Multistream Recognition of Dialogue Actsin M eetings

Alfred Dielmann and Steve Renals

Centre for Speech Technology Research
University of Edinburgh,
Edinburgh EH8 9LW, UK

Email:{a. di el mann, s. renal s}@d. ac. uk

Abstract. We propose a joint segmentation and classification approach for the
dialogue act recognition task on natural multi-party meetings (ICSI Me&arg
pus). Five broad DA categories are automatically recognised usingeaaje
Dynamic Bayesian Network based infrastructure. Prosodic featncka awitch-

ing graphical model are used to estimate DA boundaries, in conjunctionawith
factored language model which is used to relate words and DA categ®hiiss
easily generalizable and extensible system promotes a rational appootzh
joint DA segmentation and recognition task, and is capable of good ri¢mogn
performance.

1 Introduction

This paper is concerned with automatically extracting sdavets of the discourse
structure of multiparty meetings. In particular we are @ned with the automatic
recognition ofdialogue act§DAs). Each utterance in a transcription of a meeting can
be associated to a dialogue act (or several dialogue ads)ibimg the function that
the utterance serves in the conversation. This genericitigfiteaves space for several
different DA coding schemes, that may be targeted on difteaspects of the conver-
sational process or simply characterised by a differentbarof sub-categories.

In this work we are interested in a DA dictionary composed &éva generic DA
categories [1]. Classes of dialogue act in this scheme,hwhigs obtained from the
richer Meeting Recorder Dialogue Act (MRDA) annotation excte [2], consisted of
statementgquestionsfillers, back-channehnddisruptions Those broad DA categories
can be seen as the basic building blocks of a conversatiohthars they may be em-
ployed in modelling more complex meeting behaviours, sucmaeting phases, or
to enhance processes such as language modelling for aid@mpaéch recognition or
topic detection.

The DA recognition process is composed of two main stepsneatation and tag-
ging. The first step consists of subdividing the sequenceaoktribed words in terms
of DA segments. The goal is to segment the text into uttesaticd have approximately
similar temporal boundaries to the annotated DA units. Buerd step of DA tagging
takes DA segments as input and classifies them as one of thBAiveasses listed
above. These two steps may be performed either sequer{Batiynentation followed
by classification) or jointly (both tasks carried out sinankously by an integrated sys-
tem). In this paper we focus on the joint segmentation arstilaation approach, using



trainable statistical models: dynamic Bayesian netwol8Ns). We note that the full
DA recogniser can be forced to operate on pre-segmentedtdatee acting as a sim-
pler DA tagger. Alternatively, by discarding the DA tags #stem may be employed
for the segmentation task alone.

The paper is organised as follows. The next section reviewsesDA recognition
works carried out on natural multi-party meetings, with atipalar focus on the ICSI
meeting corpus, described in section 3. Section 4 outlinedaé recognition frame-
work and its components: the feature extraction procesgi¢se5), the DA factored
language model (section 6), and the generative DBN-bageaksiructure (section 7).
Experiments using this framework and five different setujgsraported in section 8.
Finally, section 9 proposes a brief summary and conclud#sseime final notes.

2 Redated Work

Stolcke et al. [3] provide a good introduction to dialogueraodelling in conversational
telephone speech, a domain with some similarities to martypmeetings. Dialogue
acts may be modelled using a generative hidden Markov mdfieh[which observable
feature streams are generated by hidden state DA sequéhestsDA recognizers are
based on statistical language models evaluated from tiegiowvords, or on prosodic
features extracted directly from audio recordings. Vasitanguage models have been
tried, including factored language models [5], although kind of trainable language
model can be adopted. Prosodic features provide a large maihgpportunities, with
entities such as duration, pitch, energy, rate of speeclpanses being measured using
different approaches and techniques [6, 7]. Other featwash as speaker sex, have
also been usefully integrated into the processing framiewor

The most likely sequence of dialogue acts is inferred froenléixical and prosodic
data, and from a discourse model. The discourse or dialogiugrammar could be esti-
mated using a simple n-gram model based on DA labels or motedanguage models
evaluated from the distribution of DA-tags. Note that pseaitterance and dialogue act
boundaries are often assumed to be known a priori as pareddghannotation (tag-
ging task). When this information is not available (recoigmitask), it is estimated by
employing automatic segmentation algorithms.

Ang et al. [1] addressed the automatic dialog act recogniji@blem using a se-
quential approach, in which DA segmentation was followedclassification of the
candidate segments. Promising results were achieved égyrating a boundary detec-
tor based orvocal pausewith a hidden-event language model HE-LM (a language
model including dialogue act boundaries as pseudo-wofts) dialogue act classifica-
tion task was carried out using a maximum entropy classtigether with a relevant
set of textual and prosodic features. This system segmamnigdnd tagged DAs in the
ICSI Meeting Corpus, with relatively good levels of accyrddowever results compar-
ing manual with automatic ASR transcriptions indicated tha ASR error rate resulted
in a substantial reduction in accuracy.

Using the same experimental setup, Zimmermann et al. [§lqeed an integrated
framework to perform joint DA segmentation and classifmatiTwo lexical based ap-
proaches were investigated, based on an extended HE-LM {@bpkedict not only the



DA boundaries but also the DA type), and a HMM part of speecipined approach.
Both these approaches provided slightly lower accuracywdoenpared with the two-
step framework [1], but this may be accounted by the lack ofpdic features.

Ji et al. [9] propose a switching-DBN based implementatibtne HMM approach
outlined above, which they applied to dialogue act taggim¢@5| meeting data. They
also investigated a conditional model, in which the wordghefcurrent sentence gen-
erate the current dialog act (instead of having dialogugwhbich generate sequence of
words). Since this work used only lexical features, andge@aumber of DA categories
(62), a direct comparison with the results provided by [Ija$ possible.

Venkataraman et al. in [10] proposed an approach to boptattdMM-based dia-
logue act tagger from a small amount of labeled data follolyedn iterative retraining
on unlabeled data. This procedure enables a tagger to bedrah an annotated cor-
pus, then adapted using similar, but unlabeled, data. Ttyeoged tagger makes use
of the standard HMM framework, together with dialogue a&cfic language models
(3-grams) and a decision tree based prosodic model. Theraudlso advance the idea
of a completely unsupervised DA tagger in which DA classedgéectly inferred from
data.

3 Annotated Data

The experiments reported in this paper use the ICSI Meetmgu3 [11]. This cor-
pus consists of 75 multiparty meetings recorded with migdtipicrophones: one head-
mounted microphone per participant and four tabletop npicomes. Each meeting lasts
about one hour and involves an average of six participagssilting in about 72 hours
of multichannel audio data. The corpus contains humarstodn interactions recorded
from naturally occurring meetings. Moreover, having diffiet meeting topics and meet-
ing types, the data set is heterogeneous both in terms oéoabd structure.

Orthographic transcriptions are available for the entogpas, and each meeting
has been manually segmented and annotated in terms of Deldgs, using the ICSI
MRDA scheme [2]. The MRDA scheme is based on a hierarchy of yp&s and sub-
types (11 generic tags and 39 specific sub-tags), and allaigpia sub-categorizations
for a single DA unit. This extremely rich annotation schemsutts in more than a thou-
sand unique DAs, although many are observed infrequerdlyeduce the number of
sparsely observed categories, we have adopted a reducgdigebroad DA categories
[1,8]. Unique DAs were manually grouped into five genericegaties: statements,
guestions, backchannels, fillers and disruptions. Theildigion of these categories
across the corpus is shown in table 1. Note that statememth@most frequently oc-
curring unit, and also the longest, having an average leogth3 seconds (9 words).
All the other categories (except backchannels which uglest only a tenth of a sec-
ond) share an average length of 1.6 seconds (6 words). Aageneeting contains
about 1500 DA units.

The corpus has been subdivided into three data sets: tgagdh (51 meetings),
development set (11 meetings) and test set (11 meetingspuAlexperiments were
conducted on the same dataset subdivision proposed by Aadddtin order to have
directly comparable results.



Category |% of total DA unit§% of corpus length
Statement 58.2 74.5
Disruption 12.9 10.2
Backchannel 12.3 0.9
Filler 10.3 8.7
Question 6.2 5.8

Table 1. Distribution of DA categories by % of the total number of DA units and by %arpas
length.

4 Methodology

Our framework for the integrated DA recogniser uses a géimerapproach composed
of four main blocks: a Factored Language Model (FLM, secipra feature extraction
component (section 5), a trigram discourse model, and a mimBayesian Network
(section 7). The FLM is used to map sequences of words into s uand is the main
component of the tagger. The discourse model consists afhaatd trigram language
model over DA label sequencedote that our DA tagger uses only lexical information
and a discourse model. Experiments using both the refetioegraphic transcription
and the output of automatic speech recognition (ASR) haea loarried out. The au-
tomatic transcription was provided by the AMIASR team andeagated through an
ASR system similar to the one outlined in [12] (word erroeraf about 29%). A set of
six continuous features are used for DA segmentation pegyasgether with part of a
DBN model. This graphical model also plays a crucial rolehia tagging process and
acts as the master control unit for the entire recogniti@c@ss.

5 Features

A vector of six continuous word related features was extéhdtom audio recordings
and orthographic transcriptions.

Mean and variance of FO Fundamental frequency (F0) was estimated using the ESPS
pitch tracking algorithm get0? and sampled every 10 msec. The word temporal
boundaries provided by the transcriptiowere then used to estimate the mean and
variance of FO for each word. Mean FO was subsequently n@eabhgainst the
speaker average pitch in order to have a participant inabgrereature.

RMSenergy Average root mean square energy was estimated for each\Wyaxdd
then normalised by both the average channel energy (in dodesmpensate for
factors such as channel gain and microphone position) anchéan energy for all
tokens of word\,.

1 Estimated using the SRILM toolkit, available from http://www.speech.sri.cosjepts/srilm/

2 Available from http://www.speech.kth.se/snack/

3 Note that word boundaries are estimated automatically through forcedreignbetween
acoustic models and orthographic transcriptions, thus are charadtbyiserelevant amount
of uncertainty.



Word length This is the word duration normalised by the mean duratiortfat word
computed on the entire dataset. Therefore the resultirity éntinversely propor-
tional to the rate of speech, neglecting estimation errors.

Word relevance The word relevance was computed to be the ratio betweentkcal
frequency within the current document and absolute termuigacy across the
whole meetings collection. Terms which are more relevantte current meet-
ing will assume scores well above the unity.

Pause duration Interword pauses were estimated using word boundary tifesnzd
from aligning the transcription with the acoustic signaldae-scaled in order to
have a unitary range. Note that long pauses between wordsiglaljght sentence
boundaries and thus be a strong cue to DA segmentation.tipdase related fea-
tures have already been successfully employed in severadgientation frame-
works (section 2).

6 Factored Language Models

Factored Language Models (FLMs) [13] are a generalisatfariass-based language
models in which words and word-related features are burtdigether. The factors in
an FLM may include word-related features such as part ofdpeelative position in
the sentence, stem, and morphological class. Indeed, ihee limit to the number
of possible factors. In the FLM perspective even the wordsnigelves, are usually
considered one of the factors. Class based language modgldeninterpreted as a
2-factor FLM, in which words are bundled with classes.

Given a wordf? andk — 1 featuresfl, f2,..., {1, a sentence can be seen as se-
guence of these factor vectars= { f0, f1,..., ft"}. As for standard language models,
the goal of FLMs is to factorise the joint distributigafvy, Vo, . ..,v,) as a chain prod-
uct of conditional probabilities in the form(v; | vi—1, ..., Vi_n). Since words have been
replaced by vectors of factors, each conditional probighisi now a function of these
factors:p(f0, ft,..., {10 1, fL . £k 60, 1K, 1K),

In order to build a good FLM it is necessary to choose the agtifactorisation
(analogous to the structure learning problem in graphicaleis) and a backoff strategy
to cope with data sparsity. Note that backoff is usually apest by dropping one or more
factors from a Conditional Probability Table (CPT) in favaai a simpler conditional
distribution (and smaller CPT), reiterating this procedseveral times. Often multiple
backoff paths (strategies) are feasible and it is even blest concurrently follow all
of them by adopting a generalized parallel backoff [5].

In order to model the relationship between words and DAs we hdopted a FLM
based on three factors: words, DAs and the position of eact imdhe DA unit. Each
wordw; is part of a DA unit and is characterised by the DA latheMoreover each DA
segment has been subdivided in blocks of five words; i§ one of the first five words
the position facton; will be equal to one, ify; belongs to the second blook= 2, and
so on. The adopted language model is defined by a product dftmoral probabilities
p(w: | wi—1,nt, 0k ). Note that considering only the word factey the proposed FLM
could be compared to a bigram since only the relation betwgeandw;_1 is taken
into account. When backoff is required the first term to be geakis the previous word



W;_1, leading to the backoff mode(w; | n,d;). If a further backoff is required, the DA
tag d; will be dropped resulting in the simpler modgl{w; | n;). We use Kneser-Ney
discounting to smooth both the backoff steps.

In order to compare different FLM candidates, instead of garnmg their perplex-
ities, we have defined a simplifiddA taggingtask. We compare FLMs by measuring
their ability to assign the correct DA label to unseen DA sinithis preliminary eval-
uation was conduced by enhancing the FLM section of the SRiddkit [14] with
a simple decoder, able to label each DA unit (sentence) \wigthntost likely DA tag
(factor label from a list of possible options).

The above described FLM, after training on the 51 meetinigitrg set, was able
to perform DA labeling on the 11 development set meetingk aiitaccuracy of 69.7%
using reference transcriptions and 63.4% using autom@itstriprions (70.9% and
63.6% on the 11 meetings from the test set). Replacing fomplathe word posi-
tion factorn; with part-of-speech tags (automatically labeled by using a POS tagger
trained on Broadcast News data) the accuracy on manuattiptiens fell to 61.7%
(63.5% on the test set). Building the mog¥iv | w1, m, d;), wherem represents the
information about the meeting type, the recognition ratenm 68.2% (68.8% on the
test set). A model including each of, p; andm; with three backoff steps had slightly
lower recognition rates of 67.7% on the development set &6 on the test set.

7 Generative DBN model

Bayesian Networks (BNs) are examples of directed acyclapBical Models (GMs).
GMs represent a unifying concept in which probability the@ encapsulated inside
the formalism of graph theory. Random variables are astatta nodes, and statistical
independence between two random variables is representbe kack of a connecting
arc between the corresponding nodes. To model time sergatarsequences, the BN
formalism has been generalised into the Dynamic Bayesidwdik (DBN) concept.
A DBN is a collection of BNs where a single BN, with private ritframe relations
among variables, is instantiated for each temporal frame azset of inter-frame arcs is
defined. Those connections between nodes of adjacent BNisitiplescribe the flow
of time and help highlighting the temporal structure of etwte-series.

A DBN is a modular and intuitive representation which pr@gdca common un-
derlying formalism [15] for models including Kalman filteddidden Markov Models,
coupled HMMs and hierarchical HMMs among the others. Notg #ince the DBN
formalism is dual to a well defined mathematical theory, ajuaiset of tools and tech-
niques can be developed to perform inference, model legraind decoding of any
DBN model. The Graphical Model ToolKit (GMTK) [16], for exarte, provides a for-
mal language to describe DBNs and a common set of tools tariexget with them.
Thus this toolkit has been adopted as the main developmekaga for all the DBN
related experiments described in this work. As anticipateskection 4 the DA recog-
nition process is coordinated by a generative DBN based mdHe overall model is
depicted in figure 1. The nod¢ represents the continuous observable feature vector
outlined in section 5 (associated to the wd¥. E is a binary variable that switches
from zero to one when a DA boundary is detected. Since theWbdepresents a word,



E(.1=0: no boundary detected E(1=1: DA boundary detected

DA%, > DA, DAZ, DAZ,
DAL, » DA, DAl DA,
DA’ DA,

Wit

4 (B)
Fig. 1. Overview of the DBN model for the integrated Dialogue Act recognisée model’'s
topology depends on the state of the boundary detdgtor during the previous frame: the
model’s graph within a DA segment has been depicted on the left(A).igheside of the picture
(B) shows the new topology immediately after a DA boundary detectiordehaquare nodes
represent observable discrete variables, unshaded squaesspoomd to hidden discrete variables,
and shaded circles are associated with continuous observations. Dreedeanot really part of
the DBN: they symbolise relationships implied by the FLM.

a DA unit can be interpreted as a sequence of waidsg, ..., W _2, W _1, W with a DA
label DA® (DAY ; = DA?, vj € [0,K]). DA® will contain the label of the previous DA
unit, andDA? will go one more step back on the DA recognition hist@ys a cyclical
counter (from 0 to 5 and back to 0,1,2,...) which is used tatbiocks of five words,
andN accumulates the encountered word-blocks. Note that siecenbdel’s topology
changes according to the state of the switching vari&ble, this is an example of a
Bayesian multi-net [17].

Figure 1(A) shows the model’s topology when a DA boundaryiwdeen detected
(intra-segment phasB;_1 = 0). The current DA labeDA? is responsible for the current
sentenc&\,W_1,...,W_k and the joint sentence probability is estimated through the
FLM p(W |W_1,N;, DA?) introduced in section 6. Note that FLMs are fully supported
by GMTK, which will automatically take care of the backoffqmedure whenever re-
quired. The word block countéd needed by the FLM is automatically incremented



whenever the cyclical word count€rreach the fifth word (word block dimension de-
fined in section 6). All the DA label related nodBg\ are simply copied from the
previous temporal slicedDA¢ = DAY _; with k=0, 1,2) since a new DA segment has not
yet been recognised.

The state of the end boundary detedfas directly related to the word block counter
N and the DA label historpAX through a discrete CPT which is learned during training.
The two states off are linked to continuous feature vectdfdy two sets of Gaussian
Mixture Models. Node€ andY (together with the associated CPT and GMMs) are
fully responsible for the DA segmentation process. If the AIndaries are known a
priori, they can be injected into the model by makiBgn observable node, and the
resulting system will operate as a DA tagger.

If during the previous framé— 1 a DA boundary has been detected, the model
will be switched to the topology shown in figure 1(B) (integsnent phaseg;_; = 1).
Since a new DA unit has been detected at the end of the prefremugt — 1, both the
countersC andN will be set to zero, and the FLM is forced to restart with a netv s
of estimations. The DA recognition history is updated byying DAtlfl into DA? and
DA? , into DA!. The new DA hypotheses will be generated by taking in accthet
current DA labeDA? ; and the previous onBA! ; through a trigram language model
p(DA? | DAY ,, DAL ;) (section 4).

The graphs in figure 1 show only the BN slices that are actudllglicated for
t > 1. Duringt = O all the hidden states are properly initialised and the FENbiced
to backoff top(Wp | No, DAS) sinceW is the first word. During the second frarme: 1,
DA% is set to zero and the discourse language model is evenfoatlyd to backoff to a
bigram.

8 Experimental setup and performance measures

All the experiments have been performed on the ICSI corpugyube five DA cat-
egories and the data sets described in section 3. The syst#imed in the previous
sections is primarily targeted on the DA recognition tagkmaed as joint segmentation
and classification, but as explained in section 7, it is fs$o provide the ground truth
segmentation and evaluate the DA tagger alone.

The percentage of correctly labeled units is about 76% areate transcriptions
and about 66% on ASR output. The classification proceduradiigively based on
the lexical information (through the FLM) and on the DA laage model; prosodic
related features are used only for segmentation purposesp&ring these results with
those shown in section 6, we can deduce that the introduofientrigram discourse
model has resulted in an absolute improvement included dmtv2% (on automatic
transcriptions) and 5% (on manual transcriptions).

If performance evaluation is straightforward for the DAdaw task, the same can-
not be said about DA segmentation or recognition tasks.r8besrealuation metrics have
been proposed, but the debate on this topic is still openutregperiments we have
adopted all the performances metrics proposed by Ang etlgard subsequently ex-
tended by Zimmermann et al. [8], together with a new recégmitnetric inherited from



Metric LEXICAL |PROSODY PAUSE||ALL (REF)|ALL (ASR)

T|S |NIST-SU 93.7 83.4 48.0 35.6 43.6
E|E |DSER 83.6 90.7 51.2 48.9 58.2
S|G |STRICT 87.4 85.8 66.4 56.5 63.5
T|M|BOUNDARY| 14.5 12.9 7.4 55 7.3

R |SCLITE 52.7 60.7 48.8 44.6 53.5
S|E |NIST-SU 104.1 93.8 68.5 56.8 69.6
E|C |DER 86.7 92.1 62.9 61.4 72.1
T|O |STRICT 89.1 87.6 72.5 64.7 725

G.|[LENIENT 20.7 22.0 195 19.7 220

Table 2. Segmentation and recognition error rates (%) of five different systerfigurations.

the speech research community. A detailed descriptionesfethmetrics (NIST “Sen-
tence like Unit” (SU) derived metrics, strict, lenient anouindary based metrics) can
be found in [1]. The DA Error Rate (DER) and DA SegmentatiomERate (DSER)
are discussed in [8].

The speech recognition inspired metric derives from WondERate but having
words replaced by DA units. Recognised DA segments areyftiste-aligned against
the ground truth annotation, and then the sum of substitutieletion and insertions
errors is scored against the number of reference DA uniis.&rhor metric is estimated
using the publicly available tool SCLITE (part of the NISTeggh Recognition Scoring
Toolkit ) which also provides detailed statistics on erroneous seggrand significance
tests. The SCLITE metric, compared with all the other redtmmmetrics (except the
lenient one), is more focused on a correct DA classificatidihar than on an extremely
accurate segmentation.

Table 2 shows the segmentation and recognition results endffferent setups.
Results are reported using all the evaluation metrics citieolve. Note that all the
nine adopted metrics are “error rates”, thus lower numbenespond to better perfor-
mances. The proposed setups differ only in the informatsmsduo detect DA bound-
aries: the_exicalsetup makes no use of continuous features (Yoldas been removed
from the DBN), theProsodysetup uses only five out of six features (excluding pauses),
the Pausesetup uses the pause information but not the other continfeatures, the
All (REF) and All (ASR)configurations exploit the full feature se&tll (REF) reports
the results achieved by training and evaluating the DA reisgsg on manually anno-
tated orthographic transcriptions, wheneveAInASR)the system has been developed
and tested on automatic transcriptions. Therefore in ttee &xperiment the combina-
tion of ASR and DA recogniser constitutes a fully automappraach, since manual
annotations are not needed. Note thatltbrical setup makes use of the lexical infor-
mation just for DA classification purposes. Boundary débecis estimated from the
current DA label, the DA history and the word block countéretiefore this setup and
the lexically based systems investigated in [8] cannot kectly compared.

The adoption of prosodic and word related features madedrPthsodysetup
presents a conflicting behaviour: NIST-SU, strict and b@updnetrics show an im-

4 SCTK available from http://www.nist.gov/speech/tools/



provement over the baseline setup; while DSER, DER, lerirdtSCLITE based met-
rics move toward higher error rates. TRausesetup shows a clear improvement over
the baseline approach under all the evaluation metricspens its strength over the
Prosodysetup highlighting the importance of pause related infdionzaon the segmen-
tation task.

The fully integrated approach\(l-REF) is the most accurate model. The error rates
are similar to the NIST-SU segmentation error rate (34.48¢)the lenient recognition
error rate (19.6%) of the two step recogniser presented hy etral. [1] (section 2).
This result suggests that, even if the two competing systeswe similar segmenta-
tion performances, and the maximum entropy based DA clas$i&bout 80% correct
classification [1]) seems to be more powerful than our gdiverapproach, the joint
segmenter+classifier framework is potentially able to etftpm a sequential frame-
work. This is even more evident with the fully automatic AS&sbd systemAll-ASR
which provides a relevant improvement if compared to theisatial approach outlined
in [1] (lenient recognition error rate of 25.1%). In the seqtial approach the DA clas-
sifier will be able to process only one segmentation hypahegereas in the joint
approach multiple segmentation hypotheses are taken quatby the DA tagger. The
final choice between multiple candidates will be carried mutaking the most likely
sequence of DA units, intended as the optimal combinatiddbfbboundaries and DA
labels.

9 Summary and discussion

We have investigated the dialogue act recognition task ittipauty conversational
speech, by applying a joint segmentation and tagging approa natural meetings
(ICSI meeting recordings). The proposed system makes usehefterogeneous set
of technologies: a graphical model, a factored languageeinainld some continuous
features. The graphical model, implemented as a DBN-basdi-net, oversees the
whole recognition process. The proposed model adopts aajemeparadigm for the
DA tagging task and performs DA segmentation through a fedbased architecture.
DA tagging is performed using a factored language model ®/tabels and word
positions, together with a discourse language model. DAnsegation is obtained by
exploiting both the DA discourse model and a set of six camtirs features extracted
from audio recordings and orthographic transcriptions.

The joint DA recognition approach, if compared to a seqaérhe, provides a
clearer view of the addressed problem and an intuitiveegiyato its solution. The inte-
grated approach encourages the reuse of common resouctesssieatures and model
parts. For example our graphical model shares the DA diseonmodel between the
two subtasks (segmentation and classification), and makewadrd block counter re-
quired by the FLM available for segmentation purposes (thimanodel). Furthermore
the joint approach operates on a wider search space (pragjigint sequences of seg-
mentation boundaries and DA labels based on a trigram diseounodel), and thus it is
potentially capable of better recognition results. Fomegke the results achieved in our
reference transcription based experiments are simildre@équential DA recognition
approach proposed by Ang et al. [1], even though the maximommogy DA classi-



fication approach chosen by the former work provides a 5%éhi¢dgging accuracy.
The advantage of a joint approach is substantial when mamtiagraphic transcrip-
tions are replaced by imperfect automatic transcriptidine lenient DA recognition
error rate is degraded by only 2.3% and the comparison betaeguential and joint
approach is in favour of the latter one.

In the near future it is our intention to evaluate the presgatem on the new AMI
meeting corpus [18] and on a richer DA annotation schemeeblar we would like
to improve both DA classification and DA segmentation by ioyimg the factored lan-
guage model and by adopting a wider set of multimodal feature
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