
Distributed Security Algorithms by

Mobile Agents

Paola Flocchini1 and Nicola Santoro2

1 University of Ottawa
flocchin@site.uottawa.ca

2 Carleton University
santoro@scs.carleton.ca

Abstract. Mobile Agents have been extensively studied for several years
by researchers in Artificial Intelligence and in Software Engineering.
They offer a simple and natural way to describe distributed settings
where mobility is inherent, and an explicit and direct way to describe the
entities of those settings, such as mobile code, software agents, viruses,
robots, web crawlers, etc. Further, they allow to express immediately
notions such as selfish behaviour, negotiation, cooperation, etc arising in
the new computing environments. As a programming paradigm, they al-
low a new philosophy of protocol and software design, bound to have an
impact as strong as that caused by that of object-oriented programming.
As a computational paradigm, mobile agents systems are an immediate
and natural extension of the traditional message-passing settings studied
in distributed computing.

In spite of all this, mobile agents systems have been largely ignored
by the mainstream distributed computing community. It is only in the
last few years that several researchers, some motivated by long investi-
gated and well established problems in automata theory, computational
complexity, and graph theory, have started to systematically explore this
new and exciting distributed computational universe.

In this paper we describe some interesting problems and solution tech-
niques developed in this investigations.

1 Introduction

The use of mobile agents is becoming increasingly popular when computing in net-
worked environments, ranging from Internet to the DataGrid, both as a theoretical
computational paradigm and as a system-supported programming platform.

In networked systems that support autonomous mobile agents, a main concern
is how to develop efficient agent-based system protocols; that is, to design pro-
tocols that will allow a team of identical simple agents to cooperatively perform
(possibly complex) system tasks. Example of basic tasks are wakeup, traversal,
rendez-vous, election. The coordination of the agents necessary to perform these
tasks is not necessarily simple or easy to achieve. In fact, the computational
problems related to these operations are definitely non trivial, and a great deal
of theoretical research is devoted to the study of conditions for the solvability of

S. Chaudhuri et al. (Eds.): ICDCN 2006, LNCS 4308, pp. 1–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 P. Flocchini and N. Santoro

these problems and to the discovery of efficient algorithmic solutions; e.g., see
[1,2,4,5,6,7,17,18,20,45].

At an abstract level, these environments can be described as a collection of
autonomous mobile agents (or robots) located in a graph G. The agents have
computing capabilities and bounded storage, execute the same protocol, and
can move from node to neighboring node. They are asynchronous, in the sense
that every action they perform (computing, moving, etc.) takes a finite but oth-
erwise unpredictable amount of time. Each node of the network, also called host,
provide a storage area called whiteboard for incoming agents to communicate and
compute, and its access is held in fair mutual exclusion. The research concern
is on determining what tasks can be performed by such entities, under what
conditions, and at what cost.

At a practical level, in these environments, security is the most pressing con-
cern, and possibly the most difficult to address. Actually, even the most basic
security issues, in spite of their practical urgency and of the amount of effort,
must still be effectively addressed (for a survey, see [50]).

Among the severe security threats faced in distributed mobile computing envi-
ronments, two are particularly troublesome: harmful agent (that is, the presence
of malicious mobile processes), and harmful host (that is, the presence at a net-
work site of harmful stationary processes).

The former problem is particularly acute in unregulated non-cooperative set-
tings such as Internet (e.g., e-mail transmitted viruses). The latter not only
exists in those settings, but also in environments with regulated access and
where agents cooperate towards common goals (e.g., sharing of resources or dis-
tribution of a computation on the Grid. In fact, a local (hardware or software)
failure might render a host harmful. In this paper we concentrate on two security
problems, one for each type: locating a black hole, and capturing an intruder.

2 Black Hole Search

2.1 The Problem and the Model

The problem posed by the presence of a harmful host has been intensively studied
from a programming point of view (e.g., see [41,54,56]). Obviously, the first step
in any solution to such a problem must be to identify, if possible, the harmful
host; i.e., to determine and report its location; following this phase, a “rescue”
activity would conceivably be initiated to deal with the destructive process res-
ident there. Depending on the nature of the danger, the task to identify the
harmful host might be difficult, if not impossible, to perform.

Consider the presence in the network of a black hole: a host which disposes
of visiting agents upon their arrival, leaving no observable trace of such a de-
struction. Note that this type of highly harmful host is not rare; for example,
the undetectable crash failure of a site in a asynchronous network turns such a
site into a black hole. The task is to unambiguously determine and report the
location of the black hole by a team of mobile agents. One can easily see that

Distributed Security Algorithms by Mobile Agents 3

the problem can also be formulated as an exploration problem. In fact, the black
hole can be located only after the whole network has been visited, and all nodes
but one are found to be safe. Clearly, in this process some agents have disap-
peared in the black hole). The searching agents start from the same safe site (the
homebase); the task is successfully completed if, within finite time, at least one
agent survives, and all surviving agents know the location of the black hole. The
research concern is to determine under what conditions and at what cost mo-
bile agents can successfully accomplish this task, called Black-Hole Search. The
main complexity measures for this problem are: the size of the solution (i.e., the
number of agents employed), the cost (i.e., the number of moves performed by
the agents executing a size-optimal solution protocol). Sometimes also bounded
time complexity is considered.

In general no assumptions are made on the time for an agent to move on a
link, except that it is finite; i.e., the system is asynchronous. Moreover, agents
communicate by writing and reading on whiteboards located at the nodes.

2.2 A Background Problem: Safe Exploration

The problem of exploring and mapping an unknown environment has been exten-
sively studied in a safe environment, due to its various applications in different
areas (navigating a robot through a terrain containing obstacles, finding a path
through a maze, or searching a network).

Most of the previous work on exploration of unknown graphs has been limited
to single agent exploration. Studies on exploration of labelled graphs typically
emphasize minimizing the number of moves or the amount of memory used by
the agent (e.g., see [1,17,19,51,52]). Exploration of anonymous graphs is possible
only if the agents are allowed to mark the nodes in some way; except when the
graph has no cycles (i.e. the graph is a tree [20,37]). For exploring arbitrary
anonymous graphs, various methods of marking nodes have been used by differ-
ent authors. Pebbles that can be dropped on nodes have been proposed first in
[9] where it is shown that any strongly connected directed graph can be explored
using just one pebble (if the size of the graph is known) and using O(log log n)
pebbles, otherwise. Distinct markers have been used, for example, in [29] to ex-
plore unlabeled undirected graphs. Yet another approach, used by Bender and
Slonim [10] was to employ two cooperating agents, one of which would stand
on a node, while the other explores new edges. Whiteboards have been used by
Fraigniaud and Ilcinkas [38] for exploring directed graphs and by Fraigniaud et
al. [37] for exploring trees. In [20,38,39] the authors focus on minimizing the
amount of memory used by the agents for exploration (they however do not
require the agents to construct a map of the graph).

There have been few results on exploration by more than one agent. A two
agent exploration algorithm for directed graphs was given in [10], whereas Fraig-
niaud et al. [37] showed how k agents can explore a tree. In both these cases,
the agents start from same node and they have distinct identities. In [7] a team
of dispersed agents explores a graph and constructs a map. The graph is anony-
mous but the links are labeled with sense of direction; moreover the protocol

4 P. Flocchini and N. Santoro

works if the size n of the network or the number of agents k are co-prime and
it achieves a move complexity of O(km) (where m is the number of edges). An-
other algorithm with the same complexity has been described in [15], where the
requirement of sense of direction is dropped. In this case the agents need to
know either n or k, which must be coprime. The solution has been made “ef-
fective” in [16], where effective means that it will always terminate, regardless
of the relationship between n and k reporting a solution whenever the solution
can be computed, and reporting a failure message when the solution cannot be
computed.

The map construction problem is actually equivalent to some others basic
problems, like Agent Election, Labelling and Rendezvous. Among them ren-
dezvous is probably the most investigated; for a recent account see [2,46].

2.3 Basic Properties for Black Hole Search

When considering the black hole search problem, some constraints follow from
the asynchrony of the agents. For example [21]:

– For asynchronous agents to locate the black hole, G must be 2-node-connected.
– For asynchronous agents to locate the black hole, the number of nodes of G

must be known.
– For asynchronous agents it is impossible to verify if there is a back hole.

Moreover, since one agent may immediately wander into the black hole, we
have:

– At least two agents are needed to locate the black hole.

How realistic is this bound? How many agents suffice? The answers vary
depending on the a priori knowledge the agents have about the network, and on
the consistency of the local labelings.

2.4 Impact of Knowledge

Topological Ignorance. Consider first the situation of topological ignorance; that
is when the agents have no a priori knowledge of the topological structure of
G. Then any generic solution needs at least Δ + 1 agents, where Δ is the max-
imal degree of G, even if the agents know Δ and the number n of nodes of G.
Interestingly, in any minimal generic solution (i.e., using the minimum number
of agents), the agents must perform Ω(n2) moves in the worst case [23]. Both
these bounds are tight. In fact there is a protocol that correctly locates the black
hole in O(n2) moves using Δ + 1 agents that know Δ and n [23]. The algorithm
essentially performs a collective “cautious” exploration of the graph until all
nodes but one are considered to be safe. The whiteboard on the homebase is
used to store information about the nodes that have been already explored and
the agents move back and forth from the homebase to continue their job. If the
black hole is a node with maximum degree, there is nothing to prevent Δ agents
disappearing in it.

Distributed Security Algorithms by Mobile Agents 5

Sense of Direction. Consider next the case of topological ignorance in systems
where there is sense of direction (SD); informally, sense of direction is a labeling
of the ports that allows the nodes to determine whether two paths starting from
a node lead to the same node, using only the labels of the ports along these
paths (for a survey on Sense of Direction see [34]). In this case, two agents suf-
fice to locate the black hole, regardless of the (unknown) topological structure
of G. The proof of [23] is constructive, and the algorithm has a O(n2) cost. This
cost is optimal; in fact, it is shown that there are types of sense of direction
that, if present, impose an Ω(n2) worst-case cost on any generic two-agent algo-
rithm for locating a black hole using SD. As for the topological ignorance case,
the agents perform an exploration. The algorithm is similar to the one with
topological ignorance (in fact it leads to the same cost); sense of direction is
however very useful to decrease the number of casualties. The exploring agents
can be only two: a node that is being explored by an agent is considered “dan-
gerous” and by the properties of sense of direction, the other agent will be able
to avoid it in its exploration, thus insuring that one of the two will eventually
succeed.

Complete Topological Knowledge. Consider the case of complete topological
knowledge of the network; that is, the agents have a complete knowledge of
the edge-labeled graph G, the correspondence between port labels and the link
labels of G, and the location of the source node (from where the agents start the
search). This information is stronger then the more common topological aware-
ness (i.e., knowledge of the class of the network, but not of its size nor of the
source location – e.g. being in a mesh, starting from an unknown position).

Also in this case, two agents suffice [23]; furthermore the cost of a minimal
protocol can be reduced in this case to O(n log n), and this cost is worst-case
optimal. The technique here is quite different and it is based on a partitioning
of the graph in two portions, which are given to the two agents to perform the
exploration. One will succeed in finishing its portion and will carefully move to
help the other agent finishing its own.

Topology-Sensitive Universal Protocols. Interestingly, it is possible to consider-
ably improve the bound on the number of moves without increasing the team
size. In fact, there is a recent universal protocol, Explore and Bypass, that allows
a team of two agents with a map of the network to locate a black hole with cost
O(n + d log d), where d denotes the diameter of the network [25].

This means that, without losing its universality and without violating the
worst-case Ω(n log n) lower bound, this algorithm allows two agents to locate
a black hole with Θ(n) cost in a very large class of (possibly unstructured)
networks: those where d = O(n/ log n).

Importantly, there are many networks with O(n/logn) diameter in which the
previous protocols [23,24] fail to achieve the O(n) bound. A simple example
of such a network is the wheel, a ring with a central node connected to all ring
nodes, where the central node is very slow: those protocols will require O(n log n)
moves.

6 P. Flocchini and N. Santoro

Variations with Complete Topological Knowledge. A very simple algorithm that
works on any topology (a-priori known by the agents) is shown in [27]. The
algorithm, based on the pre-computation of an open vertex cover by cycles of
the network, uses the optimal number of agents (two); its cost (number of moves)
depends on the choice of the cover and it is optimal for several classes of networks.
These classes include all Abelian Cayley graphs of degree three and more (e.g.,
hypercubes, multi-dimensional tori, etc,), as well as many non-Abelian cube
graphs (e.g., CCC, butterfly, wrapped-butterfly networks, etc.). For some of
these networks, this is the only algorithm achieving such a bound.

Using Tokens. Recently the problem has been investigated also in a different,
weaker model where there are no whiteboards at the nodes but each agent has
an identical token that the agent can place on (or remove from) a node [26,28].
Surprisingly, the black hole search problem can be solved also in this model.
Furthermore, this can be done using a minimal team size and performing a
polynomial number of moves; not surprisingly, the protocol is quite complex.
Also the case of the ring has been studied in details in [28].

2.5 Special Topologies

A natural question to ask is whether the bounds for arbitrary networks with full
topological knowledge can be improved for networks with special topologies by
topology-dependent proptocols.

Rings. The problem has been investigated and its solutions characterized for
ring networks [21]. A Omega(n log n) lower bound holds since Ω(n log n) moves
are needed by any two-agents solution [21]. An agent and move optimal solution
exists, based on a partitioning of the ring and on a non-overlapping exploration
by the agent. There exists an optimal trade-off between time complexity and
number of agents. In fact, increasing the number of agents the number of moves
cannot decrease, but the time to finish the exploration does [21]. Notice that the
lower bound for rings implies an Ω(n log n) lower bound on the worst case cost
complexity of any universal protocol.

The ring has been investigated also to perform another task: rendezvous of
k anonymous agents, in spite of the presence of a black hole. The problem is
studied in [22] and a complete characterization of the conditions under which the
problem can be solved is established. The characterization depends on whether
k or n is unknown (at least one must be known for any non-trivial rendezvous).
Interestingly, it is shown that, if k is unknown, the rendezvous algorithm also
solves the black hole location problem, and it does so with a bounded time
complexity of Θ(n); this is a significant improvement over the O(n log n) bounded
time complexity of [21].

Interconnection Networks. The negative result for rings does not generalizes.
Sometimes the network has special properties that can be exploited to obtain a
lower cost network-specific protocol. For example, two agents can locate a black

Distributed Security Algorithms by Mobile Agents 7

hole with only O(n) moves in a variety of highly structured interconnection
networks such as hypercubes, square tori and meshes, wrapped butterflies, star
graphs [24]. These strategies are based on the construction of a special walk in
the graph and by using this walk to explore the network.

2.6 Synchronous Networks

The Black Hole search problem has been studied also in synchronous settings,
where the time for an agent to traverse a link is assumed to be unitary.

When the system is synchronous the goals and strategies are quite different
from the ones reviewed in the previous sections. In fact, one of the major prob-
lem when designing an algorithm for the asynchronous case is that an agent
cannot wait at a node for another agent to come back; as a consequence, agents
must always move, and have to do it carefully. When the system is synchronous,
on the other hand, the strategies are mostly based on waiting the right amount
of time before performing a move. The algorithm becomes the determination of
the shortest traversal schedule for the agents, where a traversal schedule is a
sequence of actions (move to a neighbouring node or stay at the current node).
Furthermore, for the black hole search to be solvable, it is no longer necessary
that the network is 2-node connected; thus, the black hole search can be per-
formed by synchronous agents also in trees.

In synchronous networks tight bounds have been established for some classes
of trees [13]. In the case of general networks the problem of finding the optimal
strategy is shown to be NP-hard [14,44] and approximation algorithms are given
in [13] and subsequently improved in [43,44]. The case of multiple black holes
have been very recently investigated in [12] where a lower bound on the cost and
close upper bounds are given.

3 Intruder Capture and Network Decontamination

A particularly important security concern is to protect a network from unwanted,
and possibly dangerous intrusions. At an abstract level, an intruder is an alien
process that moves on the network to sites unoccupied by the system’s agents
“contaminating” the nodes it passes by. The concern for the severe damage
intruders can cause has motivated a large amount of research, especially on
detection (e.g., see [3,36,55]).

3.1 Decontamination and Related Problems

Assume the nodes of the network are initially contaminated and we want to
deploy a team of agents to clean (or decontaminate) the whole network. The
cleaning of a node occurs when an agent transits on the node; however, when a
node is left without protection (no agents on it) it might become re-contaminated
according to a recontamination rule. The most common recontamination rule is
that as soon as a node without an agent on it has a contaminated neighbour, it
will become contaminated again.

8 P. Flocchini and N. Santoro

A variation of the decontamination problem described above has been ex-
tensively studied in the literature under the name of graph search (e.g., see
[30,42,47,49,53]). The graph search problem has been studied for many classes
of graphs, and determining the optimal number of searchers (called search num-
ber) has been proved to be NP -complete in general.

In the classical graph search problem the agents can be arbitrarily moved from
a node “jumping” to any other node in the graph. The main difference in the
setting described in this survey is that the agents, which are pieces of software,
cannot be removed from the network; they can only move from a node to a neigh-
boring one. This additional constraint has been introduced and first studied in
[5] resulting in a contiguous, monotone, node search or intruder capture problem.
With the contiguous assumption the nature of the problem changes considerably
and the classical results on node and edge search do not generally apply. The
problem of finding the optimal number of agents is still NP -complete for ar-
bitrary graphs. As we will survey below, the problem has been studied mostly
in specific topologies. Also the arbitrary topology has been considered; in this
case, some heuristics have been proposed [35] and a move-exponential optimal
solution has been given in [11]. Investigations on the relationship between the
contiguous model and the classical one for graph search (where the agents can
“jump”) has been studied, for example, in [8,40].

In this survey we use the term decontamination to refer to contiguous
monotone node search as defined in [8].

3.2 The Models for Decontamination

Initially, all agents are located at the same node, the homebase, and all the
other nodes are contaminated; a decontamination strategy consists of a sequence
of movements of the agents along the edges of the network. The agents can
communicate when they reside on the same node.

Starting from the classical model employed in [5] (called Local Model),
additional assumptions have sometimes been added to study the impact that
more powerful agents’ or system’s capabilities have on the solutions of our
problem.

1) In the Local Model an agent located at a node can “see” only local information,
like the state of the node, the labels of the incident links, the other agents present
at the node.
2) Visibility is the capability of the agent to “see” the state of its neighbors; i.e.,
an agent can see whether a neighboring node is guarded, whether it is clean, or
contaminated. Notice that, in some mobile agent systems, the visibility power
could be easily achieved by “probing” the state of neighboring nodes before
making a decision.
3) Cloning is the capability, for an agent, to clone copies of itself.
4) Synchronicity implies that local computations are instantaneous, and it takes
one unit of time (one step) for an agent to move from a node to a neighboring one.

Distributed Security Algorithms by Mobile Agents 9

The efficiency of a strategy is usually measured in terms of number of agents,
number of moves performed by the agents, and ideal time.

We say that a cleaning strategy is monotone if once a node is clean, it will
never be contaminated again. All the results reported here apply for monotone
strategies.

3.3 Results in Specific Topologies

Trees. The tree has been the first topology to be investigated in the Local Model
[5]. In the paper, the authors show a linear distributed algorithm to determine
the minimum number of agents necessary to decontaminate an arbitrary given
tree and describe a decontamination strategy. The determination of the optimal
number of agents is done through a saturation where appropriate information
about the structure of the tree are collected from the leaves and propagated
along the tree, until the optimal is known for each possible starting point. In
the worst case (complete binary tree) the number of agent is O(log n), where n
is the number of nodes in the tree.

Hypercubes. It has been shown in [32] that to decontaminate a hypercube of
size n, Θ(n√

log n
) agents are necessary and sufficient. The employ of an optimal

number of agents in the Local Model has an interesting consequence; in fact, it
implies that Θ(n√

log n
) is the search number for the hypercube in the classical

model, i.e., where agents may “jump”.
In the algorithm for the Local Model one of the agents acts as a coordina-

tor for the entire cleaning process. The cleaning strategy is carried out on the
broadcast tree of the hypercube. The main idea is to place enough agents on
the homebase and to have them move, level by level, on the edges of the broad-
cast tree, leaded by the coordinator in such a way that no recontamination may
occur. The number of moves and the ideal time complexity of this strategy are
indicated in Table 1.

The visibility assumption allows the agents to make their own decision regard-
ing the action to take solely on the basis of their local knowledge. In fact, the
agents are still moving on the broadcast tree, but they do not have to follow the
order imposed by the coordinator. The agents on node x can proceed to clean
the children of x in the broadcast tree when they “see” that the other neigh-
bors of x are either clean or guarded. With this strategy the time complexity
is drastically reduced (since agents move concurrently and independently), but
the number of agents increases. Other variations of those two models have been
studied and summarized in Table 1.

A characterization of the impact that these additional assumptions have on
the problem is still open. For example: an optimal move complexity in the Local
Model with Cloning has not been found, and it is not clear whether it exists;
when the agents have Visibility, synchronicity has not been of any help although
it has not been proved that it is indeed useless; the use of an optimal number of

10 P. Flocchini and N. Santoro

Table 1. Decontamination of the Hypercube. The star indicates an optimal bound.

Agents Time Moves

Local Local (�) O(n√
log n

) O(n log n) O(n log n)

Local, Cloning, Synchronicity n/2 (�) log n (�) n − 1

Visibility Visibility n/2 (�) log n O(n log n)
Visibility and Cloning n/2 (�) log n (�) n − 1

agents in the weaker Local Model is obtained at the expenses of employing more
agents and it is not clear whether this increment is necessary.

Chordal Rings. The Local and the Visibility Models have been subject of
investigation also in the Chordal Ring topology in [33].

Let C(〈d1 = 1, d2, ..., dk〉) be a chordal ring network with n nodes and link
structure 〈d1 = 1, d2, ..., dk〉, where di < di+1 and dk ≤ �n

2 �. In [33] it is first
shown that the smallest number of agents needed for the decontamination does
not depend on the size of the chordal ring, but solely on the length of the longest
chord. In fact, any solution of the contiguous decontamination problem in a
chordal ring C(〈d1 = 1, d2, ..., dk〉) with 4 ≤ dk ≤ √

n, requires at least 2 · dk

searchers (2 · dk + 1 in the Visibility Model).
In both models, the cleaning is preceded by a deployment stage after which

the agents have to occupy 2dk consecutive nodes. After the deployment, the
decontamination stage can start. Also in the case of the chordal ring, the visibility
assumption allows the agents to make their own decision solely on the basis of
their local knowledge: an agent move to clean a neighbour only when this is
the only contaminated neighbour. The complexity results in the two Models are
summarized in Table 2.

Table 2. Results for the Chordal Ring. The (�) indicates an optimal bound.

Chordal Ring Agents Time Moves

Local 2dk + 1 (�) 3n − 4dk − 1 4n − 6dk − 1

Visibility 2dk (�)
�

n−2dk
2(dk−dk−1)

�
n − 2dk (�)

Consistently to the observations for the Hypercube, also in the case of the
chordal ring the visibility assumption allows to drastically decrease the time
complexity (and in this case also the move complexity). In particular, the strate-
gies for the visibility model are optimal both in terms of number of agents and
in terms of number of moves; as for the time complexity, visibility allows some
concurrency (although it does not bring this measure to optimal as was the case
for the hypercube).

Tori. A lower bound for the torus has beed derived in [33]. Any solution of
the decontamination problem in a torus T (h, k) with h, k ≥ 4 requires at least

Distributed Security Algorithms by Mobile Agents 11

2 · min{h, k} agents; in the Local model it requires at least 2 · min{h, k} + 1
agents. The strategy that matches the lower bound is very simple. The idea is to
deploy the agents to cover two consecutive columns and then keep one column
of agents to guard from decontamination and have the other column move along
the torus. The complexity results are summarized in Table 3. As for the other
topologies, Visibility decreases time and slightly increases the number of agents.
In the case of the torus it is interesting to notice that in the Visibility model all
three complexity measures are optimal.

Table 3. Results for the 2-dimensional Torus with dimensions h, k, h ≤ k

Torus Agents Time Moves

Local 2h + 1 (�) hk − 2h 2hk − 4h − 1

Visibility 2h (�) �k−2
2

� (�) hk − 2h (�)

Finally, these simple decontamination strategies can be generalized to d-
dimensional tori (although the lower bounds have not been generalized). Let
T (h1, . . . , hd) be a d-dimensional torus and let h1 ≤ h2 ≤ . . . ≤ hd. Let N be
the number of nodes in the torus and let H = N

hd
. The resulting complexities

are reported below.

Table 4. Results for a d-dimensional Torus T (h1, h2, . . . , hd)

d-dim Torus Agents Time Moves

Local 2 N
hd

+ 1 N − 2 N
hd

2N − 4 N
hd

− 1

Visibility 2 N
hd

(�hd − 2�)/2 N − 2 N
hd

3.4 Different Contamination Rules

In [48] the network decontamination problem has been considered under a new
model of immunity to recontamination: a clean node, after the cleaning agent
has gone, becomes recontaminated only if a weak majority of its neighbours
are infected. This recontamination rule is called local immunization. The paper
studies the effects of this level of immunity on the nature of the problem in tori
and trees. More precisely, it establishes lower-bounds on the number of agents
necessary for decontamination, and on the number of moves performed by an
optimal-size team of cleaners, and it proposes cleaning strategies. The bounds are
tight for trees and for synchronous tori; they are within a constant factor of each
other in the case of asynchronous tori. It is shown that with local immunization
only O(1) agents are needed to decontaminate meshes and tori, regardless of
their size; this must be contrasted with e.g. the 2 min{n, m} agents required
to decontaminate a n × m torus without local immunization [33]. Interestingly,
among tree networks, binary trees were the worst to decontaminate without local
immunization, requiring Ω(log n) agents in the worst case [5]. Instead, with local
immunization, they can be decontaminated by a single agent.

12 P. Flocchini and N. Santoro

References

1. S. Albers, M. Henzinger. “Exploring unknown environments”. Proc. 29th Annu.
ACM Sympos. Theory Comput., 416–425, 1997.

2. S. Alpern, S. Gal. The Theory of Search Games and Rendezvous. Kluwer, 2003.
3. M. Asaka, S. Okazawa, A. Taguchi, S. Goto. “A method of tracing intruders by

use of mobile agent”. INET, www.isoc.org, 1999.
4. B. Awerbuch, M. Betke, M. Singh. Piecemeal graph learning by a mobile robot.

Information and Computation 152, 155–172, 1999.
5. L. Barrière, P. Flocchini, P. Fraigniaud, N. Santoro. “Capture of an intruder

by mobile agents”. Proc. 14th ACM-SIAM Symp. on Parallel Algorithms and
Architectures (SPAA), 200-209, 2002.

6. L. Barrière, P. Flocchini, P. Fraigniaud, N. Santoro. “Can we elect if we cannot
compare?” In Proc. 15th ACM Symp. on Parallel Algorithms and Architectures
(SPAA), 200–209, 2003.

7. L. Barriere, P. Flocchini, P. Fraigniaud, N. Santoro. “Election and rendezvous in
fully anonymous systems with sense of direction”. In Theory of Computer System,
to appear.

8. L. Barrière, P. Fraigniaud, N. Santoro, D.M. Thilikos. “Searching is not jump-
ing”. Proc. 29th Int. Workshop on Graph Theoretic Concepts in Computer Science
(WG), LNCS 2880, 34-45, 2003.

9. M. Bender, A. Fernandez, D. Ron, A. Sahai, S. Vadhan. “The power of a pebble:
Exploring and mapping directed graphs”. In Proc. 30th ACM Symp. on Theory of
Computing (STOC), 269–287, 1998.

10. M. Bender, D. K. Slonim. “The power of team exploration: two robots can learn
unlabeled directed graphs”. In Proc. 35th Symp. on Foundations of Computer
Science (FOCS), 75–85, 1994.

11. L. Blin, P. Fraigniaud, N. Nisse, S. Vial. “ Distributed chasing of network intrud-
ers by mobile agents”. Proc. of the 13th Int. Coll. on Structural Information and
Communication Complexity (SIROCCO), 70–84, 2006.

12. C. Cooper, R. Klasing, T. Radzik “Searching for black-hole faults in a network
using multiple agents”. Proc. 10th Int. Conf. on Principle of Distributed Systems
(OPODIS), 2006.

13. J. Czyzowicz, D. Kowalski, E. Markou, A. Pelc. “Searching for a black hole in tree
networks”. Proc. 8th Int. Conf. on Principle of Distributed Systems (OPODIS),
35-45, 2004.

14. J. Czyzowicz, D. Kowalski, E. Markou, A. Pelc. “Complexity of searching for a
black hole”. Fundamenta Informaticae, 71(2-3), 229-242, 2006. 35-45, 2004.

15. S. Das, P. Flocchini, A. Nayak, N. Santoro. “Exploration and labelling of an
unknown graph by multiple agents” Proc. 12th Int. Coll. on Structural Information
and Communication Complexity, (SIROCCO), 99-114, 2005.

16. S. Das, P. Flocchini, A. Nayak, N. Santoro. “Effective elections for anonymous
mobile agents”. Proc. 17th Int. Symp. on Algorithms and Computation (ISAAC),
2006.

17. X. Deng, C. H. Papadimitriou, “Exploring an unknown graph”. J. of Graph Theory
32(3), 265–297, 1999.

18. A. Dessmark, P. Fraigniaud, A. Pelc. “Deterministic rendezvous in graphs”. In
Proc. 11th European Symp. on Algorithms (ESA), 184–195, 2003.

19. A. Dessmark, A. Pelc. “Optimal graph exploration without good maps”. In Proc.
10th European Symp. on Algorithms (ESA), 374–386, 2002.

Distributed Security Algorithms by Mobile Agents 13

20. K. Diks, P. Fraigniaud, E. Kranakis, A. Pelc. “Tree exploration with little mem-
ory”. Journal of Algorithms, 51:38–63, 2004.

21. S. Dobrev, P. Flocchini, G. Prencipe, N. Santoro”. “Mobile search for a black hole
in an anonymous ring”. Algorithmica, to appear.

22. S. Dobrev, P. Flocchini, G. Prencipe, N. Santoro. “Multiple agents rendezvous in
a ring in spite of a black hole”. Proc. 6th Int. Symp. on Principles of Distributed
Systems (OPODIS) 34-46, 2003.

23. S. Dobrev, P. Flocchini, G. Prencipe, N. Santoro. “Searching for a black hole in
arbitrary networks: optimal mobile agents protocols”. Distributed Computing, to
appear.

24. S. Dobrev, P. Flocchini, R. Kralovic, G. Prencipe, P. Ruzicka, N. Santoro. “Optimal
search for a black hole in common interconnection networks”. Networks, 47 (2), p.
61-71, 2006.

25. S. Dobrev, P. Flocchini, N. Santoro. “Improved bounds for optimal black hole
search in a network with a map. Proc. 10th Int. Coll. on Structural Information
and Communication Complexity (SIROCCO), 111-122, 2004.

26. S. Dobrev, P. Flocchini, R. Kralovic, N. Santoro. “Exploring a dangerous unknown
graph using tokens”. Proc. 5th IFIP Int. Conf. on Theoretical Computer Science
(TCS), 131-150, 2006.

27. S. Dobrev, P. Flocchini, N. Santoro. “Cycling Through a Dangerous Network:
A Simple Efficient Strategy for Black Hole Search”. Int. Conf. on Distributed
computing Systems (ICDCS), 2006.

28. S. Dobrev, R. Kralovic, N. Santoro, W. Shi. “Black Hole Search in Asynchronous
Rings Using Tokens”. Proc. 6th Conf. on Algorithms and Complexity (CIAC),
139-150, 2006.

29. G. Dudek, M. Jenkin, E. Milios, D. Wilkes. “Robotic exploration as graph con-
struction”. Transactions on Robotics and Automation, 7(6):859–865, 1991.

30. J. Ellis, H. Sudborough, J. Turner. “The vertex separation and search number of
a graph”. Information and Computation, 113(1):50–79, 1994.

31. P. Flocchini, E. Kranakis, D. Krizanc, N. Santoro, C. Sawchuk. “Multiple mobile
agent rendezvous in a ring”. Proc. 6th Latin American Theoretical Informatics
Symp. (LATIN), 599–608, 2004.

32. P. Flocchini, M.J. Huang, F.L. Luccio. “Contiguous search in the hypercube for
capturing an intruder” Proc. 18th IEEE Int. Parallel and Distributed Processing
Symp. (IPDPS), 2005.

33. P. Flocchini, M.J. Huang, F.L. Luccio. “Decontamination of chordal rings and
tori”. Proc. 8th Workshop on Advances in Parallel and Distributed Computational
Models (APDCM), 2006.

34. P. Flocchini, B. Mans, N. Santoro. “Sense of direction in distributed computing”.
Theoretical Computer Science, vol. 291, 29-53, 2003.

35. P. Flocchini, A. Nayak, A. Shulz. “ Cleaning an arbitrary regular network with
mobile agents” Proc. of the 2nd Int. Conf. on Distributed Computing & Internet
Technology (ICDCIT), 132-142, 2005.

36. N. Foukia,J. G. Hulaas, J. Harms. “Intrusion Detection with Mobile Agents”.
INET, www.isoc.org, 2001.

37. P. Fraigniaud, L. Gasieniec, D. Kowalski, A. Pelc. “Collective tree exploration”.
Networks, to appear.

38. P. Fraigniaud, D. Ilcinkas, “Digraph exploration with little memory”. Proc. 21st
Symp. on Theoretical Aspects of Computer Science (STACS), 246–257, 2004.

39. P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, D. Peleg. “Graph exploration by a
finite automaton”. Theoretical Computer Science, to appear.

14 P. Flocchini and N. Santoro

40. P. Fraigniaud, N. Nisse. “Monotony Properties of Connected Visible Graph Search-
ing”. Proc. 32nd Int. Workshop on Graph-Theoretic Concepts in Computer Science
(WG)22-24, 2006.

41. F. Hohl. “Time limited blackbox security: Protecting mobile agents from malicious
hosts”. In Proc. of Conf on Mobile Agent Security, LNCS 1419, pages 92–113, 1998.

42. L. Kirousis, C. Papadimitriou. “Searching and pebbling”. Theoretical Computer
Science, 47(2):205–218, 1986.

43. R. Klasing, E. Markou, T. Radzik, F. Sarracco. “Approximation bounds for black
hole search problems”. Proc. 9th Int. Conf. on Principle of Distributed Systems
(OPODIS), 2005.

44. R. Klasing, E. Markou, T. Radzik, F. Sarracco. “Hardness and approximation
results for black hole search in arbitrary graphs”. Proc. 12th Int. Coll. on Structural
Information and Communication Complexity (SIROCCO), 200-215, 2005.

45. E. Kranakis, D. Krizanc, N. Santoro, C. Sawchuk. “Mobile agent rendezvous in a
ring”. In Int. Conf. on Distibuted Computing Systems (ICDCS), 592–599, 2003.

46. E. Kranakis, D. Krizanc, S. Rajsbaum. “Mobile agent rendezvous”. Proc. 13th
Int. Coll. on Structural Information and Communication Complexity (SIROCCO),
1–9, 2006.

47. A. Lapaugh. “Recontamination does not help to search a graph”. Journal of the
ACM 40(2), 224–245, 1993.

48. F. Luccio, L. Pagli, N. Santoro. “Network decontamination with local immuniza-
tion”. Proc. 8th Workshop on Advances in Parallel and Distributed Computational
Models (APDCM), 2006.

49. N. Megiddo, S. Hakimi, M. Garey, D. Johnson, C. Papadimitriou. “The complexity
of searching a graph”. Journal of the ACM 35(1), 18–44, 1988.

50. R. Oppliger. “Security issues related to mobile code and agent-based systems”.
Computer Communications, 22(12):1165 – 1170, 1999.

51. P. Panaite, A. Pelc, “Exploring unknown undirected graphs”. Journal of Algo-
rithms, 33 281-295, 1999.

52. P. Panaite, A. Pelc. “Impact of topographic information on graph exploration
efficiency”. Networks, 36, 96–103, 2000.

53. T. Parson. “The search number of a connected graph”. In the 9th Southeastern
Conf. on Combinatorics, Graph Theory and Computing, Utilitas Mathematica,
549–554, 1978.

54. T. Sander, C. F. Tschudin. “Protecting mobile agents against malicious hosts”. In
Proc. of Conf on Mobile Agent Security, LNCS 1419, pages 44–60, 1998.

55. E. H. Spafford, D. Zamboni. “Intrusion detection using autonomous agents”. Com-
puter Networks, 34(4):547–570, 2000.

56. J. Vitek, G. Castagna. “Mobile computations and hostile hosts”. In D. Tsichritzis,
editor, Mobile Objects, pages 241–261. University of Geneva, 1999.

	Introduction
	Black Hole Search
	The Problem and the Model
	A Background Problem: Safe Exploration
	Basic Properties for Black Hole Search
	Impact of Knowledge
	Special Topologies
	Synchronous Networks

	Intruder Capture and Network Decontamination
	Decontamination and Related Problems
	The Models for Decontamination
	Results in Specific Topologies
	Different Contamination Rules

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

