
Automatic Translation from Combined B and

CSP specification to Java Programs

Letu Yang and Michael R. Poppleton

Dependable Systems and Software Engineering
University of Southampton

Southampton, SO17 1BJ, UK
{ly03r,mrp}@ecs.soton.ac.uk

Abstract. A recent contribution to the formal specification and verifica-
tion of concurrent systems is the integration of the state- and event-based
approaches B and CSP, specifically in the ProB model checking tool. At
the implementation end of the development, concurrent programming
in Java remains a demanding and error-prone activity, because of the
need to verify critical properties of safety and liveness as well as func-
tional correctness. This work contributes to the automated development
of concurrent Java programs from such integrated specifications.
The JCSP package was originally designed as a proven clean Java concur-
rency vehicle for the implementation of certain CSP specifications. In the
context of best current Java concurrent programming practice, we extend
the original JCSP package to support the integrated B and CSP speci-
fication by implementing new channel classes. We propose rules for the
automated translation of the integrated specification to multi-threaded
Java using the extended JCSP channel classes. We briefly present a pro-
totype translation tool which extends ProB, with a worked example, and
conclude with a strategy for formally verifying the translation.

1 Introduction

Concurrency in multithreaded Java programming has always been seen as a
problematic area [Pu00], to the extent that expert practitioner advice has been
to avoid it where possible [MW]. The difficulty arises from the low level of
the methods provided, the responsibility of the programmer for guaranteeing
various awkward concurrency properties - including safety, liveness, and fairness
- and the complexities of scale. The recent JDK 5.0 issue [Go04] has improved
matters somewhat by raising the level of abstraction in the concurrency model,
introducing constructs such as semaphore and mutex. Abstraction has also been
raised, principally in package util.concurrency by deprecating low-level Thread
methods such as stop, resume and suspend and replacing them with high-level
thread-safe facilities. Safety properties have been made more tractable by the
provision of a common cross-platform Java Memory Model [MPA05]. However,
as the concurrency model of Java programs is described in natural language, it is
still difficult to detect and avoid liveness and fairness problems in such programs.

2 Letu Yang, Michael R. Poppleton

The difficulty of concurrency motivated the development of formal languages
for modelling concurrent processes such as CSP [SS00] and CCS [RM89]. The
capability of formal and automated [MK99,FS03] verification of safety and live-
ness properties in such concurrency models, before transformation into code,
has added real value to industrial systems, including hardware systems[JP04],
software systems[JL04], and communication protocols [SD04]. Formal analysis
techniques have been applied to concurrent Java programs: [LP05] and [BM02]
provide languages to add assertions to Java programs, and employ runtime veri-
fication techniques to verify the assertions. Such approaches are concerned with
the satisfaction of assertions, not explicit verification against a formal concur-
rency model. An explicit formal concurrency model, which can be verifiably
transformed into a concurrent Java program, represents a useful contribution.

One recent trend in formal approaches to system design is to integrate the
state- and event-based approaches. State-based specification is appropriate when
data structure and its atomic transition is relatively complex; event-based specifi-
cation is preferred when design complexity lies in behaviour, i.e. event and action
sequencing between system elements. In general of course, significant systems will
present design complexity, and consequently require rich modelling capabilities,
in both aspects. [Bu99,TS99] have proposed the integration of the state-based B
method [Ab96] and CSP, an event-based process algebra. The ProB [BL05] tool
supports model checking of combined B and CSP specifications1. A composite
specification in ProB uses B for data definition and operations. A CSP speci-
fication is employed as a filter on the invocations of atomic B operations, thus
guiding their execution sequence.

Peter Welch’s JCSP package [PM00a] provides a high-level concurrency model
for Java, implementing the Occam language [ST95], a concurrent programming
language that directly implements a subset of CSP. JCSP is based on the point-
to-point communication model of Occam. The correctness of the JCSP transla-
tion of the Occam channel to a JCSP channel class has been formally proved
[PM00b]: the CSP model of the JCSP channel communication is shown to re-
fine the CSP/Occam concurrency model. Raju [RR03] has developed a tool to
translate subset CSP models directly to JCSP. The tool does not extend beyond
the Occam subset of CSP, and does not scale, in our experience, beyond small
textbook examples. Furthermore, through our experience with JCSP and Raju’s
tool, we find that the point-to-point Occam communication model limits the ca-
pability of JCSP for developing concurrent systems based on other concurrency
models.

Being event-based, CSP is insufficiently expressive of the data aspect of sys-
tems; JCSP is similarly limited. In [RR03], data declaration and assignment are
manually added to the Java programs generated by the tool; this can easily break
the correctness of the system model which is proved by FDR tool.

Motivated by both the Java concurrency issues and the integrated formal
method approaches, we present a translation strategy, which converts combined
B and CSP specifications in ProB into Java programs using an extended JCSP

1 We will call this notation B+CSP for shorthand

Automatic Translation from B and CSP to Java Programs 3

package. The design of the translation rules has taken some inspiration from
[OC04], which defines a translation from Circus to JCSP.

In Section 2, we briefly introduce the existing JCSP package. We then dis-
cuss the reasons for extending the original package, and the new features of the
extended JCSP package. In Section 3, we demonstrate the translation strategy
from the combined B and CSP specification to Java programs, and discuss the
translation tool which implements these rules in Prolog. In Section 4, we illus-
trate the translation with a Chef-and-Dining-Philosophers example. In Section
5, we outline the verification required of this translation process as future work.
Section 6 discuss future work and conclusions.

2 The Extended JCSP package

2.1 JCSP

JCSP [PM00a] is a Java package for developing concurrent Java Programs. It
implements the Occam subset of the CSP language [SS00], as well as some other
features of CSP, in a series of process and channel classes. The Occam language
definition is based on that of CSP, but is aimed at modelling channel communi-
cation. Occam channels are based on CSP events. However, Occam channels are
only applied for modelling point to point communication, while CSP events are
used in more general concurrency models. In Figure 1, the concurrency model of
JCSP and Occam is briefly illustrated in CSP syntax. CSP processes ProcA and
ProcB synchronize with each other on channel A, while B and C are unsynchro-
nized channels. The synchronization happens when ProcB is ready to output
data y at A!y, and ProcA is ready to input data x at A?x.

ProcA = A?x → B → ProcA

ProcB = C → A!y → ProcB

Fig. 1. A CSP specification for Occam/JCSP concurrency

A Java application using the JCSP package consists of a number of objects
of JCSP process classes running in parallel. The process objects communicate
with each other via objects of JCSP channel classes. All the process classes
used here implement an abstract JCSP process class CSProcess. The channel
classes all inherit the inputchannel and outputchannel interfaces of the JCSP
package. JCSP supports two process objects synchronizing and communicating
data through a JCSP channel object. A JCSP process blocks when it requires
a data communication with the other process on a specific channel. Only when
both the output and input side processes of the channel are ready for the data
communication, is the data is transmitted through the channel.

Since the JCSP channel classes implement only the Occam channels (as
opposed to more general CSP events) the communication between two pro-
cesses is the only synchronization supported by JCSP channel classes. Although

4 Letu Yang, Michael R. Poppleton

Any2OneChannel and Any2AnyChannel classes handle more than two processes,
the synchronization still only involves two processes. For Any2OneChannel, many
writer processes and one reader process are associated on the channel. All the
requests from writer processes are grouped into a queue. At a given time, only
the reader and one writer actually synchronize with each other and pass data
through the channel. Thus the synchronization model still is the point-to-point
communication of Occam.

JCSP does support synchronization between more than two channels with
a Barrier class. However, Barrier is not implemented as a JCSP channel
class, and uses a simple counter to resolve the synchronization. Therefore it
can not help to do multi-way synchronization in a manner faithful to the CSP
concurrency model.

2.2 Why We Extend JCSP

As the JCSP package was designed to implement the Occam subset of CSP
in Java, it cannot be directly used for translating the combined B and CSP
specification in ProB. The reasons for this are twofold.

For the CSP part, the combined specification uses a bigger CSP subset than
that of JCSP package. Important CSP language features, especially some con-
currency facilities such as Alphabetized Parallel, are not supported by JCSP. In
developing a concurrent Java system, the synchronization between more than
two threads on a certain data transition is a typical concurrency problem, which
can be easily specified using CSP. This problem is also identified by JDK5.0,
and in java.util.concurrency package, a CyclicBarrier class is build to imple-
ment this synchronization in a high-level facility. However, modelling this kind
of concurrency in Occam gives the programmer extra work implementing the
synchronization on the shared thread. Implementing them in JCSP also requires
extra facility classes to resolve the synchronization.

Figure 2 shows the CSP specification of a parallel hardware interface. The
interface reads eight bits from eight different channels, and when all the bits are
ready, it generates a byte from the bits. In the specification, each bit process
B(i) gets a bit using event get(i)?bit, and then waits for the makebyte event.
The bit processes interleave with each other. The parallel interface process PI
repeatedly makes bytes with the makebyte event, when all the bits are ready.
The Main process requires all the processes to synchronize on the makebyte
event. As the CSP model of this example has nine processes synchronizing on
the same event, it can not be directly translated into Java using the original
JCSP package.

The channel used in JCSP and Occam is obliged to communicate data be-
tween two processes, while the combined channel we propose uses a more general
definition of CSP event. The CSP event can optionally have data parameters,
with decorations denoting input, output or dot data, which can be either input
or output. Parameters are similarly specified in the B+CSP specification. In the
extended JCSP, we implement these kind of CSP events in Java with the new
channel class.

Automatic Translation from B and CSP to Java Programs 5

B(i) = get(i)?bit → makebyte.byte → B(i)

PI = makebyte.byte → PI

Bsys = ||| i:1..8@ B(i)

Main = PI [|{makebyte}|] Bsys

* ||| declares a set of interleaving processes

* A[|c|]B is the syntax for Alphabetized Parallel, which means that processes A and B
synchronize on a set of events c

Fig. 2. CSP specification of Parallel Interface

Since the JCSP package is designed for implementing CSP specifications in
Java, it has no facility to implement the B part of the combined specification in
Java. Therefore we need a strategy for translating the B specifications into Java.
Fortunately, the B specification used for the automatic translation is mainly
from the B0 subset of the B language, which represents a simple programming
language designed to be automatically translatable to target languages of choice.
The B+CSP channel combines a B operation wih a CSP event; the operational
semantics of this is given in [BL05].

2.3 The Extended JCSP Package

The JCSP package is extended with new channel and facility classes. The new
“parallel/choice” channel class PaChoChannel implements the features of com-
bined B and CSP specifications which are not included in the original JCSP
package. The facility classes implement external choice for the extended channel
class.

The extended channel and facility classes are designed as an add-on package
for the original JCSP. JCSP process classes can declare and use the new channel
classes in a similar manner to using the original JCSP channel classes. As all the
changes have been preserved inside the channel and facility classes, there are no
significant changes in using them in process classes.

Class PaChoChannel supports synchronization between more than two pro-
cesses. It keeps track of all the processes associated with this channel. When
all the associated processes are ready, the data operations in the channel are
triggered. After the data operations complete, all the associated processes are
notified.

PaChoChannel also supports the dot event c.v, where c is a CSP event and
v is a data item on it. The synchronization of dot data channels is not only
decided by the name of the channels, but also by the dot data values. Two
processes, using the same channel c but with different values of v (e.g. c.x,
c.y), will not synchronize with each other. This implementation is based on the
B+CSP semantics. The input c?x and output c!x events are also supported by
the new channel class.

With the implementation of the above two CSP language features, the new
JCSP package can support Alphabetized Parallel of CSP, an important facility for

6 Letu Yang, Michael R. Poppleton

specifying concurrent systems. Furthermore, some new facility classes implement
external choice for the extended channel classes.

The main issue for implementing the B part of the combined specification is
how to implement the data transitions of a B operation into a combined channel
class. The PaChoChannel class implements the Serializable interface of Java,
and has an abstract method run. The subclasses of PaChoChannel overwrite
the run method by putting in the target Java code of the B data transitions.
The run method is executed when all the associated processes are ready for the
execution of the channel class.

Thus, the extended JCSP package supports a bigger subset of CSP than
the original JCSP, as well as providing facilities to implement the B part of the
combined specifications in Java. This makes it possible to translate the combined
B and CSP specifications into Java programs. An example with the extended
channel class is discussed in Chapter 4.

The synchronization supported by the extended channel class is implemented
with concurrency primitives from Java monitors, which exclude the facilities
deprecated by Java 5.0. The correctness of this implementation needs to be
verified; a formal proof strategy is proposed later in Section 5.

3 Translation Strategy and Tool

A series of translation rules are developed to structure the automatic translation.
The rules are used recursively to generate a set of Java classes from a combined
B and CSP specification. We discuss some of the key translation rules in this
section. The translation tool implements the translation rules in Prolog.

3.1 Translation Strategy and Rules

In the translation, each combined B+CSP channel is translated into an object
of a channel class. Each process in the CSP part of the combined specification is
translated into an object of a JCSP process class. Indexed processes are trans-
lated into different objects of the same JCSP process class. Their indices are
treated as parameters of the JCSP class constructor.

Translation of the MAIN Process The translation strategy is mainly based
on the execution behaviour of the system which is specified in the MAIN process,
which is the core process of the CSP part. The translation rules set generates
the executable Java class for the target application. It starts with the MAIN
process with rule Main Proc Decl , and recursively generates process classes for
all the associated CSP processes.

Through this procedure, the translation gathers information of all the CSP
channels υ, B sets S, and variables and constants s. Rule Set Def generates Java
classes to represent B set S. All the variables are declared and initialized by rule
Par Def. The rule generates the declaration and initialization of the variables
with the information from the B part. υ is expanded with rule Ch Def, which will

Automatic Translation from B and CSP to Java Programs 7

declare the channel objects for all the channels, and generate channel classes.
Finally, it generates the code for declaring the MAIN process object, including
the code of the run call.

Name Main Proc Decl

CSP MAIN

B MACHINE M

Java 〈MAIN〉ProcDecl

public class M machine {
public static void main(){

〈S〉SetDef

〈s〉ParDef

〈υ〉ChDef

new 〈M〉ProcCName(〈s〉ParList,〈υ〉ChList).run();
}

}

Table 1. Rule 0: Rule for Declaring Main Process

Support of Multi-way Synchronization One important feature of the ex-
tended JCSP channel is the support of multi-way synchronization. The parallel
structure is handled by rules from the rule set ProcE. For example, the combina-
tion of the indexed parallel processes is translated by rule ProcE (Re-Parallel).

Name ProcE (Re-Parallel)

CSP [| υ |]n:a@ P(n)

Java CSProcess[] procs = {
new 〈P 〉ProcCName(〈s〉ParList,〈υ〉ChList,〈υ1〉

ChList,a1),
.....
new 〈P 〉ProcCName(〈s〉ParList,〈υ〉ChList,〈υn〉

ChList,an)
}
new Parallel(procs).run();

Table 2. Rule 9: Rule for Replicated Alphabetized Parallel

In rule ProcE (Re-Parallel) (Table 2), 〈P 〉ProcCName refers to the name of
the indexed process class, while each process object from P (a1) to P (an) is
an instance of that process class. These process objects synchronize on a set
of channels υ. Each process object may include a set of channels υn, which do
not synchronize with other indexed processes here. PaChoChannel class provides
ready methods to support multi-way synchronization. When a JCSP process is
ready for the execution of a channel, it calls the ready method of the channel,
and waits for other processes which also synchronize on this channel. As there
may or may not be data on the channel, different implementations of the ready

methods are provided. Table 3 shows the different rules for translating the ready
call.

Ready call rules for input/no input on channel are given in Table 3. The
ready calls including output parameters are discussed in the following section.

8 Letu Yang, Michael R. Poppleton

For rule Par Vec, the set is of input parameters are grouped into Vector, and
performs as a single parameter for ready method.

Name Ch Call (ready I)

CSP cc.is

B cc(is) Instruction

Java 〈cc〉ChName.ready(〈is〉ParV ec);

Name Ch Call (ready II)

CSP cc

B cc Instruction

Java 〈cc〉ChName.ready();

Table 3. Rule 6: Rule for Channel Call , ready

Translation of Combined Channels The main issue in translating the com-
bined B+CSP channels is how to resolve the parameters from both B and CSP
sides. In the original JCSP, as there is no data transition inside the channel, a
data x on a channel Ch is simply passed through the channel. Here a process
with channel Ch!x synchronizes with a process with Ch?x event.

Name ChC

B os ← cc(is) Instruction

Java public class 〈 cc 〉ChCName extends PaChoChannel {
〈 is 〉ParDef

〈 os 〉ParDef

public 〈 cc 〉ChCName(〈 is 〉ParDef){
〈 is 〉ParRel

}
public void run(){

〈 Instruction 〉BInstruction

}
}

Table 4. Rule 29: Rule for Extended Channel Classes

Therefore, in the target Java program, two process classes use the read and
write methods of JCSP channel classes to communicate the data:

Process 1:

...

run(){

...; Ch.write(x); ...

}

...

Process 2:

...

run(){

...; x = Ch.read(); ...

}

...

To resolve the parameter issue for the combined B+CSP channel, we need
to examine the operational semantics of B+CSP in [BL05]. The operational

Automatic Translation from B and CSP to Java Programs 9

semantics of the combined B+CSP channel are: (σ,P) →A (σ′,P ′). σ and σ′ are
the before and after B states for executing operation o, while P and P ′ are the
before and after processes for processing channel ch. The combined channel A is
a unification of the CSP channel ch.a1, ..., aj and the B operation o = o1,...,om

← op(i1,...,in), where j = m + n. Therefore, the combined B+CSP channel A
can be expressed as: A.s1.sm.sm+1.sm+n.

In the translation, both o1 ... om and i1 ... in are treated as parameter lists
for the channel classes. In rule ChC (Table 4), o1, .., om are translated into Java
objects os, which are the output parameters, and i1, ..., in are translated into
is, which are the input parameters. Rule Par Def obtains information from the
B specification as before. In the channel class, is are static parameters whose
values won’t be changed. os are private parameters of the channel class and are
made externally visible by being returned by the ready method. os are returned
as a Java Vector, as defined in rule Par Vec.

The two translation rules in Table 5 show how the process gets the output
parameters from the ready call.

Name Ch Call (ready III)

CSP cc.is.os

B os ← cc(is) Instruction

Java 〈os〉ParV ec = 〈cc〉ChName.ready(〈is〉ParV ec);

Name Ch Call (ready IV)

CSP cc.os

B os ← cc Instruction

Java 〈os〉ParV ec = 〈cc〉ChName.ready();

Table 5. Rule 6 (continue): Rule for Channel Call , ready

Translation of B B0 is a concrete low-level deterministic imperative program-
ming language. It is the target language for generating concrete programs from
verified abstract B machines, and it is translatable to high-level programming
languages [BB1,VT02].

The B0 language only includes concrete B substitutions and only handles
concrete data. It is easy to correctly find corresponding data instructions in
high-level programming languages for the concrete substitutions. There are two
correctness issues in translating B0 into a high-level programming language. The
first is how to translate parameter passing of B operations to the high-level pro-
gramming language. The above discussion on translating the combined B+CSP
channel answered this issue for our translation. The other issue concerning the
correctness of the translation is how to represent some B0 data structures in
a high-level language. Usually, high-level languages provide better support for
the arithmetic data, such as integer and boolean. The only concern here is some
complex data structures, such as sets and arrays. Java fully supports array struc-
tures which easily represent the B0 array. Currently B0 sets are translated into
enum static classes.

10 Letu Yang, Michael R. Poppleton

3.2 Translation Tool

The automatic translation tool is constructed as part of the ProB tool. Our
translation tool is also developed in SICStus Prolog, which is the implementation
language for ProB.

In ProB, the B+CSP specification is parsed and interpreted into Prolog
terms, which express the operational semantics of the combined specification.
The translation tool works in the same environment as ProB, acquires informa-
tion on the combined specification from the Prolog terms, and translates the
information into the Java program.

4 Examples

In this section we illustrate how the translation tool works. The example we
used here is a simplified version of the Wot, no Chicken example from [We00].
The example was originally constructed for emphasizing fairness issues in the
wait/notify strategy of Java concurrent programming. We use the example to
demonstrate the automatic production of a concurrent Java program from a
B+CSP specification. Our version of the example is simplified in omitting the
lazy philosopher who raises the fairness issues.

This example includes a chef who cooks chicken, a canteen which is used
to store the chicken, and several philosophers who consume the chicken. The
chef spends some time to cook a number of chickens and then put them in the
canteen. The philosophers take time to think, then take chicken from the canteen
and eat. The CSP specification in Figure 3 shows the behaviour of the system.
The Main process is the core process. It consists of a Chef process, and several
Chicken(i) processes and Philosopher processes Phil(i). The Phil(i) processes do
not synchronize with each other, while all the Chicken(i) processes synchronize
on the put event. The Phil(i) processes and Chicken(i) processes synchronize on
the getchicken(i) event. The Chef process synchronizes with other processes on
the put event.

Main = SYSTEM[|{put}|]Chef

Phil(i) = gotocanteen.i → getchicken.i → backtoseat.i → eat.i → thinking.i → Phil(i)

Chef = cook → put → Chef

Chicken(i) = put → getchicken.i → Chicken(i)

PHILS = ||| i:N@ Phil(i)

CHICKENS = [|put|] i:N@ CHICKEN(i).

SYSTEM = PHILS[|{getchicken}|]CHICKENS

Fig. 3. Chef-Philosophers example: CSP part

The B specification in Figure 4 gives a part of the B specification of the
combined specification. It shows the canteen and philosopher part of the chef-
philosopher example. All the B operations use SELECT statements instead of
PRE statements. PRE aborts when the condition is not satisfied, which means
it is not guaranteed to terminate.

Automatic Translation from B and CSP to Java Programs 11

MACHINE chicken

......

SETS

PhilStates = {thinking, hungry, full} ;

......

OPERATIONS

......

gotocanteen(pp) =

SELECT pp:Phils THEN

state(pp) := hungry

END;

getchicken(pp) =

SELECT pp:Phils THEN

chicken(pp) := 1 ‖

canteen := canteen - 1

END;

eat(pp) =

SELECT pp:Phils THEN

chicken(pp) := 0 ‖

state(pp) := full

END;

backtoseat(pp) =

SELECT pp:Phils THEN

state(pp) := eating

END;

......

END

Fig. 4. Chef-Philosophers example: B part

The execution of the B operations are guarded by the CSP specification.
Therefore, the translation tool generates a JCSP process object for each process
in the CSP specification.

In Figure 5, the Phils process groups all the interleaving Phil processes into
a process array. Using the translation rule for indexed interleaving, which is sim-
ilar to the rule for indexed parallel in Table 2, the target Phils.java class builds
an array procs for all the Phil process objects, and runs all of them in parallel.
All the associated channel objects are passed to the process object through its
constructor as parameters. The index numbers of all the Phil processes are also
passed to them as parameters. A target JCSP process class, which is translated

public class Phils implements CSProcess{

PaChoChannel gotocanteen;

PaChoChannel getchicken;

PaChoChannel backtoseat;

PaChoChannel eat;

PaChoChannel thinking;

/* Constructor of the class */

public void run(){

CSProcess[] procs = {

new Phil(gotocanteen, getchicken,

backtoseat, eat, thinking, 1),

new Phil(gotocanteen, getchicken,

backtoseat, eat, thinking, 2),

new Phil(gotocanteen, getchicken,

backtoseat, eat, thinking, 3),

new Phil(gotocanteen, getchicken,

backtoseat, eat, thinking, 4),

new Phil(gotocanteen, getchicken,

backtoseat, eat, thinking, 5)

};

new Parallel(procs).run();

}

}

Fig. 5. Target Java Class: Phils.java

from the Phil(i) process, is shown in Figure 6. All the channel objects in the
Phil.java are created by the superior process Phils. So a process Phil(i) needs
to synchronize on some shared channel objects with other processes. The Phil

process objects synchronize with Chicken process objects on getchicken.n chan-

12 Letu Yang, Michael R. Poppleton

public class Phil implements CSProcess{

PaChoChannel gotocanteen;

PaChoChannel getchicken;

PaChoChannel backtoseat;

PaChoChannel eat;

PaChoChannel thinking;

Integer num;

/* Constructor of the class */

public void run(){

while(true){

gotocanteen.dotready(this,num);

getchicken.dotready(this,num);

backtoseat.dotready(this,num);

eat.dotready(this,num);

thinking.dotready(this,num);

}

}

}

Fig. 6. Target Java Class: Phil.java

nel objects. The execution sequence of all channel objects in the run method
implements the trace semantics of the CSP process Phil(i). When the process
is ready for the execution of a channel object, it calls the ready method, blocks
itself, and waits for other processes, which also synchronize on this channel, to
be ready for execution.

In the process class, channel objects are declared as instances of PaChoChannel
classes. Actually, they have their own channel classes which extend PaChoChannel

class. Therefore, when a undefined channel class is referred, it needs to be gen-
erated from the combined specification of the channel. The Eat.java class in
Figure 7 is the target channel class of eat channel. This channel class is gener-
ated using translation rule ChC, which is discussed in the previous section.

public class eat extends PaChoChannel{

Integer[] chicken;

PhilStates state;

public getchicken(Integer[] chicken,

PhilStates[] state){

super();

this.state = state;

this.chicken = chicken;

}

public synchronized void run(){

Integer dotvalueint =

(Integer)curdotvalue;

chicken[dotvalueint.intValue()] = 0;

state[dotvalueint.intValue()] =

PhilStates.FULL;

}

}

Fig. 7. Target Java Class: Eat.java

In the run method of the eat class, chicken is a global array which records
the number of chickens that each philosopher has. Changing the chicken record
of the current philosopher to 0 implements the data transition chicken(pp) :=

0 in the B operations. PhilStates is a enumeration class which indicates the
status of a philosopher. It can be THINKING, HUNGRY and FULL. After a
philosopher eats a chicken, his status changes to FULL. The global array state

is used to store the status of all the philosophers. Changing the status of the
current philosopher to FULL implements the data transition state(pp) := full

in B operation eat.

Automatic Translation from B and CSP to Java Programs 13

5 Correctness Proof Strategy

A correctness verification is required for the translation. In [RR03,OC04], the
translations are discussed without considering the correctness of the translations.
Formal verification which proves the correctness of the translation in terms of
semantic models of the specification and Java programs respectively would be the
best solution. We propose a more modest approach based on [WM00] for future
work. The new PaChoChannel class is designed to represent the behaviour of
the combined B+CSP channel in the target Java application. To use the new
channel class more confidently, we still need to formally prove that it is a correct
implementation of the combined B+CSP channel.

In [WM00], the correctness of Welch’s original JCSP channel classes is proved.
Each JCSP channel class (i.e. Java implementation) is formally specified by a
CSP model. The desired channel behaviour (which the JCSP class implements)
is also specified in CSP. The refinement checking tool FDR is used to prove the
two CSP models equivalent: that is, JCSP refines CSP and CSP refines JCSP. A
number of such proofs are required: there are a number of JCSP channel classes,
implementing the various capabilities of CSP channels. The proof strategy starts
with the simple One2OneChannel class without alternation, and gradually builds
formal models for more complex JCSP channel classes.

To prove the correctness of the PaChoChannel class, a similar strategy is
proposed: to prove that the implementation refines the specification. First, a
B+CSP model for the PaChoChannel class is built. Then, the required behaviour
of the combined B+CSP channel is specified with B+CSP specifications. As the
ProB tool supports refinement checking between B+CSP models, we can prove
the PaChoChannel class correctly implements (i.e. refines) the B+CSP channel.

The construction of a concrete model for the PaChoChannel class with full
functionality will be a significant task, as will its verification. Hence we would
start with an abstract model of PaChoChannel with simple functionality, grad-
ually building concrete models with incremental data and concurrency capabil-
ities.

6 Related Work and Conclusion

Our work aims at automatically generating concurrent Java programs from
proven formal specifications. To achieve this, we extend the original JCSP pack-
age to implement the combined B and CSP specification in Java. A set of trans-
lation rules are developed to formalize the translation, and the automatic trans-
lation tool is built upon the translation rule set. We also propose a formal veri-
fication strategy for proving the correctness of the translation.

There is a similar tool [RR03] to translate a pure CSP specification into a
Java program using the original JCSP package. As it is not very convenient to
use CSP specification to model data aspect of systems, the target Java code of
this tool always needs further manual revision to add data elements. However,
manual revision has the danger that the concurrency model of JCSP may be

14 Letu Yang, Michael R. Poppleton

broken by such revision. From our experience, the tool only works on some
specific examples, and seems unstable.

In [OC04], a set of translation rules are proposed for translating a subset
of the Circus specification language to Java using JCSP. The translation is re-
stricted because the JCSP package lacks the ability to implement data transitions
of the Circus language. Therefore, [OC04] proposes future work to extend JCSP
to support the full Circus semantics. They also plan to develop an automatic
translation tool using their rules.

[MK99] presents a strategy of using a process algebra language, FSP (Finite
State Processes) to build a formal concurrency model of Java concurrent pro-
gramming. The LTSA (Labelled Transition System Analyser) tool is adopted to
translate the FSP descriptions to a graphical representation. It also checks desir-
able and undesirable properties of the FSP model. However, it doesn’t provide
exhaustive rules or tool support to link the FSP syntax with the Java language.
The development of the concurrent Java code relies on users’ experience of this
approach. Correctness of the target Java program cannot be proved formally.

JML [LP05] and Jassda [BM02] are runtime verification approaches for us-
ing formal methods to help develop concurrent Java programs. They both have
assertion languages to specify pre- and post-conditions, and temporal properties
of Java programs. The assertions can be checked at runtime to see whether they
are preserved during the execution of the Java programs. The Java programs
still need to be constructed manually.

An ambitious project [VH00] developed a tool Java Path Finder (JPF), which
integrates model checking, program analysis and testing for Java programs. The
JPF tool can generate a state model of the Java program via the support of its
own Java Virtual Machine(JV MJPF). Accordingly, formally defined properties
and assertions can be verified in the state model. To avoid state explosion, the
Java language features that can be used in JPF are restricted.

Future plans include a substantial case study using the translation tool. The
stability and scalability of the translation strategy and the tool will be the focus
of this exercise. The development of a GUI (Graphical User Interface) is also
planned. It will provide facilities for configuring the translation, and interfacing
with the target Java application.

Acknowledgements: We would like to thank Denis A. Nicole for his very
helpful comments.

References

[BB1] Didier Bert, Sylvain Boulmé, Marie-Laure Potet, Antoine Requet, Laurent
Voisin.: Adaptable Translator of B Specifications to Embedded C Programs
In FME 2003: Formal Methods, LNCS 2805, pp. 94-113, Pise, Sept. 2003.

[BL05] M. J. Butler and M. Leuschel.: Combining CSP and B for Specification and
Property Verification. FM 2005: 221-236

[BM02] M. Brörken and M. Möller.: Jassda Trance Assertions: Runtime Checking the
Dynamic of Java Programs. In International Conference on Testing of Com-
municating Systems, 2002.

Automatic Translation from B and CSP to Java Programs 15

[Bu99] M. J. Butler.: csp2B: A Practical Approach to Combining CSP and B. In World
Congress on Formal Methods, pages 490-508, 1999.

[FS03] Formal Systems(Europoe) Ltd.: Failures-Divergence Refinement: FDR2 User
Manual, 2003

[Go04] B. Goetz.: Concurrency in JDK 5.0. Technical report, IBM, 2004.
[JL04] J. Lawrence.: Practical Application of CSP and FDR to Software Design. In

25 Years Communicating Sequential Processes, 151-174, 2004.
[JP04] J. Peleska.: Applied Formal Methods - From CSP to Executable Hybrid Spec-

ifications. In 25 Years Communicating Sequential Processes, 293-320, 2004.
[Ab96] J.-R. Abrial.: The B-Book: Assigning Programs toMeanings. Cambridge Uni-

versity Press, 1996.
[LP05] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Muller, and

J. Kiniry.: JML Reference Manual. 2005.
[MK99] J.Magee and J. Kramer.: Concurrency: State Models & Java Programs. John

Wiley and Sons, 1999.
[MPA05] J. Manson, W. Pugh, and S. V. Adve.: The Java Memory Model. In POPL

05: Proceedings of the 32nd ACM SIGPLAN-SIGACT , 378-391, New York,
NY, USA, 2005. ACM Press

[MW] H. Muller and K. Walrath.: Threads and Swing.
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html

[OC04] M. Oliveira and A. Cavalcanti.: From Circus to JCSP. In Sixth International
Conference on Formal Engineering Methods, November 2004.

[Pu00] W. Pugh.: The Java Memory Model is Fatally Flawed. Concurrency: Practice
and Experience, 12(6)(2000) 445-455

[PM00a] P. H. Welch and J. M. Martin.: A CSP Model for Java Multithreading. In
ICSE 2000, pages 114-122, June 2000.

[PM00b] P. H. Welch and J. M. Martin.: Formal Analysis of Concurrent Java System.
In Communicating Process Architectures 2000.

[RM89] R.Milner.: Communication and Concurrency. Prentice-Hall, Inc., 1989.
[RR03] V. Raju, L. Rong, and G. S. Stiles.: Automatic Conversion of CSP to CTJ,

JCSP, and CCSP. In Communicating Process Architectures 2003, pages 63-81,
2003.

[SD04] S. Schneider and R. Delicata.: Verifying Security Protocols: An Application of
CSP. In 25 Years Communicating Sequential Processes, 243-263, 2004.

[SS00] S. Schneider.: Concurrent and Real-Time System: The CSP Approach. John
Wiley and Sons LTD, 2000.

[ST95] S.-T. M. Limited.: Occam 2.1 Reference Manual, 1995.
[TS99] H. Treharne and S. Schneider.: Using a Process Algebra to Control B Opera-

tions. In IFM, pages 437-456, 1999.
[VH00] W. Visser, K. Havelund, G. Brat, and S. Park.: Model checking programs. In

Int. Conf. on Automated Software Engineering, 2000
[VT02] J. C. Voisinet, B. Tatibouet and A. Hammand.: JBTools: An experimental

platform for the formal B method. In PPPJ’ 2002 , 137-140, 2002.
[We00] P. Welch. Wow, no chicken? http://wotug.ukc.ac.uk/parallel/groups

/wotug/java/discussion/3.html.
[WM00] P. H. Welch and J. M. Martin.: Formal Analysis of Concurrent Java System.

In Communicating Process Architectures, 2000

