Skip to main content

Norm perturbation of supremum problems

  • Optimal Control
  • Conference paper
  • First Online:
5th Conference on Optimization Techniques Part I (Optimization Techniques 1973)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3))

Included in the following conference series:

Abstract

Let E be a normed linear space, S a closed bounded subset of E and J an u.s.c. (for the norm topology) and bounded above mapping of S into ℝ.

It is well known that in general there exists no s ∈ S such that

$$J\left( {\bar s} \right) = \mathop {Sup}\limits_{s \in S} J\left( s \right)$$

(even if S is weakly compact).

For J(s) = ∥x−s∥ (with x given in E), Edelstein, Asplund and Zisler have shown, under various hypotheses on E and S, that the set

$$\left( s \right) = \{ x \in E\left| \exists \right. \bar s \in S such that \left\| {\bar s - x} \right\| = \mathop {Sup}\limits_{x \in S} \left\| {s - x} \right\|\}$$

is dense in E.

Here we give analogous results for the problem

$$\mathop {Sup}\limits_{s \in S} (J(s) + \left\| {s - x} \right\|)$$

These results generalize those of Asplund and Zisler and allow us to obtain existence theorems for perturbed problems in optimal control.

This work is part of a thesis submitted at Université de Grenoble in 1973.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. ASPLUND, E. The potential of projections in Hilbert space (quoted in Edelstein [1]).

    Google Scholar 

  2. ASPLUND, E. Farthest point of sets in reflexive locally uniformly rotund Banach space. Israel J. of Maths 4 (1966) p 213–216.

    Google Scholar 

  3. ASPLUND, E. Frechet differentiability of convex functions. Acta Math 421 (1968) p 31–47.

    Google Scholar 

  4. ASPLUND, E. Topics in the theory of convex functions. Proceedings of NATO, Venice, june 1968. Aldo Ghizetti editor, Edizioni Oderisi.

    Google Scholar 

  5. BARANGER, J. Existence de solution pour des problèmes d'optimisation non convexe.

    Google Scholar 

  6. BARANGER, J. C.R.A.S. t 274 p 307.

    Google Scholar 

  7. BARANGER, J. Quelques résultats en optimisation non convexe.

    Google Scholar 

  8. BARANGER, J. Deuxième partie: Théorèmes d'existence en densité et application au contrôle. Thèse Grenoble 1973.

    Google Scholar 

  9. BARANGER, J., and TEMAM, R. Non convex optimization problems depending on a parameter. A paraitre.

    Google Scholar 

  10. EDELSTEIN, M. Farthest points of sets in uniformly convex Banach spaces. Israel J. of Math 4 (1966) p 171–176.

    Google Scholar 

  11. SMULIAN, V.L. Sur la dérivabilité de la norme dans l'espace de Banach. Dokl. Akad. Nauk SSSR (N.S) 27 (1940), p 643–648.

    Google Scholar 

  12. ZISLER, V. On some extremal problems in Banach spaces.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Conti A. Ruberti

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baranger, J. (1973). Norm perturbation of supremum problems. In: Conti, R., Ruberti, A. (eds) 5th Conference on Optimization Techniques Part I. Optimization Techniques 1973. Lecture Notes in Computer Science, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-06583-0_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-06583-0_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06583-8

  • Online ISBN: 978-3-540-37903-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics