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I. INTRODUCTION 

The use of high speed computers has opened new frontiers for the analysis and 

understanding of the complex processes in multi-dimensional transient fluid dynamics. 

Phenomena, heretofore intractable by analytical approaches or either difficult or im- 

possible to study by experimental means, can be investigated in detail by numerical 

approaches. One of the most common of the numerical approaches is to approximate 

the non-linear partial differential equations that govern the dynamics by finite dif- 

ference equations and solve them algebraically using the computer. 

A number of different techniques have been devised to solve these difference 

equations [see, for example Harlow (1970)]. The purpose of this paper is to briefly 

describe two of the more successful and widely used methods: (i) the Marker and Cell 

(MAC) Method for incompressible flows with free surfaces, and (2) the Implicit 

Continuous-fluid Eulerian (ICE) Method that applies to flows that range from super- 

sonic to the far subsonic regimes. In addition, some recent refinements and ex- 

tensions to the basic methods are reviewed. However, no attempt is made in this 

paper to present detailed descriptions of the methods or their extensions; this is 

left to the references cited in the text. 

Because of their general applicability, these two methods have been used to 

study numerous complex flow problems. For example, the MAC method, discussed in 

Sec. II, has been applied to such diverse problems as free surface flows under sluice 

gates and behind broken dams, the two-fluid non-linear Rayleigh-Taylor instability 

problem, the von Karman vortex street, and the run up of waves upon a beach. More 

recently the technique has been applied to problems in three space dimensions for 

investigations such as the transport of pollutants around structures, the dynamics 

of intense atmospheric vortices, and free-surface flows around submerged and exposed 

obstacles. 

In Sec. III, we discuss the ICE method. Because of its ability to calculate 

flows of arbitrary Mach number, it has been used to analyze the dynamics resulting 

from intense atmospheric explosions from the early time highly compressible flow 
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phase to the late time buoyant rise of the fireball. In addition, it is being used 

to study (1) the dynamics of continuous wave chemical lasers including the mixing 

and chemical reactions between species and the accompanying heat release, and (2) 

the flow patterns that result when a tritium ion beam impinges on a jet target of 

deuterium producing neutrons and releasing heat energy in the deuterium jet. 

II. THE MARKER AND CELL METHOD 

The MAC computing method [Harlow and Welch (1965)] and its simplified version 

referred to as SMAC [Harlow and Amsden (1970)] are well established schemes that 

calculate incompressible flows with or without free surfaces. The methods derive 

their names from the Lagrangian marker particles that move through the fixed mesh 

of cells and represent the flow of fluid. These techniques are quite general in 

their applicability to incompressible flow problems and have been widely used to 

analyze a variety of flow problems° 

Briefly~ the MAC technique solves the Navier-Stokes equations subject to the 

constraint that the divergence of the velocity field must vanish in any local region 

of the fluid. This is accomplished in MAC for each computational cell in the mesh. 

The pressure field is determined as a consequence of this condition by solving a 

Poisson-like equation. S~C is an improvement over the original MAC because of the 

ease of applying the fluid boundary conditions. Of particular concern in the MAC 

scheme is the method of handling the pressures in fictitious cells exterior to the 

computing region of interest. SMAC simplifies this handling by assuring a homo- 

geneous boundary condition for the pressure at rigid walls. 

in this section, a new iteration algorithm is described that offers further 

ease in applying the boundary conditions and eliminates the computation of pressures 

in fictitious cells altogether. Hirt and Cook (1972) used this algorithm in their 

application of the MAC method to problems in three space dimensions. In addition, 

an improved treatment of the free surface boundary condition is presented. 

A. Solution Procedure 

The governing equations of fluid motion for incompressible flows in two- 

dimensional Cartesian coordinates are 

~_~u + ~v 
ax ~Ty = 0 (i) 

a u + au 2 ~uv a!~ + xx xy (2) 
~t ~x + ~y ~x ~ + ~y 

~v ~uv ~v 2 ~ + xy yy_ (3) 
~-~+ ~x + Dy 9y -~--x + 8y 



in which u and v are the velocity components in the x and y directions, respectively~ 

and ~ is the pressure divided by the constant density. The stress tensor terms are 

given by 

o = 2v 3---Eu 
XX Ox 

Oxy v + (4) 

= 2v 3-Zv 
yy 3Y 

where v is the kinematic viscosity. Equations (i) - (3) are written in conservative 

form for approximation by finite differences. 

The grid layout, shown in Fig. i, indicates the location of the various quanti- 

ties within a computational cell. It is noted that the velocities are centered on 

the cell boundaries with the pressure a cell centered quantity. The diagonal com- 

ponents of the stress tensor are likewise cell centered values while the off- 

diagonal elements are computed at cell vertices. The i,j indices in this figure 

denote spatial position in the computing mesh. 
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As a first step in the solution procedure, intermediate values of velocity, 

denoted by tildes~ are computed for each cell. For the x-component of velocity, the 

tilde value on the righthand side of cell (i,j) is given by 

n ~ i 2 n 2 n n n 

= 1 i - ,j 

i n n 1 n -(Oxx) ~+i, j 1 
+ ~xx I@i+l,j- ~i,j I + ~x I(°xx )i,j 

+ ~yy (Oxy)~+½,j-½ - (Oxy)i+½,j_~ 

in which at is the time step and the time levels are indicated by the superscripts. 

Straightforward averages and centered differences may be used in each term. 

An analogous formula is derived for the ~i,j+½" It should be noted, however, 

that no intermediate values are computed for velocities located on inflow boundaries, 

rigid boundaries, or velocities exterior to the computing region of interest. Thus, 

a normal velocity component on a rigid wall remains zero, and the velocity at an 

inflow boundary is unchanged from its prescribed value. 

After computing the appropriate tilde components of velocity, the finite dif- 

ference analogy to Eqn. (I) is not satisfied in general for every cell in the mesh. 

This necessitates computing modifications to the pressures and velocities using an 

iteration algorithm. 

The desire is to find a velocity field consistent with the boundary conditions 

such that 

n+l 
D. • = 0 (6) 
l,j 

where 

l t ~ (7) 
Di, j = ~--~ ~ui+½, j - ui_~, j) + (vi,j~ ~ - vi,j_ ½) , 

and the superscript in Eqn. (6) refers to the new time level n+l for the velocity 

values~ In practice, an iteration procedure is used, which changes the cell 

pressures and velocities until Eqn. (6) is satisfied within acceptable limits. 

To initiate the iteration, the tilde velocities for cell (i,j) are inserted 

into Eqn. (7). If D. > 0 as a result, there has been a mass loss in the cell; 
l,j 

if D. . < 0, a mass gain. To correct the values, the pressure is changed by an 
I,] 

amount ~i,j obtained from the expansion 

D n+l - D. I~D~ 
i,j l,j = i~Ji,j 6*i'j 



and the requirement of Eqn. (6). Thus, we have 

L0m. . 
~,J 

where e is an over-relaxation factor that has the range 1 < m < 2. 

in Eqn. (8) is constant for every cell and is given by 

(8) 

The denominator 

Once 6~i,j is determined, the quantities are updated: 

h+l~ h~ 
i,j = i,j + 6~i,j 

(9) 

h+l h 6t 

h+l h ~t (10) 
ui_½, j = ui_½, j - 6-~ 6~i, j 

h+l h 6t 
vi,j~ ~ = vi,jd/ +~y ~i, j 

h+l h 6__~t 
vi,j-½ = vi,j-½ - 6y 6~i,j 

Here, the superscripts denote the iteration level° This is done for each cell in 

the mesh. These updated velocities are inserted into Eqn. (7) and the process is 

repeated until 

I n+l 
Di, j < e (ii) 

for all cells. Here ~ is the criterion for iteration convergence. It is noted, 

however, in this process the iteration error is not cumulative from time step to 

time step because the residual error from the previous time level is used as a source 

in the new time level. 

During the iteration, just as with the tilde values, no modifications are made 

to velocities exterior to the computing region or to those values that are located 

on inflow or rigid boundaries. Hence, this algorithm does not require knowledge of 

the pressures in fictitious cells outside the computing region. 



B- Boundary Conditions 

Fictitious computing ceils are convenient in applying velocity boundary con- 

ditions for use in the convection and viscous stress terms in the momentum equations. 

At planes of symmetry and rigid walls, the tangential velocity is either continuous 

with a vanishing gradient in the case of a free-slip boundary or reflective with a 

zero value at the boundary for the no-slip condition. 

A further complication for the calculations is the case of rigid walls that 

cross the cells diagonally. In Fig. 2 are summarized the four sets of conditions 

that are required, depending on the spatial location within a cell of the terms in 

the difference expression and the type of boundary being studied. The velocity com- 

ponents within the rigid wall are specified as indicated in the figure. This treat- 

ment has proven successful in recent studies of waves running upon sloping beaches 

[Amsden (1973)]o A further discussion of velocity conditions for boundaries that 

cross cell boundaries arbitrarily is found in a recent paper by Viecelli (1971). 

A special algorithm has proven quite successful for the boundary condition at 

continuative outflow boundaries. The tangential component of velocity is assumed 

continuous with no special treatment required for it. For the normal component 

located on the outflow boundary, a change is made prior to the iteration phase of 

the calculation. The normal velocity gradient is made to vanish using the tilde 

value of the normal component velocity one cell upstream of the boundary. Thus, no 

tilde velocity calculation is needed on the boundary. The iteration procedure then 

proceeds in the usual manner and modifies all the velocity components in the cell 

adjacent to the outflow boundary, assuring that the continuity equation is satisfied. 

Nichols and Hirt (1971) recently reported on refinements in the treatment of the 

MAC free surface boundary conditions. In this approach, the use of special marker 

particles, which follow the free surface~ more accurately defines the surface po- 

sition than had previously been done. These particles are used in addition or in 

place of the usual Lagrangian marker particles from which the method derives its 

name. The schematic diagram in Fig. 3 shows the surface markers within the computing 

region; the shaded region below the surface represents the fluid. Fictitious cells 

are used in this algorithm and the subscripts~ S and F, refer to surface and full 

cells~ respectively. The use of the markers permits the application of the normal 

and tangential stress conditions at the actual fluid surface. The pressure in the 

surface cell is specified as a linear interpolation between the full cell pressure 

and the pressure that obtains at the free surface as a result of the surface stresses. 

The distance d in the figure is used in the interpolation procedure and measures the 

length from the free surface to the center of the full cell. 



PARTIAL CELL VELOCrFY CONFIGURATIONS 
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Figure 4 illustrates the effectiveness of this procedure by showing the fluid 

configuration with and without the surface markers for the problem of a fluid slosh- 

ing in a rectangular tank. A cosine-wave pressure pulse at initial time sets the 

fluid into oscillation. After repeated oscillations the upper frame shows ripples 

appearing on the free surface; these are not present in the lower frame which uses 

the surface markers. The ripples result from cell to cell variations in the pressure 

that cause fictitious accelerations to particles near the surface. 
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III. THE IMPLICIT CONTINUOUS-FLUID EULERIAN METHOD 

The ICE method [Harlow and Amsden (1971)] has been developed to numerically 

solve multi-dimensional, transient fluid flows of arbitrary Mach number. The im- 

plicit formulation of the solution procedure broadens its applicability to flows 

ranging from supersonic or compressible to far subsonic or incompressible flows. In 

the incompressible limit, the technique reduces to the MAC method described pre- 

viously. 

The ICE solution procedure implicitly solves the mass and momentum equations 

and uses an explicit calculation for the energy equation. Harlow and Amsden (1971) 

determined the pressure field for the momentum equations by the solution of a Poisson 

equation. Here, however, we present a different method, which is a generalization of 

the iteration procedure described in the previous section. The advantage of such 

an approach is the ease of incorporating boundary conditions into the calculations, 

just as in the case of MAC. 

Included in this discussion of the ICE method are two other recent developments. 

Space does not permit detailed discussion of these and only brief outlines of the 

developments are presented here. The first is the extension by Butler, et ai.,(1973) 

to permit the application of ICE to multi-component, chemically reacting flows with 

mixing. The second is a recent investigation by Rivard, et al., (1973) to apply a 

truncation error canceling scheme to the difference equations used by Butler, et al. 

This latter technique improves the stability and accuracy of the computing method by 

locally sensing the diffusional truncation errors inherent in the difference approxi- 

mation and minimizing their effect on the calculations. Numerical examples showing 

the effectiveness of this technique are presented. 

A. Equations of Motion 

The mass and momentum equations for transient flows in two space dimensions for 

rectangular coordinates are 

~_~p + ~pu 3Ov 
~t ~ + 7~y = 0 (12) 

3o 3o 3pu + 30u 2 3puv = 3pp + xx xy 
3t ~ + 3y - 3x ~ + ~y (13) 

3o 3o 
Spy ~puv 3pv2 ~P + ~--~Y-+ >7 (14) 
~t +--~-x + 3y = - 3y ~x 3y ' 

where p is the mass density, p is the pressure and the stress tensor components are 

given by 
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Oxx = 2P ~x + I * 

o 

°xy ~ + 

o = 2D Sv /$u Dv) 
yy ~y + l~-~X + ~-y 

In these latter expressions ~ and X are the first and second coefficients of vis- 

cosity, respectively. 

Equations (12) - (14) are coupled to an equation for the internal energy, pl: 

(is) 

apI 3plu 3plv 3u 3v (3u 3v) 
3t + ~ + --~y = (OXX - p) ~X + (Oyy - P) ~Y + Oxy ~Y + ~X 

3 (k~ x31) + j~ 3 Ikall + qc + qD , \  ay/ (16) 
+~x 

where k is the heat conduction coefficient, and qc and qD are source terms to the in- 

ternal energy representing chemical reactions and enthalpy diffusion resulting from 

multicomponent species diffusion, respectively. 

These are solved together with an equation of state, in which pressure is ex- 

pressed as a function of p and I. For a polytropic gas, 

p = (y-l) pl (17) 

where y is the ratio of specific heats. 

To enable the calculation of multi-component species in the flow field, trans- 

port equations for the species are written which include convection, diffusion, and 

creation or decay by chemical reactions: 

3p~ + + Prla 3x + ~y Pna ~y + (~)c (18) 3t -~--x ~y ~x 

In this equation, the subscript ~ refers to the species, ~e is an effective binary 

diffusion coefficient for species ~ into the multicomponent mixture, and (0~)c re- 

presents the source term from chemical reactions. The exact expression for this is 

discussed by Butler, et al., (1973). This equation is solved subject to the con- 

straints that 

N 

~=i 
= o 

(19) 
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and 

~x Pq~ ~x + ~y Pn ~y = 0 , (20) 
~=i 

where N is the total number of species. 

B. Solution Procedure 

The finite difference approximations to these equations are similar to those in 

the previous section. The momentum components pu and pv are located on cell bounda- 

ries~ just as in the MAC case for u and v. Cell centered quantities are p, p, and 

I, together with the variable coefficients B, X, and k. 

are located at the positions indicated in Fig. i. 

For the total mass density equation, we write 

n+l I " ~n+l 1 Pi,j P~,j + O ~t ~r- .n+l 
= |[Pu) i ~ - tPu)i ~ L -2,3 +=,J 

+ ~ [~ ,n+l , ,n+l ]I ~PV) i ~- [pv)1 ~" ,~ ,j ~] 

is determined from quantities at time level n: in which ~i,j 

n 

Pi,j Pi,j 

The stress tensor components 

(pu) i ~ . - (pu)~ + ~t (1-0) ~x -~,] ~,j 

I n _ 

I (n n ) (n n )]} 
+ l Ti,J~ Pi,j+l- Pi,j -Ti,j-½ Pi,j- Pi,j-i 6y2 

(21) 

(22) 

In these equations, 0 is a parameter used to vary the relative time centering of the 

convection terms. It ranges in value from zero for a purely explicit calculation to 

unity for a completely time advanced treatment of the convection terms. The value, 

G=.5, is usually chosen for most compressible flow calculations because this choice 

eliminates first order time errors that arise in the difference approximation. 

The diffusion terms in Eqn. (22) are added to assure stability of the numerical 

calculations and yet minimize the effects of the lowest order truncation errors in- 

herent in the finite difference equations. These errors may result in either ex- 

cessive numerical diffusion or insufficient diffusion to stabilize the calculations. 

The form of the necessary diffusion terms was suggested by Hirt (1968) after ex- 

amining the stability properties of the non-linear equations. 
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With 0=.5, the expressions for these diffusion coefficients are 

ri+½, j = (i + ~) ~ Au if Au ~ 0 

or (23) 

= (i - ~) ~ Au if Au < 0 9 

n n 
where Au = ui+3/2, j - ui_½, j. 

The value of { ranges 0 < 6 < i with many problems requiring { < .2. Analogous ex- 

pressions to those in Eqn. (23) are used for the other coefficients in Eqn. (22). 

This procedure of variable coefficients of diffusion has proven very successful 

in a wide variety of problems tested. It has obvious advantages over the scheme 

originally proposed for ICE because it automatically supplies the necessary diffusion 

for stability and applies it only in regions where needed. The value of { is usually 

held fixed and is greater than zero to allow sufficient smoothing to overcome trun- 

cation errors of higher order that were neglected in the error analysis. 

Similar expressions to Eqns. (22) and (23) have been derived for each of the 

ICE difference equations. The report by Rivard, et al., (1973) presents them in de- 

tail, and we shall not repeat them here. However, the ealculational examples at the 

end show their effect over using usual artificial viscosity stabilizing methods. 

The finite difference approximation to Eqn. (13) is 

• . n+l ~ t 
= - ÷ l;i,j- ;i÷l, l iPu)i+½,j ~,3 ~x 

where the tilde value is computed from quantities at time level n and the p values 

are found by iteration in satisfying the mass equation. The intermediate momentum 

11[ + (Oxx)i+l, j - (dxx)i, j + ~y (puv)i+~,j- ½ - (puv) i+1~,j~ 

+ (~) - (~xY) II (25) xy i+~, 3+~ i+½, j-½ 

neglecting the truncation error cancellation terms. The terms on the right hand side 

are computed using straightforward averages and centered differences of the quanti- 

ties at time level n. Difference equations similar to Eqns. (24) and (25) are found 

~ n+l 
for kPv)i "q4 in solving Eqn. (14). 

component is written 

n I 1 [ n ~  P i,j Pi+l,jn (@u2)i,j (p~)iqj~, j = (@u) i+~,j + 6t - + - (Ou2)i+l,j 
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New values of total mass density and momenta for the time step are found in the 

same way as described in Eqns. (6) - (ii). In this case, however, we define 

and 

Di,j = Pi,j - Pi,j + @ St ~X (Pu)i+½,j - (Ou) i-½,j 

(26) 

~0D. . 

~i, ~ j = - 1,3 
(~pD__)i, j (27) 

The denominator is evaluated as 

+ 

which(e2)i,j is the square of the sound speed determined from the equation of in 

state using the definition 

~ = e  ~p 

Once d P i , j  i s  de te rmined  the  q u a n t i t i e s  a re  updated as i n  Eqn. (10) :  

h+l -- h_ 
Pi,j = Pi,j + 6Pi,j 

h+i h ~PA,j 
Pi,j Pi,j + 2 

(e)i,j 

h+l(pu)i+½, j = h(pu)i~, j 

h+i(Ou)i_½,j = h(pu)i_½, j 

h+i(ov)i,j+½ = h(pv)i,j+ ½ 

h+l(pv) i,j_½ = h(pv) i,j_ ½ 

~t 
+ ~x g-Pi,j 

6t -- 
- ~-~ ~Pi,j 

6t -- 
+ ~y ~Pi,j 

~t -- 
- ~--y ~Pi,j (28) 
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The superscripts denote the iteration levels. These updated quantities are substi- 

tuted into Eqn. (26) and the process is repeated in all computing cells until 

With the completion of the iteration procedure, new velocities are determined 

from the momenta and densities: 

. . n+l 
n+l = ~pu) i+;~ ~ $ 

ui-~,j . / n+l n+l ? 
~Pi,j + Pi+l,j] 

(29) 

. . n+l 
n+l LPV2 i~ j+½ 

Vi,j+½ = ~ /--~i n+l ? 
°~Pi , j  + ~i,j+iJ 

These updated values of velocity and pressure are used in the explicit calcu- 

lation for the internal energy: 

( ~,n+l n I 1 I /n+l n+l ~] 
pl) i,j = (Pl) i,j + 6t ~x (pTu)i-½,j - (plu)i+½,j + (~XX - P~i,j ~ui-~i,j - Ui-½,jJ~ 

i / n+l n+l \ ] + ~y (pIv) i,j.$1 ~ - (plv>i,j+½ + (Oyy - p-)i,j IVi,j+½ - vi,j_½)] 

+ (Oxy) i,j I~y / n+l n+l ~ 1 / n+l n+l \] ~ui,j+½ ui,j½J +~x ~vi+~j vi½j) i 

--i (in i n ) (in n )I + ~x 21 ki+½,j i+l,j i,j - ki-½,j i,j - li-l,j 

~y2 n,j+l - ki,j-½ ~',j - in,j - 

+ (qD) 1 (30) 
+(qc)i,j i,j 

in which the convection terms are formed by straightforward averages o£ the internal 

energy at time level n and the new velocities. 
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Explicit calculations are also made to determine the new species densities. 

The difference approximation to Eqn. (18) is given by 

pe ) = (p~) + 6t ~x (p u) - (p u) ] +~y (p v) 
i,j i,j i-½,j i~i,j] i,j-~ 

+ -!'-z l (pn ~ ) [(pc/p) - ( P c / P ) ]  
6x 2 i+~,j i+l,j i,j J 

-(prl ) [ ( p o . / p )  - (p~/p) 11 i-½,j i,j i-l,j 

~y2 i,j-~i i,j+l 1,3 J 

i,j-½ i,j i,j-l] 

- (PeV) i,j+½ ] 

(31) 

The convection terms again are formed using species densities at time level n and 

the new velocities. In order to ensure strict mass conservation, N-I species trans- 

port equations are solved with the N th species determined using Eqn. (19): 

N-I 
~n+l n+l . .n+l (p N'.. = Pi,j - E ~P~) " (32) 
1,3 ~=i i,j 

A special algorithm has been developed to impose the constraint of Eqn. (20). 

The essence of the algorithm is to simultaneously consider the diffusion terms for 

each species in Eqn. (31) and ensure that no net mass transport is accomplished 

during the time step by the diffusional process. This is achieved by monitoring 

the diffusional fluxes across each boundary of the computing cell and limiting the 

amount of diffusion such that Eqn. (20) is satisfied. 

C. Example Calculations 

An often used treatment to assure numerical stability of the calculations is to 

use fictitiously large values of the viscosity coefficients, B and I, to overcome 

the effects of truncation errors resulting from the difference approximations. 

Harlow and Amsden (1971) state the choices for p and I in such an approach are given 

by: 

(3U~x2 (33) ~ u 2 ~t + p 7x ax p, % > 3/2 p max max 
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where the subscripts refer to the maximum values for the velocity, density and 

velocity gradients in the computing mesh. This choice, while ensuring numerical 

stability, may produce large inaccuracies in the calculational results because of 

excessive numerical diffusion. This is especially true when the flow is directed 

primarily in one coordinate direction, such as in the case of flow down a uniform 

channel. 

Consider the flow configuration shown schematically in Fig. 5. A perfect gas, 

with specific heat ratio 7 = 1,4, enters on the left with a velocity profile sym- 

metric about the centerline of the channel. The horizontal velocity grades linearly 

from a magnitude u = 1.0 at the adiabatic~ free-slip channel walls to u = 0.2 at the 

centerline. The flow is everywhere supersonic with a uniform temperature across the 

channel, and the flow Mach number based on the velocity at the walls is M = i0.0. 

The right boundary of the computing region is a continuative outflow boundary. With 

this configuration for an inviscid fluid~ the exact solution of this idealized 

problem has no x-dependence at steady state with the inflow velocity profile repro- 

duced at any axial location downstream of the inflow boundary. 

~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

Adiabatic / ~ w Free-Slip walls ~ Outflow 

i ~ / / / / / / / / / / / / / / / / / / / / / / / / / / / ~ / / / /  

Figure 5 

The results of two different calculations of this problem are summarized in 

Fig. 6. 

6(a) - - - 

6(b) 

Figure 6 
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Both calculations started with identical initial conditions of a uniform velocity 

u = 1.0 in all cells except those at the left boundary. These are plots of the 

velocity vectors in each cell after the flow has achieved steady state. Fig. 6(a) 

shows the velocities computed using the criteria for ~ and % given in Eqn. (33), 

which are essentially the minimum values for stability. In this case, the centerline 

velocity is accelerated down the length of the channel and the wall velocities drop 

in magnitude until an almost uniform velocity profile is produced at the outflow 

boundary~ a consequence of the fictitious viscosity acting in the transverse 

direction. 

The calculation shown in Fig. 6(b) is that using the truncation error cancel- 

lation method of Rivard, et al., (1973) to achieve stability. Excellent agreement 

is noted in this case with the velocity field at each axial location corresponding 

to the inflow profile to within less than 0.2% error. 

As a more comprehensive example problem, we consider the flow in a continuous 

wave chemical laser. The flow configuration is that shown schematically in Fig. 7. 

Computing Region 

Figure 7 

A series of two-dimensional slit nozzles flowing a mixture of F, He, and DF are 

alternately interspersed with split nozzles admitting H 2 and He. Downstream of each 

pair of nozzles, the H 2 and F mix and react exothermically to produce vibrationally 

excited HF molecules, which serve as the lasing medium. The computing mesh extends 

from the nozzle exit plane downstream to a ¢ontinuative outflow boundary with sym- 

metry boundaries at the top and bottom. The vertical span for the mesh extends from 

the centerline of the hydrogen stream to the centerline of the fluorine stream. The 

Mach number of the flow exiting the lower nozzle is M = 3.5 and for the upper nozzle, 

M=3.7. 
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Figure 8(a) shows the steady state velocity vectors from the calculations 

using ~ and % obtained from Eqn. (33), and Fig. 8(b) shows the results using the 

truncation error cancellation method. 

8(a) 

. . . . . . . . . . . . . . . . . . . . . . .  

8(b) 

~ _ . _ i _ . ~ ~ -  ,. 
_. . - . . . . - - . ,_ . . - - - . . . . , . . - -  

Figure 8 

In (a), the inflow velocity profiles are rapidly smoothed downstream because of the 

excessive kinetic energy dissipation brought about by the artificially high values 

of viscosity necessary for stability. Such is not the case in (b). In addition, 

the reeirculation region in the upper left corner of the mesh is much more pro- 

nounced in (b) and a shock caused by the collision of the H 2 stream with the upper 

symmetry boundary is seen in (b) but is not present in (a) because of the large 

kinetic energy dissipation. 
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