Skip to main content

Radiometrically-Compensated Projection onto Non-Lambertian Surface Using Multiple Overlapping Projectors

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4319))

Abstract

Existing radiometric compensation methods are based on the assumption that the projection surface (screen) is Lambertian, i.e. there exists no specular reflection. Thus the methods cannot be applied to non-Lambertian surfaces which are ubiquitous in our everyday environment. In this paper, we try to faithfully display an image onto non-Lambertian surfaces using multiple overlapping projectors and cameras. The projectors which are separated at a distance would hardly produce specular reflection at the same time at the same point of the projection surface. Therefore, we can reasonably assume that there is at least one diffuse projector which does not generate specular reflection in a region of projection surface at a camera viewpoint. From the perspective of the diffuse projector-camera pair, the region of projection surface looks like Lambertian and the existing radiometric compensation methods could be employed for compensating the radiometric distortion of the region. Experimental results are given to show the validity of our method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bimber, O., Coriand, F., Kleppe, A., Bruns, E., Zollmann, S., Langlotz, T.: Superimposing pictorial artwork with projected imagery. IEEE Multimedia, 16–26 (2005)

    Google Scholar 

  2. Cham, T.-J., Rehg, J.M., Sukthankar, R., Sukthankar, G.: Shadow elimination and occluder light suppression for multiprojector displays. In: Proc. of CVPR 2003, pp. 513–520 (2003)

    Google Scholar 

  3. Grossberg, M.D., Peri, H., Nayar, S.K., Belhumeur, P.N.: Making one object look like another: controlling appearance using a projector-camera system. In: Proc. of CVPR 2004, vol. 1, pp. 452–459 (2004)

    Google Scholar 

  4. Hartley, R., Zisserman, A.: Multiple View Geometry. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  5. Mitsunaga, T., Nayar, S.K.: Radiometric self calibration. In: Proc. of CVPR 1999, vol. 1, pp. 374–380 (1999)

    Google Scholar 

  6. OpenCV library, Available at http://sourceforge.net/projects/opencvlibrary/

  7. Park, H., Lee, M.-H., Kim, S.-J., Park, J.-I.: Specular reflection elimination for projection-based augmented reality. In: Proc. of ISMAR 2005, pp. 194–195 (2005)

    Google Scholar 

  8. Park, H., Lee, M.-H., Kim, S.-J., Park, J.-I.: Specularity-free projection on nonplanar surface. In: Ho, Y.-S., Kim, H.-J. (eds.) PCM 2005. LNCS, vol. 3767, pp. 606–616. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Park, H., Lee, M.-H., Kim, S.-J., Park, J.-I.: Park Surface-independent direct-projected augmented reality. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 892–901. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. PointGrey Dragonfly camera, Available at http://www.ptgrey.com/products/dragonfly/

  11. Raskar, R., Brown, M.S., Yang, R., Chen, W.-C., Welch, G., Towles, H., Seales, B., Fuchs, H.: Multiprojector displays using camera-based registration. In: Proc. of Visualization 1999, pp. 161–168 (1999)

    Google Scholar 

  12. Raskar, R., Welch, G., Low, K.-L., Bandyopadhyay, D.: Shader lamps: animating real objects with image-based illumination. In: Proc. of Eurographics Workshop on Rendering, pp. 89–102 (2001)

    Google Scholar 

  13. Salvi, J., Pages, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recognition 37(4), 827–849 (2004)

    Article  MATH  Google Scholar 

  14. SONY VPL-CX6 projector, Available at http://www.sonystyle.com

  15. Sukthankar, R., Stockton, R.G., Mullin, M.D.: Smarter presentations: exploiting homography in camera-projector systems. In: Proc. of ICCV 2001, vol. 1, pp. 247–253 (2001)

    Google Scholar 

  16. Surati, R.J.: Scalable Self-Calibrating Display Technology for Seamless Large-Scale Displays. PhD thesis, MIT (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, H., Lee, MH., Seo, BK., Shin, HC., Park, JI. (2006). Radiometrically-Compensated Projection onto Non-Lambertian Surface Using Multiple Overlapping Projectors. In: Chang, LW., Lie, WN. (eds) Advances in Image and Video Technology. PSIVT 2006. Lecture Notes in Computer Science, vol 4319. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949534_53

Download citation

  • DOI: https://doi.org/10.1007/11949534_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68297-4

  • Online ISBN: 978-3-540-68298-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics