mzuriCh ETH Library

An axiomatic definition of the
programming language Pascal

Report

Author(s):
Hoare, Charles Antony Richard; Wirth, Niklaus

Publication date:
1972

Permanent link:
https://doi.org/10.3929/ethz-a-000814159

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Berichte der Fachgruppe Computerwissenschaften 6

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-000814159
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Eidgenossische Berichte der

Technische -~ Fachgruppe
Hochschule Computer-
Zurich Wissenschaften

C. A. R. Hoare and
N. Wirth

An Axiomatic Definition
of the Programming
Language Pascal

¥4

4'
. 010

November 1972 Chotis 2 5

C. A. R. Hoare and
N. Wirth

An Axiomatic Definition
of the Programming
Language Pascal

Summary: The axiomatic definition method proposed in reference
[3] is extended and applied to define the meaning of the programming
language PASCAL [1]. The whole language is covered with the

exception of real (floating-point) arithmetic and go to statements.

* Computer Science Department, The Queen's University, Belfast,
Northern Ireland.

" Eidg. Techn. Hochschula 77 L1
‘ RZ-Biblir " &
"< Clausiusstrz. 3

£H-8006 Zuijuh

Contents

Introduction
Changes and extensions of PASCAL

Data types
Scalar types

The Boolean type
The integer type
The char type

Subrange types
Array types
Record types
Set types

File types
Pointer types

Declarations
Constant-, type-, and variable declarations

Function- and procedure declarations

Statements
Simple statements

Structured statements
Standards for implementation and program interchange
References

Appendix: Syntax diagrams for the Revised Language
PASCAL

16
16
17

15
19
22

27

An Axiomatic Definition of the Programming Language PASCAL

INTRODUCTION

The programming language PASCAL was designed as a general purpose
language efficiently implementable on many computers and sufficiently
flexible to be able to serve in many areas of application. Its
defining report [1] was given in the style of the ALGOL 60 report [2].
A formalism was used to define the syntax of the language rigorously.
But the meaning of programs was verbally described in terms of the
meaning of individual syntactic constructs. This approach has the
advantage that the report is easily comprehensible, since the
formalism is restricted to syntactic matters and is basically straight-
forward. Its disadvantage is that many semantic aspects of the
language remain sufficiently imprecisely defined to give rise to
misunderstanding. In particular, the following motivations must be
cited for issuing a more complete and rigorous definition of the

language:

1. PASCAL is being implemented at various places on different
computers [9, 10]. Since one of the principal aims in designing
PASCAL was to construct a basis for truly portable software, it
is mandatory to ensure full compatibility among implementations.
To this end, implementors must be able to rely on a rigorous
definition of the language. The definition must clearly state
the rules that are considered as binding; and on therother hand
give the implementor enough freedom to achieve efficiency by

leaving certain less important aspects undefined.

2. PASCAL is being used by many programmers to formulate algorithms
as programs. In order to be safe from possible misunderstandings
and misconceptions they need a comprehensive reference manual
acting as an ultimate arbiter among possible interpretaticons of

certain language features.

3. In order to prove properties of programs written in a language,
the programmer must be able to rely on an appropriate logical

foundation provided by the definition of that language.

4. The attempt to construct a set of abstract rules rigorously
defining the meaning of a language may reveal irregularities
of structure or machine dependent features. Thus the development

of a formal definition may assist in better language design.

Among the available methods of language definition the axiomatic
approach proposed and elaborated by Hoare [3-5] seems to be best
suited to satisfy the different aims mentioned. It is based on the
specification of certain axioms and rules of inference. The use of
notations and concepts from conventional mathematics and logic
should help in making this definition more easily accessible and
comprehensible. The authors therefore hope that the axiomatic

definition may simultaneously serve as

1. a "contract" between the language designer and implementors

(including hardware designers),
2. a reference manual for programmers,

3. an axiomatic basis for formal proofs of properties of programs,

and

4. an incentive for systematic and‘machine independent language

design and use.

This axiomatic definition covers exclusively the semantic aspects
of the language, and it assumes that the reader is familiar with
the syntactic structure of PASCAL as defined in [1]. We also con-
sider such topics as rules about the scope of validity of names

and priorities of operators as belonging to the realm of syntax.

The axiomatic method in language definition as introduced in [3]

operates on four levels of discourse:

1. PASCAL statements, usually denoted by S

B e — A LU= R X =1

2. Logical formulas describing properties of data, usually
denaoted by P, Q, R .

3. Assertions, usually denoted by H , of which there are two
kinds:
3a. Assertions obtained by quantifying on the free variables
in a logical formula. They are used to axiomatise the

mathematical structured which corresponds to the various

data types.

3b. Assertions of the form P {S} Q which express that, if
Q is true on termination of the execution of S , then P
was true before the execution of S . This kind of assertion

is used to define the meaning of assignment and procedure

statements.

4. Rules of inference of the form

1
then H is also a true assertion, or of the form

which state that whenever H, ... Hn are true assertions,

H1, Cees Hn k Hn+1

H

which states that if Hn+1 can be proden from H1 v Hn ,
then H 1is a true assertion. Such rules of inference are
used to axiomatise the meaning of declarations and of
structured statements, where H1 ces Hn are assertions on
the components of the structured statements.

In addition, the notation

X

)
Y

is used for the formula which is obtained by systematically

substituting y for all free occurences of x in P

-4 -

The axioms and rules of inference given in this article explicitly
forbid the presence of certain "side-effects" in the evaluation of
functions and execution of statements. Thus programs which invoke
such side-effects are, from a formal point of view, undefined. The
absence of such side-effects can in principle be checked by a
textual (compile-time) scan of the program. However, it is not

obligatory for a PASCAL implementation to make such checks.

The whole language PASCAL is treated in this article with the
exception of real (floating-point) arithmetic and go to statements
(jumps). With regard to arithmetic, the interested reader is

referred to refernces [7] and [8].

The task of rigorously defining the language in terms of machine
independent axioms, as well as experience gained in use and
implementation of PASCAL have suggested a number of changes with
respect to the original description. These changes are informally
described in the subseguent section of this article, and must be
taken into account whenever refererring to [1]. For easy reference,
the revised syntax is summarised in the form of diagrams in the

Appendix.

CHANGES AND EXTENSIONS OF PASCAL

The changes which were made to the language PASCAL since it was
defined in 1969 and implemented and reported in 1970 can be

divided into semantic and syntactic amendments. To the first group
belong the changes which affect the meaning of certain language
constructs and can thus be considered as essential changes. The
second group was primarily motivated by the desire to simplify

text analysis or to coordinate notational canventions which thereby

become easier to learn and apply.

File types

The notion of the mode of a file is eliminated. The applicability

of the procedures put and get is instead reformulated by antecedent
conditions in the respective rules of inference. The procedure reset
repositions a file to its beginning for the purpose of reading only.
A new standard procedure rewrite is introduced to effectively
discard the current value of a file variable and to allow the

subsequent generation of a new file.

Packed structured types

In order to allow implementations to offer more than one type of
internal representation of structured data the facility of packed

data structures is introduced. A packed array, file, record, or

set structure is specified by prefixing the symbol array, file,
record, or set with the symbol packed. It is generally assumed

that a packed structure occupies less storage space than its

unpacked equivalent, but that on the other hand access to components
of the data structure may expand the code and be more time consuming.
Of course, the gain in storage economy and loss in efficiency is
implementation dependent; in fact, an implementation may entirely
ignore the symbol packed. Since the meaning of a program is defined
to be i%dependent of the presence or absence of the symbol packed

-6 -

in type definitions.

The type alfa is removed from the language. It may now be defined

by the programmer as

type alfa = packed array [1..alfaleng] of char

where alfaleng is a predefined constant with implementation
dependent value (i.e. the number of characters fitting into a single
"word"). In addition, constants with packed array structure and
components of type char are introduced in the form of seguences of
characters delimited by quote marks. These constants are called

strings. If ¢c C, ... C_ are characters, then

17 72
is a constant of type

packed array [1..n] of char

The standard procedures pack and unpack are generalised such that
they are applicable to all packed arrays.

Parameters of procedures

Constant parameters are replaced by so-called value parameters in

the sense of ALGOL 60. A formal value parameter represents a

variable local to the procedure to which the value of the correspond-
ing actual parameter is initially assigned upon activation of the
procedure. Assignments to value parameters from within the procedure
are permitted, but do not affect the corresponding actual parameter.

The symbol const will not be used in a formal parameter list.

Class and pointer tvypes

The class is eliminated as a data structure, and pointer types are
bound to a data type instead of a class variable. For example, the

type definition and variable declaration

var c: class n of T

are replaced and expressed more concisely by the single pointer

type definition

tvpe P =17

This change allows the allocation of all dynamically generated

variables in a single pool.

The for statement

In the original report, the meaning of the for statement is defined
in terms of an equivalent conditional and repetitive statement. It

is felt that this algorithmic definition resulted in some undesirable
overspecification which unnecessarily constrains the implementor.

In contrast, the axiomatic definition presented in this paper leaves
the value of the control variable undefined after termination of

the for statement. It also involves the restriction that the

repeated statement must not change the initiel value [6].

Changes of a syntactic nature

- Commas are used instead of colons to separate (multiple) labels

in case statements and variant record definitions.

- Semicolans are used instead of commas to separate constant

definitions.

- The symbol powerset is replaced by the symbols set of, and the

scale symbol 10 is replaced by the capital letter E .

- The standard procedure alloc is renamed new, and the standard

function int is renamed ord .

DATA TYPES

The axioms presented in this and the following sections display
the relationship between a type declaration and the axioms which
specify the properties of values of the type and operations
defined over them. The treatment is not wholly formal, and the

reader must be aware that

1. free variables in axioms are assumed to be universally

gquantified,

2. the expression of the "induction" axiom is always left

informal,

3. the types of variables used have to be deduced either from

the chapter heading or from the more immediate context,

4. the name of a type is used as a transfer function constructing
a value of the type. Such a use of the type identifier is not

available in PASCAL.

5. Axioms for a defined type must be modelled after the definition
and be applied only in the scope (block) to which the

definition is local.

6. A type name (other than that of a pointer type) may not be

used directly or indirectly within its own definition.

Scalar tvypes

tyvpe T = (c1, Cp o vne Cn)

Cys Cp onn c, are distinct elements of T .
These are the aonly elements of T

. Cipq = succ(ci) for i =1 ... n-1

. '—1(\/<V)

1
2
3
1.4, pred(succ(u)) = u , succ(pred(v)) = v
5
6. (u<v) A (vw) D ukw

7

v = succ(u) v u = pred(v) Du < v

1.8. (udv) = (v<u)
1.9. (ufv) = 5(udv)
1.10 (u2v) = 4(udv)
1.1 (ugv) = 4(u=v)
We define minT = c, and max, = c_ (not available to
the PASCAL programmer).
The Boolean tvpe
type Boolean = (false,true)
Axioms (1.1) - (1.11) apply to the Boolean type with c, = false
and c, = true. The Boolean operators - , A, and vV are defined
by the following additional axioms.
2.1. ~true = false
2.2. ~4false = true
2.3. pA false = false A p = false
2.4. true A true = true
2.5. pV true = true v p = true
2.6. false vV false = false
The integer type
3.1. 0 is an integer.
3.2. If n is an integer, then succ(n) and pred(n) are
integers.
3.3. These are the only integers.

Axioms (1.4) - (1.11) apply to the integer type. The operators
+ - % div, mod, and the functions abs, sqr, and odd are

defined by the following additional axioms.

3.4. n+t0 = n
3.5. m+n = pred(m) + succ(n) = succ{(m) + pred(n)
3.6. n-0 = n
3.7. m-n = succ{(m) - succ(n) = pred(m) - pred(n)

- 10 -

8. n¥x0 = 0

9. m*n = (m¥xsucc{n)) - m = (mxpred(n)) + m
100 (m20)A (n>0) 2 m-n < (m div n)*n <'m
1. mmod n = m=((m div n)*n)

n>0 D abs(n) =n

.13. n<0 D abs(n) = -n

.14. sgr(n) = n*n

.15. odd(n) = ((n mod 2) = 1)
)

)

W W W W ww W w w
—
nN

.16. 1 means succ

0
2 means succ(1

9 means succ(8)

3.17. 4if d d, ... dn are digits, then dn ... d,d means

0’ 1

10"d +...+10'd, +10%d
n 1 0

These axioms describe the conventional infinite range of integers.
Implementations are permitted to refuse to complete the execution
of pragrams which attempt to refer to integers larger than max,

int

or smaller than minint . The result of division is deliberately

left undefined for negative arguments.

The char type

4.1. The elements of the type char are the letters
ABCDEFGHIJKLMNOPQRSTUVWXYZ
the digits
01234567829

and possibly other characters defined by particular
implementations. In pragrams, a constant of type char is

denoted by enclosing the character in quote marks.

4.2. tpr < B '"1' = succ('0D!')
B! < 'O 12" = succ('1")
tyr < vz '9' = succ('8')

The sets of letters and digits are ordered
Axioms (1.4) - (1.11) apply to the char type. The functions ord
and chr are defined by the following additional axioms:

4.3. if u is an element of char, then ord(u) is a non-negative

integer (called the ordinal number of u), and
chr({ord(u)) = u
4.4, u < v = ord(u) < ord(v)

These axioms have been designed to facilitate intexrchange of
programs between implementations using different character sets.
It should be noted that the function ord does not necessarily

map the characters onto consecutive integers.

Subrange types

type T=m .. n

lLet a,b,m,n, be elements of TD such that
m<aslb<n

and let x,y be elements of T . Then we define
minp =m and maxp = n

5.1. T(a) 4is an element of T .

5.2. These are the only elements of T .

5.3. T-1(T(a))

5.4. If ® is a monadic operator defined on TO , then

11

a

8x means T~ 1(x)

5.5. If @ 4is a dyadic operator defined on TD X TD , then

xay means T (x) & T '(y)
x@a means T (x) @ a

aex means a @'T—1(x)

Array tvpes
tvpe T = arrav[I] of T,
Let m = minI and n = max;
6.1. If x, 4is an element of TD for all i such that
i

m<£i<n, then 'T(xm...xn) is an element of T

6.2. These are the only elements of T
6.3. m£in D T(xm...xn)[1] = x;

6.4. : array [I1'12"fIkJ of T, means
array [11] of array [12...Ik] of TD

6.5. x[i1,i2...ikj means x[i1][12...1k]

We introduce the following abbrevation for later use:
(x,izy) stands for
T(x[m] ... x[pred(i)],y,x[succ(i)]...x[n])

If in an array type definition the symbol array is preceded by
the symbol packed, this is to be interpreted as a comment to the
implementation with no further consequences to the meaning of the

program.

If the components of a packed array are of type char, i.e.

tvpe T = packed array [I] of char

then the following additional axioms hold:
6.6. Let x = T(XT’XZ"'xn) and vy = T(y1,y2...yn) , then
x <y = (xk < yk) A (xi = yi) for 1 =1...k-1 for some k

Note that axioms (1.8) to (1.10) also hold for this case.

...C_ " 1is
P n
'C')

1 1
10 cé,... n

6.7. If Cy» Cos wnn c are character% then 'c1c

called a string of length n and means T('c
where tvype T = packed array [1..n] of char.

- 13 -

Record tvpes

type T = record Sy T1; ves3 5 T end

m m
Let Xy be an element of Ti for i = 1...m
7.1. T(x1, Xo e xm) is an element of T .
T.2. These are the aonly elements of T
7.3. T(x1...x)os. = x. for i =1...m
m i i
type T = record st T1, 38, 4t Tm_1;
case s ¢+ T of
m m
. | t
k1~(81 T,I):
. 1 1
kg (s ot T 2),

end

Let kj be an element of Tm and let x3 be an element of T!

for j =1...n . Then axiom 7.1 is rewritten as

7.1a T(x k x') is an element of T

RS S jr %S .
Axioms 7.2 and 7.3 apply to this record type unchanged, and in

addition the following axiom is given:

1 1 — 1 3
T.4. T(x1 cee X 4 kj, Xj)'sj = xj for j

We introduce the following abbrevation for later use:

I
3

(x, s, ¢ y) stands for
T(x.s1 cee XeBL 4s Ya XeSi.een x.sm)
and (x, sj: v) stands for
T(x.s1 el Xe8 , y)

m

The case with a field list containing several fields

kj:(sj1: Tj1; ee Sipt Tjh)
is to be interpreted as
k.: (s!: T!)
J J J
where sj is a fresh identifer, and T& is a type defined as

- 14 -

t ' = (: IS : .
ype Tj record s, Tj1’ 3 S 5h TJh end

i1
and where X'Sjt is interpreted as ><.sJ'..sJ.JC
Set tvpes
tvpe T = get of Tu
Let X 0 Y be elements of TO

8.1. [] isa T.
8.2. If x is an element of T , then x v [xo] is a T

8.3. These are the only elements of T

[] denotes the empty set and [xo] the singleton set containing
Xy o The following axioms define the operations of set membership,

union, intersection, and difference.

8.4. -1(XD _1_|1 [])

B.5. x, in (xV[xo])

o o o o =
8.7. x=y =& [(xD in x) = (xD in y), for all Xg in T0] .
B.8. x, 4n (xvy) = (xD in x)v(xD in y)
B.9. x_ in (xay) = (xo in ><)/\(><D in y)

n
x
'_l
-]

8.10. x_ in (x-y) ; o in X)A —u(xD in y)

B.11. [x1,x2...xn] means ([Jwv [x1])v [xz])v...VExn]

Note that PASCAL restricts set types to be built only on scalar
base types TD with a maximum number of elements defined by each

particular implementation.

- 15 -

File types

type T = file of T

Let X be an element of To

9.1. <> idis an element of T

9.2. If x 4is an element of T , then x & <xD> is an
element of T
These are the only elements of T .
(x8y)8&z = x&(y&z)

9.5. x&<xD> £ <D

< > denotes the empty file (sequence), and <xD> the singleton
sequence containing Xg The operator & denotes concatenation
such that x&y = <x1...xm,y1,..yn> , 1f x = <x1...xm> and

y = <y1...yn> . Neither the explicit denotation of sequences nor

the concatenation operator are available in PASCAL.
9.6. first(<x >&x) = x , rest(<x D&x) = x
o 0 0

The functions first and rest are not explicitly available in PASCAL.
They will later be used to define the effect of file handling

procedures.

Pointer tvpes

tvpe T = TTD

A pointer type consists of an arbitrary, unbounded set of values

nil; 915 30 P3
over which no operation except test of equality is defined.
Associated with a pointer type T are a variable § of type
integer (and initial value 0) and a variable <« with components
Fh ,'ga, +++ which are all of type TD . These components are
the variables to which elements of T (other than nil) are ‘pointing"
€ is used in connection with the "generation" of new elements of T

(see 3.7). f and T are not available to the PASCAL programmer.

- 16 -

DECLARATIONS

The purpose of a declaration is to introduce a named object
(constant, type, variable, function, or procedure) and to prescribe
its properties. These properties may then be assumed in any proof

relating to the scope of the declaration.

Constant—~, type—, and variable declarations

If D is a sequence of declarations and S is a compound

statement, then

D;S

is called a block, and the following is its rule of inference

(expressed in the usual notation for subsidiary deductions):

1.1, HE P{s}Q

P{D;S}Q

H is the set of assertions describing the properties established
by the declarations in D . P and Q@ may not contain any
identifiers declared in D ; if they do, the rule can be applied
only after a systematic substitution of fresh identifiers local
to the block. In the case of constant declarations the assertions
in H are nothing but the list of equations themselves. In the
case of type definitions they are the axioms derived Ffrom the
declaration in the manner described above. In the case of a

variable declaration x:T it is the fact that x is an element of
T .

- 17 -

Consider the file variable declaration

where

type T = file of T_

This declaration of x assigns the initial value < > +to x ,

and in addition introduces variables X Xge and xt such that

1.2, xt is an element of To’ X and X are elements

L R
of T , and x = X & Xp
x| and xR are not accessible in PASCAL, but serve to denaote the
parts of the sequential file to the left and right of the read/write
head. However, the variable xt is explicitly available and is

called the buffer variable of x . Assignments to x? are permitted

only if Xg = < > . This condition is denoted in PASCAL by the

Boolean function eof

11.3. eof(x) = x, = <>

R

In addition, the following axiom holds:

11.4. Xg A <> D xt = First{x.)

R
11.5. The .standard objects text, input, and output are defined

as follows:

tvpe text = file pf char

var input, output: text

Functiomr and procedure declarations

function f(L):T; S

lLlet x be the list of parameters declared in L , and let y be
the set of global variables occuring within .S (implicit parameters).

Given the assertion P{S}Q , we may deduce the following implication:

12.1. P D Q: for all values of Xx, ¥

(.ZS.»M.)

Note that the explicit parameter list x has been extended by

the implicit parameters y , that x may not contain any variable

- 418 -

parameters (specified by yar), and that no assignments to nonlocal
variables may occur within § . It is this property (12.1) that
may be assumed in proving assertions about expressions containing
calls of the function f , including those occuring within S
itself and in other declarations in the same block. In addition,
assertions generated by the parameter specifications in L may

be used in proving assertions about S

proceduxe p(L); S

Let x be the list of explicit parameters delcared in L ; let y
be the set of global variables occuring in S (implicit parameters),

let x X be the paremeters det¢lared in L as variable

poe
parameters, and let Yq osee Yy be those global variables which are
changed within S . Given the assertion p{stq , we may deduce the
existence of functions fi and gj satisfying the following

implication:

12.2.

P - Yo ¥y, '?1 e Ya
ﬂ(in) o falx)%)) 'V'ﬁn{Z;%)

for all values of the variables involved in this statement.

It is this property that may be assumed in proving assertions
about calls of this procedure, including those occuring within S

itself and in other declarations in the same block.

The functions Fi and gj may be regarded as those which map
the initial values of x and y on entry to the procedure onto
the final values of Xyoeee X0 and Yy eee ¥y, oOn completion of

the execution of S

- 19 -

STATEMENTS

Statements are classified into simple statements and structured
statements. The meaning of simple statements is defined by axioms,
and the meaning of structured statements is defined in terms of

rules of inference permitting deduction of the properties of the
structured statement from properties of its constituents. However,
the rules of inference are formulated in such a way that the

reverse process of deriving necessary properties of the constituents
from postulated properties of the composite statement is facilitated.
The reason for this orientation is that in deducing proofs of
properties of programs it is most convenient to proceed in a

"top-down" direction.

Simple statements

Assignment statements:

13.1. F‘; {x =y} P

In the case where the type T of x is a subrange of the type of
v o, P; is to be replaced by P?(y) , and if the type T of y 1is a
subrange of the type of x , then P; is to be replaced by

X .
3.1,
PT“'1(y) in 1 1

In the case where x is an indexed variable, we introduce the

convention that

Pa[l] means Pa .
y (a,izy)

and if x is a field designator, we introduce the convention that

pf:Ss means PT
v (r,s:y)

- 20 -

Procedure statements:

13.2.
x . ¥, A e
' o & { r(z)} P
Ly By, gy - gulx)
x is the 1list of actual parameters; Xg +ee X, aTE those elements

of x which correspond to formal parameters specified as variable
parameters, y is the set of all variables accessed nonlocally by
the procedure p , and Yy =e- ¥y, are those elements of y which

are subject to assignments by the procedure.

f1 e fm and gy --- g, are functions yielding the values

assigned by the execution of p to the variables Xy e X and
Yy eee Voo which must all be distinct. (Otherwise the effect of

the procedure statement is undefined.) Rule 13.2 states that the

procedure statement p(x) is equivalent with the sequence of

assignments (executed "concurrently")

X, = f1(£:l)5 cee X = fm(i:i)?

)/1 = g1 (_)_(_,‘y_); e yn = gn(.&,i)

The following inference rules specify the properties of the

standard procedures put, get, zeset, and rewrite. The assertian

P in 13.3-13.6 must contain x, X s Xpo xt only if they occur

explicitly in the list of substituends.

13.3.

eof(x) A - «&Z«b { Put(’X) } ef(x) A P

The variables x , X\ s and *q must not occur free in P . The
procedure put(x) is only applicable, if eof(x) is true, i.e.
Xg = <> . It thus leaves eof(x) and X|o= % invariant, leaves

xt undefined, and corresponds to the assignment .

x 1= x & <x™

-~ 21 -

13.4.

xt

'XL.) by 'XR
- eof (‘Y) A P«L& <xty , fc‘rsl'(rcsk('xk))) rcst(yn) { ﬁeé (’X) } P

The operation get(x) 4is only applicable, if -gaf(x) , L.e.

Xg # < >, and then corresponds to the three assignments performed

"concurrently"
x 3= xL&<xT>; xt = first(rest(xR)); xg i= rest(xR)
13.5.
x_ 1 R {
P<>, Bist(), x reset () } P
The operation reset(x) corresponds to the three assignments
x o= < > xt = Ffirst(x); Xg 1= X
X " .
13.6. P< N { rawrlte(x)} P

The procedure statement rewrite(x) corresponds to the assignment
x 1= < >

The following rule specifies the effect of the standard procedure

new.

13.7. If t is a pointer variable of type T , then
new(t) means § i= succ(g); t := 3}
where § is the hidden variable associated with the pointer type T

The following rules define the meaning of the standard procedures

pack and unpack. Consider the type definitions

tvpe A = array [m..n] of T

and

packed array [u..v] of T

It

tvpe B

where n-m > v-u

- 22 -

13.8. If a 4is an element of A and b
then
pack(a,i,b) means
for j := u 3o v do b[j] := ali-
13.9. unpack(b,a,i) means
for j := u to v do alj-u+i] :=
where j denotes an auxiliary

in the program.

is an element of B ,

u+i]

b[J]

variable not occuring elsewhere

The following rules specify the meaning of the standard procedures

read and write. Let v be a variable and e

char, then the statement

13.10. read(v)
is equivalent with the statements
Vo=

inputt; get(input)

13.11. write(e)

is equivalent with the statements

outputt := ej put(output)
Structured statements
Compound statements:
P, {s.} P., fori=1...n
14.1. el
PD{ egin 51’52"'5n end}Pn

If statements:

0,{s,3R, 2,{5,}R, PaBDQ,, Pr-B>Q,

14.2.

an expression of type

P-{;i B then S1 else SZ}R

0{s}rR, PABDQ, PA-BDR

P{if B then S} R

- 23 -

Case statements:

Qi{Si}R, PA(x=k)DQ,, for i = 1..n

14.4.
P{ case x of k1:51;k252;...kn:5n end} R
Note: ka, kb...kn:S stands for ka:S; kb:S; v kn:S

While statements:

aaB {s} q

14.5.
Q {while B do S} QA-B

Repeat statements:

P {s} q, qra-BDP

14.6.
P{‘repeat S until B} QAB

Note that PASCAL allows a sequence of statements to occur between

the brackets repeat and until. Thus S stands here for a sequence

of statements.

For statements:
(ax<b)AP([a..x)) {5} P(la..x])

PCLD) {fQ£ x = a to b do 5} P([a..b])

14.7.

The notation [u..v] 4is used to denote the closed interval u...v,
i.e. the set {ilugigv} , and [u..v) 1is used to denote the open
interval u...v, i.e. the set {i|ugi<v} . Similarly (u..v] denotes
the set {i]u(igv} . Note that [u..u) = (u..u] = [] is the empty
set.

(a<x<b)A P((x..b]) {s} P([x..b])

14.8.
P([]) {foxr x := b downto a do 5} P([a..b])

- 24 -

With statements:

T.8,...T.5 . r.s,...r.s
Ps 1..'5 m{S} Qs !.. s "
1 m 1 m
14.9. -
P {with r do S} Q
&, ... s~ are the field identifiers of the record type of =r.

Note that r must not contain any variables subject to change by

S , and that

stands for

STANDARDS FOR IMPLEMENTATION AND PROGRAM INTERCHANGE

A primary motivation for the development of PASCAL was the need
for a powerful and flexible language that could be reasonably
efficiently implemented on most computers. Its features were to
be defined without reference to any particular machine in order
to facilitate the interchange of programs. The following set of
proposed restrictions is designed as a guideline for implementors
and for programmers who anticipate that their programs be used

on different computers. The purpose of these standards it to
increase the likelihood that different implementations will be

compatible, and that programs are transferable from one installation

to another.

1. Identifiers denoting distinct objects must differ over their
first 8 characters.

2. Labels consist of at most 4 digits.

3. Access to components of packed arrays by indexing is not

permitted. (Consequently, there is no need to implement the

- 25 -

complexities of division and taking the remainder involved in

extracting or selectively updating an element of a packed array.)

4. A component of a packed structure - in particular of a packed
record - may not appear as an actual variable parameter.
(Consequently, there is no need to pass addresses of partwords,

and to test at run time for the internal representation of the

actual variable.)

5. The implementor may set a limit to the size of a base type over
which a set can be defined. (Consequently, a bit pattern

representation may reasanably be used for all sets.)

6. No component of any structuredtype may be of file type. (This

avoids a significant complexity of implementation.)

7. The identifiers OR and NOT are reserved. (Consequently, they

may be used as word-symbols in implementations with character

sets not including v and = .)

8. The first character on each line (following eol) in the standard

file gutput is interpreted as a printer control character with

the following meanings:

blank : single spacing
or e double spacing
1t print on top of next page

Representations of PASCAL in terms of available character sets

should obey rules 9-12:

9. Word symbols - such as begin, egnd etc. - are written as a
sequence of letters (without surrounding escape characters).

They may not be used as identifiers.

10.Blanks, ends of lines, and comments are considered as separators.
An arbitrary number of separators may occur between any two
consecutive PASCAL symbols with the following exception: no

separators must occur within identifiers, numbers, and word symbols.

M.

12.

- 26 -

At least one separator must occur between consecutive

identifiers, numbers, and word symbols.

Implementations based on the (restricted) ASCII or EBCDIC

character sets should obey the following transliteration rules

concerning the PASCAL symbols not included in the respective

character sets:

PASCAL symbol

ASCII characters

EBCDIC characters

v A - OR &
i < 2 # {=
{ } T /* %/
[] []

NOT l

These rules are designed such that a simple program may

perform a transliteration without consideration of context.

The following are standard identifiers defined in every

implementation of PASCAL:

Constants:

false, true (2.1-6)
eocl
alfaleng

Types:
Boolean (2.1-
integer (3.1-18)
char (4.1-4)
real ’
text (11.5)

Variables:

input

cutput (11.5)

Functions of real arithmetic:

sqrt, exp, 1n,
sin, cos, arctan,
trunc

Functions:

abs
sqr
odd
succ
pred
ord
chr
eof

Procedures:

put

get
reset
rewrite
new
pack
unpack
read
write

.13-14)
.15)
.16)

1.3-4)

W Www

(4.3)

e~~~ o~~~ e~
—
w
.« .
- g m-JOu W
DO e

- 27 -

Acknowledgements

The authors are indebted to Erwin Engeler for his valuable

suggestions and comments.

References

1.

2.

3.

10.

N. Wirth, "The Programming Language PASCAL",
Acta Informatica 1, 35-63 (1971)

P. Naur, Ed., "Revised Report on the Algorithmic Language ALGOL 60",
Comm. ACM 6, 1-17 (1963), Comp. J. 5, 349-367 (1962/63), and
Num. Math. 4, 420-453 (1963)

C.A.R. Hoare, "An Axiomatic Basis for Computer Programming",
Comm. ACM 12, 576-581 (Dct. 1969)

"An axiomatic definition of the programming language
PASCAL", Second Draft, Proc. Symposium on Theoretical

Programming, Novosibirsk, Aug. 1972

"Notes on Data Structuring" in Structured Programming by

Dahl, Dijkstra, and Hoare, Acad. Press 1972

- —— "A Note on the For Statement", BIT 12, 334-341 (1972)

A. van Wijngaarden, "A Numerical Analysis as an Independent
Science", BIT 6, 66-81 (1966)

H. Rutishauser; Unpublished lecture notes, ETH Zirich

N. Wirth, "The Design of a PASCAL Compiler",
Software, Practice and Experience 1, 309-333 (1971)

J. Welsh and C. Quinn, "A PASCAL Compiler for the ICL 1900
Series Computers", Software, Practice and Experience 2,
T73-77 (1972).

O OOy
Y

@ Ta1muapt adky @LEWESET Mmd&o

| rormuepy|

()

N
()
U/

ISTI P2

lzlmUAIA_ ISII Loy _T@moom@.nll

m&bwaﬁﬂm @ \M_mmj.l’
J - J

__ adfy __l @ (@114)

- ©- O O

qEIOVd
a————————aeynuept ad4} T@\

[ad£y ardwts _

| B —

———|1uesuod f‘

1URISUOD

__pwaa:mE adfy __

ad4;

adfy orduits

OG0
JaquInu vwnmﬂmﬁzlJ ﬂ@J

J9TJTIUIPT JUBISUOD

(1n

JUR}ISUOD

[I9IJTIUSPT }UEISUOD _“

juelsuod pauldisun

xa89jur pauStsun ﬁ_ ‘/__ c a ‘ ga8ajut paultsun

xaqunu paufrsun

_ (18 r}w

{ 9P)

Jo891ur paufisun

-]

I9TFTIUSPT

XION3IddY

TANAIDOYd =

@ NOLLDNAOJ J+

seyyyuept odky 4@ ‘Tmacnmi @

®

1S1T J9reweaed

uorssaadxe arduris

uotssaadxa

S I T O)

uotssoadxa oarduirs

553

J0}0E}
55
f P 1

Q)
/

uoissaxdxe

—O

|A|||\A Tl»:owmmwanmnw °‘|.||

O~
_ J1010€] _ll®lc|||

™ E @ TP HonoTn

[orqurienl

ozmwp«;

[1Ue)SUOD paudisun |<

Em

UIS}

I3YTIUSPT PTaT] T@Al.l

JI9TITIUSPT P13}

oLl o

JITJTIUSPT 2[qRTICA

I0}0€]

sTqeLIRA

__hmmw jul paudisun __ _ O,H.OU/‘

o[qelIeA mmh.bs

weaxfoad

T&E&E ad4y T@l_ 1811 p&mﬁmum%_ I9TITUAPT _A.@oioz:@nr.v
LVEJHY J= l|_ 1S1[Jojoureed _l‘_nwanawuzmbamoom?

jugwalels

‘|_cowmmwh&nm T" TILNN

@ G| OO

N

@ E °R— wnmumcuﬁli uotrssaadxa _A.AMm&aUvAy

JaTjTIUaprt (avn)
X e S o Eere S T AT YO & G
(an= 'H T:mﬁwﬁﬁm“ { NIDmg)

—

Tmﬂ:cwnﬁ op:vmoo.NL

O L O -
‘ I9TIUAPT UoTIOUnY

UoISsaIaxd \"y 9qetaea *
_ I &n<~_ C __ Tqet “ —

o gadejur Um:m«mzmp

Jadajur paudisun

JudwWale]s

