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Abstract. We study query answering in Description Logics (DLs). In
particular, we consider conjunctive queries, unions of conjunctive queries,
and their extensions with safe negation or inequality, which correspond
to well-known classes of relational algebra queries. We provide a set of de-
cidability, undecidability and complexity results for answering queries of
the above languages over various classes of Description Logics knowledge
bases. In general, such results show that extending standard reasoning
tasks in DLs to answering relational queries is unfeasible in many DLs,
even in inexpressive ones. In particular: (i) answering even simple con-
junctive queries is undecidable in some very expressive DLs in which
standard DL reasoning is decidable; (ii) in DLs where answering (unions
of) conjunctive queries is decidable, adding the possibility of expressing
safe negation or inequality leads in general to undecidability of query an-
swering, even in DLs of very limited expressiveness. We also highlight the
negative consequences of these results for the integration of ontologies
and rules. We believe that these results have important implications for
ontology-based information access, in particular for the design of query
languages for ontologies.

1 Introduction

Description Logics (DLs) [5] are currently playing a central role in the re-
search on ontologies and the Semantic Web. Description Logics are a family of
knowledge representation formalisms based on first-order logic (in fact, almost
all DLs coincide with decidable fragments of function-free first-order logic with
equality) and exhibiting well-understood computational properties. DLs are cur-
rently the most used formalisms for building ontologies, and have been proposed
as standard languages for the specification of ontologies in the Semantic Web [24].

Recently, a lot of research and implementation work has been devoted to
the extension of DL knowledge bases towards expressive query languages: one
of main motivations for this effort is to provide users of the Semantic Web
with more powerful ontology accessing tools than the ones deriving from the
standard reasoning services provided by DL knowledge bases [17]. To this aim,
relational database query languages have been considered as very promising
query languages for DLs, in particular conjunctive queries (CQs) and unions of



conjunctive queries (UCQs). A lot of the current research in DLs is studying
this problem, and many results have recently been obtained, both from the
theoretical side (see Section 2) and the implementation side (see e.g., [21,26]).

These studies are in principle very close to relational databases, not only be-
cause of the common query language, but also because, from the semantic view-
point, query answering in DLs corresponds to a well-known problem in database
theory, namely query answering over databases with incomplete information [18,
29], or query answering in databases under Open-World Assumption [31]. Then,
of course, there is an important difference between the two settings, which lies in
the different “schema language” adopted: DLs and relational schemas indeed cor-
respond to two different subsets of function-free first-order logic. Nevertheless,
there are well-known and important correspondences between DLs and (rela-
tional) data models (see e.g., [12,8]): more generally, the relationship between
DLs and databases is now quite well-assessed.

In this paper we study query answering over Description Logics knowledge
bases. In particular, we do not restrict our attention to (unions of) conjunctive
queries, and analyze several subclasses of first-order queries.! In particular, we
consider CQs, UCQs, and their extensions with safe negation (CQ®s, UCQ™’s)
and inequality (CQ’ﬁs, UCQis), which correspond to well-known classes of re-
lational algebra queries.

We provide a set of decidability, undecidability and complexity results for
answering queries of the above languages over various classes of Description
Logics knowledge bases. In particular, we mainly consider the following, rather
inexpressive, DLs: RDFS(DL) [16], EL [4], DL-Liter (9], and AL [5]. Many of
the results obtained for such logics extend to more expressive DLs. A summary
of the results obtained is reported in Figure 1 (Section 6).

In general, such results show that extending standard reasoning tasks in
DLs to answering relational queries is unfeasible in many DLs, even in rather
inexpressive ones. In particular:

— answering CQs and UCQs is already an unsolvable problem in decidable
fragments of FOL, in particular in £2, the two-variable fragment of function-
free FOL, which is very close to many DLs, and in which all standard DL
reasoning tasks are decidable;

— in DLs where CQs and UCQs are decidable, adding safe negation gener-
ally leads to undecidability of query answering (even in DLs of very limited
expressiveness);

— in the same way, adding inequality (and more generally, comparison opera-
tors) generally leads to undecidability of query answering.

We believe that these results have important implications for ontology-based
information access, in particular for the design of query languages for ontologies,
since they clearly highlight critical combinations of DL constructs and query
constructs with respect to the decidability and complexity of query answering.

! We recall that, even for empty knowledge bases, the problem of answering arbitrary
first-order queries is undecidable, both over finite and over unrestricted models [28].



Finally, we briefly point out that the above results have also important con-
sequences in the design of rule layers for the Semantic Web, which is currently
under standardization by the Rule Interchange Format (RIF) working group? of
the World Wide Web Consortium (W3C). Indeed, almost all the rule formalisms
proposed in this setting allow for posing relational queries (e.g., are able to ex-
press forms of Datalog queries). The results reported in this paper establish that
not only recursion may lead to undecidability of reasoning in DL knowledge bases
augmented with rules (which has been shown in [20,13]), but also the presence
of very restricted forms of nonrecursive negation and/or inequality in the rules
might easily lead to undecidability of reasoning.

2 Description Logics and query languages

In this section we briefly introduce Description Logics and the query languages
analyzed in the paper.

2.1 Description Logics

We now briefly recall Description Logics (DLs). We assume that the reader is
familiar with first-order logic (FOL). For a more detailed introduction to DLs,
we refer the reader to [5].

We start from an alphabet of concept names, an alphabet of role names
and an alphabet of constant names. Concepts correspond to unary predicates in
FOL, roles correspond to binary predicates, and constants corresponds to FOL
constants.

Starting from concept and role names, concept expressions and role expres-
stons can be constructed, based on a formal syntax. Different DLs are based on
different languages concept and role expressions. Details on the concept and role
languages for the DLs considered in this paper are reported below.

A concept inclusion is an expression of the form Cy C Csy, where Cy and Cs
are concept expressions. Similarly, a role inclusion is an expression of the form
R1 E Ry, where Ry and Ry are role expressions.

An instance assertion is an expression of the form A(a) or P(a,b), where A is
a concept expression, P is a role expression, and a, b are constant names. We do
not consider complex concept and role expressions in instance assertions, since
we are interested in data complexity of query answering, as explained below.

A DL knowledge base is a pair (7, .A), where 7, called the TBoz, is a set
of concept and role inclusions, and A, called the ABox, is a set of instance
assertions.

The DLs mainly considered in this paper are the following (from now on, we
use the symbol A to denote a concept name and the symbol P to denote a role
name):

2 http:/ /www.w3.org/2005 /rules/



— DL-Litegprg is the DL whose language for concept and role expressions is
defined by the following abstract syntax:

Cp:=A|3R
Cr:=A
R:=P| P~

and both concept inclusions of the form Cp, C C'g and role inclusions P; C P,
are allowed in the TBox. Such DL corresponds to (a subset of) RDFS [1],
the schema language for RDF.3

— DL-Liter is the DL whose language for concept and role expressions is de-
fined by the following abstract syntax:

CLZZ:A|HR
CR Z:ZA‘_\CRIHR
R:=P| P~

and both concept inclusions of the form Cf, E Cr and role inclusions Ry C
R5 are allowed in the TBox.

— &L is the DL whose language for concept expressions is defined by the fol-
lowing abstract syntax:

C’:::A|Cll‘IC’2|3P.C’

and only concept inclusions C; C Cy are allowed in the TBox.
— AL is the DL whose language for concept expressions is defined by the
following abstract syntax:

Cu=A|T|L|-A|CiNCy|3P|VP.C

and only concept inclusions C; C Cy are allowed in the TBox.
— ALC is the DL whose language for concept expressions is defined by the
following abstract syntax:

Cu=A|-C|CiNCy|3P.C

and only concept inclusions C; C Cy are allowed in the TBox.
— ALCHIQ is the DL whose language for concept and role expressions is
defined by the following abstract syntax:

C:::A\—'C\C’ll_lC'ﬂ(anC)
R:=P| P~

and both concept inclusions C; E C5 and role inclusions R; £ R are allowed
in the TBox.

8 DL-Literprs is very similar to the description logic RDFS(DL) defined in [16].



Besides the inclusions defined by the concept and role expressions introduced
above, in the following we will also consider role inclusions of the form =P C Ps,
where P;, P, are role names.

We give the semantics of DLs through the well-known translation of DL
knowledge bases into FOL theories with counting quantifiers (see [5]).

101 (7) U por(A)
93 Pfol(Ch x) = pso1(Co, x)
pot(B1 E Ra) = Va.ppor(R1, 2, y) — proi(R2, 7, y)
prol(A,x) = A(x)
Prol(—=C, ) = =pgo1(C, )

prot({T,A)) =
)=
)
)
prot(C1 M Co, g = psot(C1,7) A proi(C2, )
) =
) =
)=
)=
)=

Prot(C1 E Cs

prot(IR, ) = Jy.ppo1(R, z,y)
prot(3R.C, ) = Hy Pfol(R z,9) A pgor(C y)
pot((> nRC),x) = 3= y.ppo(R, 2, y) A prot(Cly)
,Ofol(P$ Yy ( )

pfol(P y L, Y ( )
proi(—P,x,y) = —|P(x Y)

A model of a DL-KB K = (7,.A) is a FOL model of ps,;(KC). Therefore, DLs
inherit the classical semantics of FOL, hence, in every interpretation, constants
and predicates are interpreted over a non-empty interpretation domain which is
either finite or countably infinite. In this paper the only reasoning service we
are interested in is query answering, whose semantics is defined in the following
subsection.

We will also mention the following logics: (i) the DL DLR [11], which ex-
tends ALCHZQ essentially through the use of n-ary relations, and for which
decidability results on query answering are known; (i) £2, i.e., the two-variable
fragment of function-free first-order logic with equality [7]; (iii) C?, i.e., the ex-
tension of the two-variable fragment £2? through counting quantifiers [15]. The
above two fragments of FOL are very much related to DLs, since almost all DLs
are subsets of £2 or C2. Indeed, it can be easily seen that the above mentioned
DLs and fragments of FOL satisfy the following partial order with respect to
their relative expressive power (see [5] for details):

DL-Litegprs C DL-Liter C ALCHZQ C DLR
EL C ALC C ALCHIQ C C?

AL C ALC C £? C C?

DL-Liter C L?

2.2  Queries

We now introduce the query languages that will be considered in the paper. A
union of conjunctive queries (UCQ) is an expression of the form

{z | conjy(xz,c) V...V conj,,(x,c)} (1)



where each cong;(x, €) is an expression of the form conj;(x,c) = Jy.a1 A... Nay
in which each a; is an atom whose arguments are terms from the sets of variables
x, y, and from the set of constants ¢ and such that each variable from « and y
occurs in at least one atom a;. The variables @ are called the head variables (or
distinguished variables) of the query.

A UCQ with safe negation (UCQ™®) is an expression of the form (1) in which
each a; is either an atom or a negated atom (a negated atom is an expression of
the form —a where a is an atom) and such that in each cong;(x, ¢) each variable
from & and y occurs in at least one positive atom.

A UCQ with inequalities (UCQ;‘é) is an expression of the form (1) in which
each conj;(x, ¢) is a conjunction Jy.a; A ... Aa, where each a; is either an atom
or an expression of the form z # 2/, where z and 2’ are variables.

A UCQ with universally quantified negation (UCQﬁV) is a UCQ with negated
atoms in which the variables that only appear in negated atoms are universally
quantified. Formally, a UCQ™ is an expression of the form (1) in which each
cong;(x, c) is of the form

Jy.Vz.conj(x,y, 2, €)

where conj is a conjunction of literals (atoms and negated atoms) whose argu-
ments are terms from the sets of variables «, y, z and from the set of constants ¢,
in which each variable from @ and y occurs in positive atoms, and each variable
in z only occurs in negated atoms. An example of a UCQ ™" is the following:

{z | By, z.Yw.r(z,y) A —s(y, 2) A —t(w,2)) V ByVur(z,y) A-s(z,u))}

Notice that all the classes of queries above considered correspond to classes
of relational algebra queries (hence they are classes of domain-independent first-
order queries) [3].

We call a UCQ a conjunctive query (CQ) when m = 1. Analogously, we
define the notions of CQ with negation (CQ™), safe negation (CQ™*), inequalities
(CQ7), and universally quantified negation (CQ™).

A Boolean CQ is a CQ without head variables, i.e., an expression of the form
congy (x,¢) V ...V conj,,(x,c). Since it is a sentence, i.e., a closed first-order
formula, such a query is either true or false in a database. In the same way,
we define the Boolean version of the other kinds of queries introduced above.
Finally, the arity of a query is the number of head variables, while the size of a
CQ ¢ is the number of atoms in the body of gq.

The semantics of queries in DL knowledge bases is immediately obtained by
adapting the well-known notion of certain answers in indefinite databases (see
e.g. [29]). Let g be a query of arity n, let x1,...,x, be its head variables, and let
c=cy,...,c, be a n-tuple of constants. We denote by ¢(c) the Boolean query
(i.e., the FOL sentence) obtained from ¢ by replacing each head variable x; with
the constant c;.

Let g be a query of arity n. A n-tuple ¢ of constants occurring in K is a
certain answer to ¢ in K iff, for each model Z of K, 7 satisfies the sentence ¢(c)
(in this case we write Z = ¢(¢)). For a Boolean query ¢, we say that true is a
certain answer to ¢ in K iff, for each model Z of K, T |= q.



Finally, in this paper we focus on data complexity of query answering, which
is a notion borrowed from relational database theory [30]. First, we recall that
there is a recognition problem associated with query answering, which is defined
as follows. We have a fixed TBox 7 expressed in a DL DL, and a fixed query
q: the recognition problem associated to 7 and ¢ is the decision problem of
checking whether, given an ABox A, and a tuple ¢ of constants, we have that
(T, A) E q(c). Notice that neither the TBox nor the query is an input to the
recognition problem.

Let C be a complexity class. When we say that query answering for a certain
DL DL is in C with respect to data complexity, we mean that the corresponding
recognition problem is in C. Similarly, when we say that query answering for
a certain DL DL is C-hard with respect to data complexity, we mean that the
corresponding recognition problem is C-hard.

2.3 Previous results on query answering in DLs

So far, only conjunctive queries and union of conjunctive queries have been
studied in DLs. In particular, the first results in this field appear in [20], which
proves that answering CQs and UCQs is decidable in ALCN'R, a DL whose
expressiveness lies between ALC and ALCHZ Q. Then, in [11] it has been shown
that answering CQs and UCQs is decidable in the very expressive Description
Logic DLR. The same paper also establishes undecidability of answering CQ7 s
in DLR, which so far is the only known result for DLs concerning the classes
of queries (apart from CQs and UCQs) studied in this paper. Another decid-
ability result appears in [21] and concerns answering conjunctive queries in
ALCTHQ(D), which is the extension of ALCHZQ with concrete domains.

As for computational characterizations of query answering in DLs, the above
mentioned work [20] has shown that the data complexity of answering CQs and
UCQs in ALCNR is cONP-complete. Then, [27] presents the first algorithm
for answering conjunctive queries over a description logic with transitive roles.
Moreover, [10] provides a set of lower bounds for answering conjunctive queries
in many DLs, while in [22] it has been shown that the complexity of answering
conjunctive queries in SHZQ (which is the extension of ALCHZ Q with transitive
roles) is CONP-complete, for CQs in which transitive roles do not occur. This
result (with the same restriction on roles occurring in queries) has been further
extended in in [23] to unions of conjunctive queries, and in [14] to CQs for
SHOQ, a DL which extends ALCHZQ with transitive roles and nominals, but
does not allow for expressing inverse roles anymore.

3 Results for positive queries

We start our analysis of query answering in DLs by considering, among the
queries introduced in the previous section, the classes of positive queries. Thus,
we first examine conjunctive queries, and then consider unions of conjunctive
queries. In both cases, we identify sets of expressive features of a DL which are
sufficient to make query answering undecidable.



Theorem 1. Let DL be any DL such that: (i) its concept language allows for
binary concept disjointness (A1 C —Ay), concept disjunction (C1UCy), unqual-
ified ezistential quantification (AR), and universal quantification (VR.C'); (i) it
allows for concept inclusions and role inclusions of the form —P; & Py, where
Py, Py are role names. Then, answering UCQs in DL is undecidable.

Proof (sketch). The proof is by a reduction from the unbounded tiling problem
[6]. Let (S,H,V) be an instance of the tiling problem, where S = {t1,...,t,}
is a finite set of tiles, and H and V are binary relations over § x S. For each
ie{l,...,n}, let T} = {thi,- ...ty } be the subset of S such that T ={z €
S | (ti,z) € H}, and let T} = {tu;,---,t, } be the subset of S such that
Ti={z eS| () eV}

Now let 7 be the following TBox (in which we use a set of concept names

T1,...,T, in one-to-one correspondence with the elements ¢y,...,¢, of S, and
the roles H, V and V):

TLCdH

TCIV

TCTyU...uT,

T, C T, foreachi#j, i,5€{l,...,n}

T, CVH.T, U...UT); foreachie{l,...,n}
EEVV.TU;,I_I...I_IIZ,J for each i € {1,...,n}
-VCV

and let ¢ be the CQ 3wy, 22, y1, y2. H (x1, 22) AV (x1,91) A H(y1,y2) AV (22, 2).
We prove that there exists a model M for 7 such that ¢ is false in M iff the
tiling problem instance (S,H, V) has a solution. O

Notice that the two-variable fragment £? satisfies the conditions of Theorem 1
(in the sense that a DL satisfying the conditions of Theorem 1 can be translated
into an equivalent £2 theory), which implies the following property.

Corollary 1. Answering CQs in L? is undecidable.

Actually, the above property shows that answering CQs is undecidable al-
ready in a very small fragment of £2.

We point out that, although the syntax of the description logic DLR satisfies
the conditions of the above theorem, such theorem actually does not apply to
DLR, due to a different interpretation of negated roles in DLR with respect to
the standard semantics [11].

Then, we analyze unions of conjunctive queries. The next two theorems iden-
tify two sets of DL constructs which are sufficient to make query answering
undecidable.

Theorem 2. Let DL be any DL whose concept language allows for unqualified
existential quantification (AP) and concept disjunction (Cy U Cs), and which
allows for concept inclusions and role inclusions of the form —P; & Py, where
Py, Py are role names. Then, answering UCQs in DL is undecidable.



Proof (sketch). The proof is analogous to the proof of Theorem 1. The only
difference is that the concept inclusions defined in the above proof and involving
either concept disjointness or universal quantification are encoded by suitable
Boolean CQs that are added to the query, thus producing a UCQ. a

The proof of the next theorem is based on a reduction from the word problem
for semigroups to answering UCQs in a description logic DL.

Theorem 3. Let DL be any DL whose concept language allows for unqualified
existential quantification (3R) and inverse roles (3P~ ), and which allows for
concept inclusions and role inclusions of the form —Py T P, where Py, Py are
role names. Then, answering UCQs in DL is undecidable.

Then, we provide an upper bound for the data complexity of answering UCQs
in the DL £L (we recall that hardness with respect to PTIME has been proved
in [9]).

Theorem 4. Answering UCQs in EL is in PTIME with respect to data complex-
1ty.

Proof (sketch). We prove the thesis by defining a query reformulation algorithm
for £L. More precisely, we define an algorithm perfectRefEL that takes as input
an L TBox 7 and a UCQ ¢, and computes (in a finite amount of time) a
positive Datalog query ¢' which constitutes a perfect rewriting [19] of the query
g, in the sense that, for each ABox A, the set of certain answers of ¢ in (7', A) is
equal to the answers returned by the standard evaluation of the Datalog query
¢’ in the ABox A considered as a relational database. Since the evaluation of a
positive Datalog query is in PTIME with respect to data complexity, and since
the computation of the reformulation ¢’ is independent of the data, it follows
that the data complexity of answering UCQs in ££ is in PTIME. a

4 Results for queries with inequality

We now give decidability and complexity results for answering queries with in-
equality in DL knowledge bases. We first examine CQ7s, then we turn our
attention to UCQ7s.

We first prove undecidability of answering CQ’és in AL.

Theorem 5. Answering CQ” s in AL is undecidable.

Proof (sketch). Again, the proof is by reduction from the tiling problem. Let
(S,H,V) be an instance of the tiling problem, where S = {t,...,t,} is a finite
set of tiles, H and V are binary relations over § x S. For each i € {1,...,n}, let
Ty = {tnis- - ,th;-%} be the subset of § such that 7,) = {x € S | (t;,z) ¢ H}, and

let 7! = {tui,...,ty: } be the subset of S such that Ti={x eS| (tiz) &V}



Now let 7 be the following TBox:

TC3JH

TCIV

=Ty n...n=T, C L

T, C T, foreachi#j, i,5€{l,...,n}

T, CVH. 2Ty 1...N =T, for eachi € {1,...,n}
T, EVV.~Ty M...N =T, foreachi€ {1,...,n}

and let ¢ = Jx1, 2, Y1, y2. H (x1, 22) AV (21, 91) N H (y1,y2) AV (22,95) ANy2 # y5.
We prove that there exists a model M for 7 such that ¢ is false in M iff the
tiling problem instance (S, H, V) has a solution. O

The above theorem improves the undecidability result of containment of
CQ7s presented in [11].

Then, we consider the DL DL-Liter: for this logic, we prove the following
hardness result.

Theorem 6. Answering C’Q#s in DL-Liter is CONP-hard with respect to data
complezity.

Proof (sketch). The proof is by reduction from satisfiability of a 3-CNF propo-
sitional formula. The reduction is inspired by an analogous reduction reported
in [2] which proves CONP-hardness of answering CQ”'s using views. O

Finally, we show a (quite obvious) property which allows us to immediately
define upper bounds for answering CQ”s in the DLs DL-Litegprs and EL.
In the following, we call singleton interpretation for K an interpretation whose
domain A is a singleton {d}, all constants occurring in K are interpeted as d,
the interpretation of every concept name A is A, and the interpretation of every
role name P is A x A.

Theorem 7. Let DL be a DL such that, for each DL-KB IC, any singleton
interpretation for K is a model of K. Then, answering CQ”s in DL has the
same complezity as answering CQs.

It is immediate to see that both DL-Litegprs and EL satisfy the condition
of the above theorem.* This allows us to extend the computational results of
answering CQs to the case of CQ7s for both the above DLs.

For UCQ7s, we start by considering DLs allowing for inverse roles and un-
qualified existential quantification in concept expressions.

The proof of the next theorem is based on a reduction from the word problem
for semigroups.

4 Notice, however, that this property does not hold anymore if the Unique Name
Assumption (UNA) [5] is adopted in such description logics (i.e., different constant
names must be interpreted as different elements of the domain). Anyway, all the
other results of this paper also hold in the case when the DL adopts the UNA.



Theorem 8. Let DL be any DL whose concept language allows for unqualified
existential quantification (3R) and inverse roles (3P~ ), and which allows for
concept and role inclusions in the TBox. Then, answering UCQ” s in DL is
undecidable.

Notice that the above theorem holds for the description logic DL-Liteg.

Then, we turn our attention to the description logic ££, and prove a result
analogous to the previous theorem (whose proof is obtained by slightly modifying
the reduction of the previous proof).

Theorem 9. Answering UCQ” s in EL is undecidable.

Finally, in a similar way we prove the same undecidability result for the
description logic AL.

Theorem 10. Answering UCQ” s in AL is undecidable.

Actually, the above theorem implies undecidability of answering UCQ”'s al-
ready in FL™, which is obtained from AL disallowing negation on atomic con-
cepts [5].

Finally, we turn our attention to answering UCQ;és in DL-Litegprg, and are
able to easily prove the following upper bound.

Theorem 11. Answering UCQ” s in DL-Litegpps is in LOGSPACE with respect
to data complexity.

5 Results for queries with negation

In this section, among the queries introduced in Section 2, we consider the classes
containing forms of negation. So we first consider CQ®s, then UCQ s, and
finally UCQ™"s.

We start by proving that answering CQ*s is undecidable in the description
logic AL (the proof of next theorem is again by reduction from the tiling problem,
in a way similar to the proof of Theorem 5).

Theorem 12. Answering CQ °s in AL is undecidable.
Then, we show a hardness result for answering CQ®s in DL-Liteg.

Theorem 13. Answering CQ®s in DL-Litegr is CONP-hard with respect to
data complexity.

Proof (sketch). We prove the thesis by a reduction from graph 3-colorability.
Let G = (V, E) be a directed graph. We define the DL-Liter-KB K = (T, A),
where 7 is the following TBox (independent of the graph instance):

Red C —Green dEdgeR C Red dEdgeR™ C —Red
Red T —Blue JEdgeG C Green JEdgeG~ E —Green
Green C —~Blue  3FEdgeB T Blue  JEdgeB~ C —Blue



and A is the following ABox: A = {Edge(v1,v2) | (v1,v2) € E}. Finally, let ¢ be
the CQ™® Fz,y.Edge(x,y) A ~EdgeR(x,y) N =EdgeG(x,y) A ~EdgeB(z,y). We
prove that G is 3-colorable iff true is not a certain answer to ¢ in K. ad

Notice that the above theorem actually proves CONP-hardness of answer-
ing CQ®s already for DLs much less expressive than DL-Liteg, i.e., for the
DL obtained from DL-Liteg by eliminating both role inclusions and existential
quantification on the right-hand side of concept inclusions.

Finally, we turn our attention to the description logics DL-Litegrprs and
EL, and prove a property analogous to Theorem 7. We call saturated interpre-
tation for K an interpretation whose domain A is in one-to-one correspondence
with the constants occurring in C, all constants are interpreted according to
such correspondence, the interpretation of every concept name A is A, and the
interpretation of every role name P is A x A.

Theorem 14. Let DL be a DL such that, for each DL-KB K, any saturated
interpretation for K is a model of K. Then, answering CQ °s in DL has the
same complezity as answering CQs.

It is immediate to see that both DL-Litegprs and EL satisfy the condition
of the above theorem. This allows us to extend the computational results of
answering CQs to the case of CQ ®s for both the above DLs.

Then, we analyze UCQ ™*s. First, we prove a very strong undecidability result.

Theorem 15. Let DL be any DL allowing for unqualified existential quantifi-
cation (AP) in concept expressions. Answering UCQ s in DL is undecidable.

Proof (sketch). Given a tiling problem instance (S,H,V) as in the proof of
Theorem 1, we define the following TBox 7: {T C Point, T C 3H, T C 3V }.
Then, let ¢ be the UCQ™ containing the following conjunctions:

Jz. Point(x) A =Ty (x) A ... AT, (z)

Jo.T;(x) ANTj(x) foreachi#j, i,j€{l,...,n}

o1, 22, 41, Y2 H (21, 22) AV (21,51) A H(y1,y2) A~V (22, 92)

Jo,y.T5(x) A H(z,y) AN =T (y) A ... AT (y) foreachi € {1,...,n}
Fz,y.Ti(x) ANV (z,y) ATy (y) Aeo A ﬁiji_il(y) for each i € {1,...,n}

We prove that there exists a model M for 7 such that ¢ is false in M iff the
tiling problem instance (S, H, V) has a solution. O

The above theorem implies that answering UCQ ®s is undecidable in all the
DLs analyzed in this paper, with the exception of DL-Litegprs, in which the
concept inclusions defined in the above proof cannot be expressed. So we turn
our attention to answering UCQ®s in DL-Litegprs, and prove the following
computational characterization.

Theorem 16. Answering UCQ ®s in DL-Litegrprs is CONP-complete with re-
spect to data complexity.



I [ cQ [ ucq [ cQf [ UCQ” [ ©Q* [UCQ™[UCQ™]

DL-Litegprs|| <LOGSPACE | <LOGSPACE | <LOGSPACE |[<LOGSPACE| <LOGSPACE | =cCONP [UNDEC.
[10] [10] [10]+Thm. 7| Thm. 11 |[10]+Thm. 14| Thm. 16| Thm. 17
DL-Liter <LOGSPACE | <LOGSPACE >CONP UNDEC. >CcoNP UNDEC.|UNDEC.
[10] [10] Thm. 6 Thm. 8 Thm. 13 |Thm. 15| Thm. 17
= PTIME = PTIME = PTIME UNDEC. = PTIME UNDEC.|UNDEC.
EL >: [10] >: [10] >: [10] Thm. 9 >: [10] Thm. 15| Thm. 17

<: Thm. 4 | <: Thm. 4 |<: Thm.7+4 <: Thm.14+4
AL, = CONP = CONP UNDEC. UNDEC. UNDEC. |UNDEC.|UNDEC.
ALC, >: [10] >: [10] Thm. 5 Thm. 10 Thm. 12 Thm. 15| Thm. 17

ALCHTQ <:[22] <: [23]

DLR > coNP[10] | > coNP[10]| UNDEC. UNDEC. UNDEC. |UNDEC.|UNDEC.
DECID. [11]|DECID. [11] [11] [11] Thm. 12 Thm. 15| Thm. 17
L7 UNDEC. UNDEC. UNDEC. UNDEC. UNDEC. |UNDEC.|UNDEC.
Thm. 1 Thm. 1 Thm. 1 Thm. 1 Thm. 1 Thm. 1 | Thm. 1

Fig. 1. Summary of results.

Finally, we turn our attention to unions of conjunctive queries with uni-
versally quantified negation, and show that answering queries of this class is
undecidable in every DL.

The proof of the next theorem is based on a reduction from the word problem
for semigroups.

Theorem 17. Answering UCQ™"s is undecidable in every DL.

This result identifies a very restricted fragment of FOL queries for which
query answering is undecidable, independently of the form of the knowledge
base/FOL theory to which they are posed.

6 Summary of results and conclusions

The table displayed in Figure 1 summarizes the results presented in this paper
(as well as the already known results for the DLs considered in this paper). In
the table, each column corresponds to a different query language, while each
row corresponds to a different DL. Each cell reports the data complexity of
query answering in the corresponding combination of DL and query language.
If the problem is decidable, then hardness (>) and/or membership (<) and/or
completeness (=) results are reported (with reference to the Theorem or the
publication which proves the result).

Besides the considerations reported in the introduction about these results, a
further interesting aspect is the existence of cases in which adding the possibility
of expressing unions changes the complexity of query answering. E.g., in the case
of £L£, adding the possibility of expressing unions (i.e., going from CQs to UCQs)
in the presence of safe negation or inequality makes query answering undecidable,
while it is decidable in the absence of unions in queries.

These results are of course only a small step towards a thorough analysis of
expressive query languages in DLs. Among the DLs and the query languages



studied in this paper, two interesting open problems concern the full compu-
tational characterization of answering CQ™*s and CQ”s in DL-Litep. Actually,
even decidability of query answering in these cases is still unknown.

Finally, we remark that the present research is related to the work reported
in [25], which presents a similar analysis for the same query classes in relational
databases with incomplete information (instead of DL knowledge bases). How-
ever, we point out that none of the results reported in the present paper can be
(either directly or indirectly) derived from the proofs of the results in [25], due
to the deep differences between the database schema language considered there
and the DLs examined in this paper.
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