partitioned by HLA-B alleles, provide a better description than one
(Fig. 1a and 1b).

What is the composition of the optimum groupings? For the entire cohort,
the following alleles were associated with low viral RNA levels: B*13, B*27,
B*38, B*45, B*49, B*57, B*58, and B*81. The remaining alleles, associated
with greater viral RNA than the first group, are: B*07, B*08, B*14, B*15, B*18,
B*35, B*37, B*39, B*40, B*41, B*42, B*44, B*47, B*48, B*50, B*51, B*52,
B*53, B*55, B*56, B*67, and B*82. As described earlier, having any alleles
associated with the first group is sufficient for an individual to be assigned to
the group having lower viral RNA.

How robust are these assignments of alleles to groups? Four alternative
groupings provide description lengths within one bit of the optimum. They do
not dramatically rearrange the assigment of individuals to groups, but do pro-
vide insight as to which alleles are assigned to either group with less confidence.
Among near-optimal partitions, alleles B*82 and B*67 were assigned to groups
other than in the optimum partition.

In the Caucasian subsample, alleles B*13, B*27, B*40, B*45, B*48, B*49,
B*57, and B*58 are associated with lower viral RNA, and the remaining alleles,
B*07, B*08, B*14, B*15, B*18, B*35, B*37, B*38, B*39, B*41, B*44, B*47,
B*50, B*51, B*52, B*53, B*55, and B*56, or lack of any alleles from the first
group, are associated with greater viral RNA levels. Two nearly optimal parti-
tions assigned alleles B*47 and B*48 to the second group. Fig. 1 illustrates the
distributions of viral RNA levels from this subsample, as one group (Fig. 1c)
and as the best partition at HLA-B (Fig. 1d).

To summarize the most robust inferences from the analyses of two-digit allele
designations, individuals having HLA-B alleles B*13, B*27, B*45, B*49, B*57,
or B*58 were associated with lower viral RNA levels than their counterparts
lacking these alleles.

Comparison of groupings obtained via the MDL approach with more tradi-
tional means for statistical inference, a two-tailed, two-sample, Welch modified
t-test, which does not assume equal variances, and its non-parametric variant,
the Wilcoxon rank-sum test [18], was very favorable. In each case, the null hy-
pothesis was that of no difference between the group mean log-transformed viral
RNA levels, and the alternative hypothesis was that the means differ. Both tests
agreed in rejecting the null hypothesis in favor of the alternative (P < 10−10).

HLA Supertype Results

Assigning the diploid, co-dominantly expressed HLA-A alleles to four HLA-A
supertypes [16], A1s, A2s, A3s, and A24s, was possible for 399 individuals. The
mapping of HLA-B alleles to five supertypes, B7s, B27s, B44s, B58s, and B62s,
was made for 352 individuals. The resulting decrease in allelic diversity enabled
analysis for k > 2.

Description lengths of the best k-way partitions of supertype alleles for HLA-
A supertypes are: L1 = 793, L2 = 782, L3 = 789, and L4 = 794 bits. The best
description length results from a two-way split, though a three-way split also
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yields a shorter description length than that obtained from one group. The best
partition of HLA-A supertypes assigned individuals having A1s alleles to the
low RNA group.

For HLA-B supertypes, L1 = 704, L2 = 691, L3 = 693, and L4 = 697 bits
(Fig. 1e). The best model results when k = 2. Overall, individuals lacking B58s
alleles averaged viral RNA levels 3.6-times greater than individuals having B58s

supertype alleles (Fig. 1f). Thus, individuals with B58s alleles have significantly
lower viral RNA levels than individuals without them.

Table 2 summarizes results of assigning HLA-B associations to high or low
viral-RNA categories as two-digit allele designations from both the entire cohort
and the Caucasian subsample, and as supertypes for those individuals having
two alleles that could be assigned to a supertype. Alleles not found in a sample
are indicated by a dash. The B*15 alleles are not shown because their high-
resolution genotype designations correspond to four different supertypes.

Overall, the most consistent associations with low viral RNA are among the
B58s, and with high viral RNA, the B7s. Inconsistencies in assignment to a
category occur for the B*13, B*27, B*45, and B*49 alleles, which are in the low
viral-RNA group when analyzed as such, but the high viral-RNA group when
assigned to supertypes.

When compared with alternative inferential techniques, the difference be-
tween group viral RNA levels was highly significant. This and agreement with
alleles reported to be associated with variation in viral RNA levels in previously
published studies indicate that using the description length as a test statistic
can provide reliable inferences.

MDL & Statistical Inference

The traditional statistical solution is to pose a question as follows: suppose that
the simpler model (e.g., one homogeneous population) were actually true; call
this the null hypothesis. How often would one, in similar experiments, get data
that look as different from that expected under the null hypothesis as in the
actual experiment?

This technique has limitations when the partition that represents the al-
ternative hypothesis is not given in advance. There are then many potential
alternative partitions and the appropriate distribution under the null hypothe-
sis for this ensemble of tests is very difficult to estimate. Furthermore, for proper
interpretation, the outcome relies upon the truth of the initial assumption: that
the data are distributed as dictated by the null hypthothesis.

An alternative is to choose that model that represents the data most effi-
ciently. Here, efficiency is the amount of information, quantified as bits, required
to transmit electronically both the model and the data as encoded by the model.
This criterion may not seem intuitively clear on first exposure. However, it fol-
lows naturally from a profound relationship between probability and coding the-
ory that was discovered, explored, and elaborated by Solomonoff, Kolmogorov,
Chaitin, and Rissanen [19, 20, 21, 22, 23].
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The idea is quite simple and elegant. It can be illustrated by analogy to the
problem of designing an optimal code for the efficient transmission of natural-
language messages. Consider the international Morse code. Recall that Morse
code assigns letters of the Roman alphabet to codewords comprised of dots
(“·”) and dashes (“−”). The codewords do not all have the same number of
dots and/or dashes; it is a variable-length code.

Efficient, compact encodings result from the design of a codebook such that
the shortest codewords are assigned to the most frequently encoded letters and
long codewords are assigned to rare letters. Thus, e and t are encoded as “·”
and “−”, respectively, while q and j are encoded as “− − · −” and “· − − −”.
The theory of optimal coding provides an exact relationship between frequency
and code length and thus, probability and description length.

The key departure of MDL from Morse-codelike schemes is that, while Morse
code would generally be good for sending messages over an average of many
texts, specific texts might be encoded even more efficiently, by encoding not
only letters, but letter combinations, common words, or even phrases, perhaps
as abbreviations or acronyms. However, if one is to recode for particular texts,
one must first transmit the coding scheme. So perhaps one might use Morse
code to transmit the details of the new coding scheme and then transmit the
text itself with the new scheme. Whether this might yield greater efficiency
depends not only on how much compression is achieved in the new encoding,
but also on how much overhead is incurred in having to transmit the coding
scheme.

The analogy to scientific data analysis is clear. A statistical model is an en-
coding scheme that encapsulates the regularities in the data to yield a concise
representation thereof. The best model effectively compresses regularities in
the data, but is not so elaborate that its own description demands a great deal
of information to be encoded. The MDL principle provides a model-selection
criterion that balances the need for a model that is both appropriate and par-
simonious, by penalizing with equal weights the information required to specify
the model and the unexplained, or residual error.

Yet another contribution the MDL principle brings to statistical modelling
is that the penalty for multiple comparisons is less restrictive than the penalty
of compounded error rates incurred with canonical inferential approaches. In
order to maintain a desired experiment-wide error rate, the standard adjustment
is to make the per-comparison error rate considerably more stringent. With
current technology, realistic sample sizes for such studies will generally be less
than a thousand and stringent significance levels will be difficult to surpass.
Unfortunately, fixing the false-positive error rate does not address the false-
negative probability, which may leave researchers powerless to detect effects
among many competing hypotheses with limited samples.

Mechanisms

Of HLA supertype alleles, individuals with B58s have lower viral RNA levels
than those who lack them, even among homozygotic individuals. Naturally,
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this leads one to consider mechanisms that underlie patterns found in the data.
Elsewhere, we consider two hypotheses to explain the observed associations
between HLA alleles and variation in viral RNA [10].

There may be allele-specific variation in antigen-binding specificity. Some
alleles may have greater affinity than others for HIV-specific peptide fragments
due to the peptide-binding anchor motifs they present. We were not able to
identify any clear association between the frequency of anchor motifs among
HIV-1 proteins and viral RNA levels in the Chicago MACS [10], though others
have suggested that such a relationship might exist [24].

It may also the case that frequency-dependent selection has favored rare
alleles. Frequent alleles provide the evolving pathogen greater opportunity to
explore mutant phenotypes that may escape detection by the host’s immune
response. By encountering rare alleles less frequently, the virus has not had the
same opportunity to explore mutations that evade the host’s defense response.
This hypothesis is corroborated by a significant association between viral RNA
and HLA allele frequency in the Chicago MACS sample [10].

Because their predictions differ, these hypotheses could be tested with data
from another cohort, where a different viral subtype predominates. That is,
if other alleles were associated with low viral RNA than those identified in
this study, and an association between rare alleles and low viral RNA levels
were observed there, then the second hypothesis would be more viable than
the first. Alternatively, if a clear association between antigen peptide-binding
anchor motifs and variation in viral RNA levels were found, the first hypothesis
would be more viable. Other mechanisms are also possible, and hypotheses by
which to evaluate them merit consideration.
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Appendix

In Gaussian Process modeling [25], the population means are treated as random
variables and integrated out of the likelihood. The model is then specified
entirely by the structure of the covariance matrix Σ, which specifies how each
pair of observations is correlated. The covariance is greater for two observations
from the same partition than for two observations from different partitions. Any
given partition is specified entirely by a corresponding covariance structure.

Partitioning with Gaussian Models. Denote the n observations as the
vector Y and the covariance matrix with parameter vector θ by Σ(θ). Let
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the number of components of θ (the number of free parameters in the co-
variance matrix) be k. Then the MDL for the given covariance structure is:

L = 1
2 log |Σ(θ̂)| +

1
2Y

′Σ(θ̂)−1Y + k

2 logn + C, where C is the information re-

quired to specify the partition or, equivalently, the covariance structure, and θ̂
is the vector of covariance parameters evaluated at maximum likelihood.

One Gaussian Population. The covariance matrix has a component σ2
m

for the covariance among observations, induced by their sharing an unspecified
mean, and an error component σ2

ε
: Σ = σ2

ε
I +σ2

m
11′, with 1 the column vector

of all ones, 11′ the matrix of all ones, and I the identity matrix. The inverse is:

Σ−1 =
1

σ2
ε

(

I −
σ2
m

σ2
ε
+ nσ2

m

11′

)

,

and the log-determinant: log |Σ| = (n− 1) logσ2
ε + log(σ2

ε + nσ2
m).

This gives L = 1
2

(

n+ (n− 1) log σ2
ε + log(σ2

ε + nσ2
m) + 2 logn

)

.
We find the maximum likelihood values of the parameters by minimizing

over the description lengths. There are two cases.

Case 1: n2Y
2
− Y ′Y ≥ 0. Here we have σ̂2

ε
= (n − 1)−1(Y ′Y − nY

2
) and

σ̂2
m

= (n− 1)−1(nY
2
− 1

n
Y ′Y ), so L = 1

2 (n+ (n− 1) log σ̂2
ε
+ lognY

2
+2 logn).

Case 2: n2Y
2
− Y ′Y < 0. Here the common mean vanishes, giving σ̂2

ε =
1
n
Y ′Y , σ̂2

m
= 0, so L = n

2 (1 + log σ̂2
ε
+ 2

n
logn).

Many Gaussian Populations. Two partitions give two populations. To
analyze the HLA/HIV data, we treated these populations as independent. That
is, we take the covariance between observations in separate partitions to be zero,
and apply the fitting procedure outlined above separately to the two popula-
tions. An alternative is to take non-zero covariance between the two popula-
tions. This results in a more elaborate estimation procedure, unlikely to yield
large efficiency gains because the two degrees of freedom (population means)
are essentially mixed into one, with residual error.

The procedure examines each admissible partition and computes the MDL
for that partition as the sum of individual description lengths over the two
independent populations. The best partition yields the lowest description length
over all partitions. This, plus the cost of specifying the partition, is compared
with the MDL from the unpartitioned data. If the best partition provides a
better representation of the data than the unpartitioned set (Lk < Lk−1), then
the process is repeated in a recursive manner, independently within each of the
partitioned populations.
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Figure Legends

Fig. 1. Description-length comparisons of viral RNA distributions as one (L1)
or two (L2) groups. Ordinate units are the expected number of observations
between two tick marks over the abscissa, or one doubling of viral RNA. Impulses
along the abscissa show individual observations, with jitter added to enhance
rendering of identical values. (a) Observations (n) from the Chicago MACS
cohort lumped into one group, and (b) split into the best partition as two groups,
with individuals having alleles B*13, B*27, B*38, B*45, B*49, B*57, B*58, or
B*81 assigned to the lower group (n1), and remaining individuals assigned to
the group with greater viral RNA (n2). (c) Observations from the Caucasian
subsample as one group, and (d) as the best split into two groups, where having
alleles B*13, B*27, B*40, B*45, B*48, B*49, B*57, or B*58 was the criterion
for being assigned to the low viral-RNA group. Observations from individuals
having two HLA-B supertype alleles, (e) in one group, and (f) partitioned into
two groups, contingent on the presence of B58s.
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Table 1: Optimum two-way partitions at each locus, with per-locus allelic di-

versity (N), description lengths without the information cost to specify model

parameters (L2 − C), and minimum description lengths (L2).

Entire Cohort Caucasian Subsample

n = 479, L1 = 934 n = 379, L1 = 721

Locus N L2 − C L2 N L2 − C L2

Class I

HLA-A 19 916 935 18 703 721

HLA-B 30 887 917* 26 681 707*

HLA-C 14 921 935 13 706 719

Class II

DRB1 13 927 940 13 711 724

DQB1 5 936 941 5 715 720

DPB1 24 927 951 21 710 731
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Table 2: HLA-B alleles associated with low (◦) or high (•) viral RNA levels.

Entire Caucasian Supertypes

Allele Cohort Subsample Only

n = 479 n = 379 n = 352
B7s

B*07 • • •
B*35 • • •
B*51 • • •
B*53 • • •
B*55 • • •
B*56 • • •
B*67 ◦/• – •

B27s

B*14 • • •
B*27 ◦ ◦ •
B*38 ◦ • •
B*39 • • •
B*48 ◦/• ◦/• •

B44s

B*18 • • •
B*37 • • •
B*40 • ◦ •
B*41 • • •
B*44 • • •
B*45 ◦ ◦ •
B*49 ◦ ◦ •
B*50 • • •

B58s
B*57 ◦ ◦ ◦
B*58 ◦ ◦ ◦

B62s

B*13 ◦ ◦ •
B*52 • • •

Other

B*08 • • –
B*15 • • –
B*42 • – –
B*47 • ◦/• –
B*81 ◦ – –
B*82 ◦/• – –
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