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Increase of Accuracy of Projective-Difference

Schemes

1. Abstract.

In this paper with simple examples there is examined one of
the improvement methods of approximate solution, which is derived
with integral equalities for elliptic differential problems. The
improvement method is to use some approximate systems having low
order of accuracy and depending on the mesh size as the parameter.

4 linear combination of solutions of these problems is made, which
has a given order of accuracy limited by only a degree of smooth-
ness and the data of the differential problem.

An idea of this method is due to L.F.Richardson, but E.A.Vol-
kov and some other mathematicians obtained a constructive proof for
some problems in the 1850's.

We research the realigation of this method for an ordinary 4if-
ferential equation (in debteil, as as illustration), an elliptic dif-
ferential equation in a rectangle and in the domain with a smooth

boundary, and an evolubtional equation with a bounded operator.

2. An ordinary differential equation.

FYor a function @{(x) , which is defined in the segment
G=L[0,1] , the notation ¢ e C (&) means existence of the con-
tinuous derivatives of ¢(x) on G wup to order K .

Let the function wue(,(6) be found from the equation

Luz-(au)+bu=7 in G = (0,1 (D
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with  boundary conditions

u(0) =0, (2)

uw i +yur =g, y>0. (3)

The coefficients of the equation (1) Vaxe G are nonnegative:
oWz >0, B(xyz0 (4)

Let :

(A, 1) =fuvdx, [ u,v] =j’(au’u‘+ Buv) dx
G G
be scalar products.

For to construct algebraic system approximating problem (1) ~

(3) we fix integer n >0 and denote
h:i/ﬁ, Gh:{g:gzih, i:ll,._.,n—ﬂly 6= 6, U{1} . (5)

Let us introduce a set of n  functions,geting V{ée Gy,
i"% o

( Hlaty+0rdd)/ [1faly+tdat ,if x-4e(-h,0),
~h -h

h h
Wyl y)= < (fHla(y +£)d’c}/f o (y+1)dt if 3&~{ée£0,‘h) ) (&)
x-y o

0 or ebse

and for %=4

'.I.-lﬂ o
(f 1/ cy+0)db)/f1fa (y+430%, i x-y € (h,0).
Wplx, = {h - 7))

0 or else

The equation (1) is multiplyed by every function (&) and is

integrated over x:

(F(2), @y, ) =(Lu(x), 0y, (%, 4)) = [ulx), @y x,y)] .

The methodic value of the test funetions (6) - (7) is in
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faect that the term f au'm’hdx is approximated exactly. We
approximate the other term 80  asg to obtain Ritz’s method
system:
Ludw), @y (2,012 7 Lw, ¢, y), wy (e, )] u" (7). (8.a)
z2e6

n
It is notprincipal, bubt proof is simpler.

The boundary condition (2) yield

w0y =0 (8.1)

and the condition (3) with the equation (1) permitsus to obtain
approximate equation
(F (), W, 1) = [ ulx), wh(m,ﬂ]—ga(n +yo (Hu) =
(8.¢)

2 L, 2), @y 0, 0]ul () - gad) + Yo (1) W (1),
ze@,

If we unite the equations (8.a) - (8.c) and denote @z,%=[®hcx,z),

wh(x,%) , W& have systen
{ w0y =0
| . @z’% uh(2) = (f, @, (x,Y), Vye &, )
ze 6

n

| Z‘g 8, , () # YA MU (1) = (F00), @y (2, 1) +ga (1)

1Z2e " ?
which is equivalent to Ritz*s method system, when one takes linear
space of functions (6) - (7) as approximate subspace. Therefore

the system (9) has a2 unique solution. For further account let

us estimate solubion of systen
F(0)=0
2. gy v =S Vyeby €10)
ze by,
S 8a, v(m+ya ) ult) =S
ze G,

r h
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Lemma 1. For the solution of system (10) estimation

1
mox |v(x)\é&2_|6(1ﬂ)l. 1)
X € Gy, xae(’rh

is valid.

Proof. Iet us denote v(x) =2615»(z> O (X, 2) , multiply
— 2¢06,

every equation of system (10) by w©(y) and sum up over

ye Gy, :
[ T (x), T + Yo (D02 ()= 2 s vy).
Yeby,
With the condition v (0)=0 the left part may be decreased

with help of Sobolev's theorem [ 3 ]

[ o), 5(x)] » (B, T (o) b ma_x{@(ec)!zlwc mox [ ()],
xe G xe G"h

There is the inequality

2 sy v ¢ max {ox)] 3 16(%)\ , that
yeby, xeB ye Gy,

is valid for the right part. If we devide these inequalities by
max|vx)| , we obtain the lemma statement.
Let us consider a connection between solution of system (9) and

problem (1) = (3).

Lemma 2. Let us suppose that aeC, (G),8 , fe C, (6)
and integer k3 0 in equation (1). Then there are Kk functi-

ons € Ca_o,p(B)  which do not depend on Hh and Yhe (0,1)

K
2 + o
uh (x) = U(x) +€Z=}h2 v, () + W2 g (x0) Y xe6, (12

where descrete function is bounded:

max [E"=| £ ¢ Y he (0,4). (13)

xe&h
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Proof. In analogy with [ 1] let us suppose decomposition (12)

being. We shall find necessary conditions and make them
sufficient.

So, let us substitute phrase (12) in system (9) and change its
right part:

zk_ "1‘122192(0) + h2ke2 g)h(o) =0 (14.a)

Z_@z%{u(z)+§_'hzzv~ (2)+ W22 g (=) =

2eby, (14.b)
[uix), Wy, (=, )] Yye Gy,
Z 0 {ul +an“mz) A2 EN ()} +
zeG, (14.¢)
'Xam{z 2l (2) + 22 g ()} = [ute), @y (o, 0]
=1
Let us note that Viﬁe@h 83,y #0 only for three
values z:yi '}1,14 « Let Y e (0,1 and examine quantity
A =2_ Oy (=) - [v(x), @, (x,4] =
i‘:lé:‘:h,%
S (B ope,Y), Oy (z,4) #(2) - (B(x) () Oy (x,y)).
Z=lé"~'-h,k<)! _
Tet function  ©elp(6) and hemin{y,i-y} , then
t-d
Ah) = 2w djy « W5 gy (15)

it
with functions d‘; € Coqe-py (&) , which do not depend om h R
and with a discrete function h , which is bounded by costant,
consisting of moduli of derivatives of the functions a , &8 , v .

It follows from dexrivation:

'323A _ ,323+1A
B‘hzd( 0) 0, dj_W(+0)’
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Y, = il . W Y e (0,4)

e
The estimation of "  (similar (13)) is obtaind by change of

v(x) for Taylor’s line

Jue(oc,«g), Moe(y,x),
2 et L 2 [ x-y BE 620
v(x)=m1é)+2 -L_!’%.u.v («%)-Mn ( — L
= Qo0!
Further, similar way gives us
-k & 2§41 paet
Mumwxw-ﬂW+;h Ry (y) + P (4 (16)
j:
where functions  9ij s fPn  bhave such properties as d; , Y,

accordingly. Using now statement (16) for (l-1)of different functi-

ons from (15) we have by the induction

-4
> @z%1ﬂz)=[u1xJ,@h(x¢p]+2;h%(¢ﬁmxwhugq»+
- s, o

ZGGh (17)
o 3}(«&) Y Yye G, .
The functions 9; s Sh have such properties as dj y Yy -
Similar way gives us formula
-4
S0y, v = [0, 0, x, 0]+ 2 RNy )0, D)+
25, » . (18)
NP AR SRS NOW
i=!
and ¢; are the same functions as in 7, G are constants

which do not depend on h .
Now we use these formulae by changing u , k for v s
{  and substracting (17), (18) from (14.b), (14.c)
k 3
22 . A
2. 954y {EZH R, () + 1" - (z)}=jzz4h25(q’§(m),®h(xﬂ))+

ze&h

(19)
+ﬁ2"*3§h(t{f} Y ye by,



248

2. 8, {Z Ry ()« h2 g 2y ] =

%c(}\h
Koo Koo — (20)
=2 (G (0, Wy (2, )+ 2 KIT )+ W8 ().
i=1 j=A
Here q’-,j € Com-p (&) and do not depend on h ; &, is
bounded: §§h§<é)}éc YVye G, Vhe (0,1 .Ii(-} are
constants which do not depend on s
Then we take Uy as solution of problem
AU@ = @4 b G
_ (21)
w, (0Y=0, W () + Yy, (D=8, /a ().
It necessarily follows from this that  u,e Cpy (6) and does

not depend on h . Let us substitute u, in identities (17) ~

(18), multiply them by Hh®  and substract from (19) - (20)
K, K

2t 2k 2 - 2i( G ¥

g_@haz,g {2 Wu@ ek g, ) E;n (@030, @y, 6x,)
REREE, () Vyeb,,

5o ae ko o= (22)
éZ WU (2) +h2R42 € (2) }= 2. U@ 0,00, (k) +
2 j=2 n

z:J\’*

K L - =
+ %zhzégj + h2k 28‘](4) )
It is obvious from {22), that it is necessary to take U,

as & solution of a problem

Lu, =Q=pz & G
W (020, U, + YU () = Sy / ald).

Such choice guarantees that the requirement to W, is valid and
that we have possibility to take away elements in (22) with multi-
pliers h, , hy .

Continuing inthis marner over k steps we come to system

E4 () =0
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Z Ozy F?h(z):héi(«é) YV oye &y,

zeGh

A (23)
Z. 63’4 %h(z‘}: 8'1“('{)

ze6,

as
with bounded discrete function & n . This system has a unigque

solution, i.e. &, is found by a unique way so that (12) is

valid when the functions U, are chosen. The estimation (13)

A
follows from lemma 1 and from a fact that the function S"h is
bounded.

Lemma is proved.

The decomposition permits us to Dbasis improvement method.

Theorem 1. (iven the conditions of lemma 2 ,one may find so-
lution of problem (1) - (4) which has accuracy of order  h*%*? |

ket
where h = max h, .
=1

Proof. When a point x (where we find value of () )
is a common one for all regular meshes, a higher aceuracy solution

ig made up as follows

_ K+d h
W(x) = 2 ypute),
=1

Here "¢ 1is a solution of problem (9), when the wmesh size

G

coefficientsof all W, vanish in the linear combination. That is

n is equal to h, , and the?, are chosen so that the

achieved by a choice of 7, from system
k+4
2 Ye=1
=1
K+4 26
ga‘XQhQ =0 9 s=4, ..., k. (24)

In this case on basis (13) it follows +that

k+4
2K+ 4

(o) ~ W(x)| ¢ CQZ_-{ | Yo lhg
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Tor to estimate 7y one may solve the system (24) by Kramer’s

method using results of [2] on Vandermond’s determinants:

2

Y= 1 212
jet gkt g-hi
e#L

From these formulae with a condition h,/heu »cy>1 , ¥V €=4,...,k

it follows that

/ c kit .
HMS\-@—}T) Vi=d, . oo ket

When point X is not common ope for all meshes it is neces~-
sary to use an interpolation. The smoothmess of functions u and
u, permits us to conclude that using Lagrange interpolation to
point = from (Kk+1) neighbouring points of the discrete mesh

G\M we may obtain the decomposition (12) with the same functions

U, . There is changed only the comstant ¢ in the estimation of
functions Eha where derivation estimations of W , 4, and
interpolation weights appear in addition. If (k+41)of decomposi=-

tiong(12) is made in the point = by interpolation, the higher

accuracy method is like above,

Remark. The proof may be used without any changes in a case
of
when the coefficientsYV the right part (and the solution) are piece-
wise smooth and there are conditions in every point of discontinui-

ties of function o

we+0) =u(e-0
o (E+0VW(E+0)= a (£ -NW (£-0) +w ,

where W, is a certain constant. To +this end the discrets

meshes must be regular in each piece of smoothness and the points of

discontinuities must be points of meshes.
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%. The Laplace equation in a rectangle.

Considering the Laplace equation in a rectangle we try to
show one of way of work with angular points., The main difficulty is
bad solution smoothness near anguler points notwithstanding good
smoothness of all problem data except boundary.

In this section G  is an open square: G ={x:x =(sx,,x,) ;
0<x,,%x, <t} in R® with boundary T , G is GU[I and
for two points x,x’e R®  the distance is: | -~x'|=((x,~x,)2~
- (%, - xla)a)*/z

For to simplify our considerations let us examine an equation

with constant coefficients, lLaplace’s equation

-Au =f in G . 1)
Our problem is to find function which satisfies equation
(1) and condition
u=0 on r. (2)

For to describe differential properties of the solution let us

inftroduce norms

K
M, [ul=2 max ad™*HD™
m (%) o (D™ ()] (3)
and
k P @m ( - 2™ !
mec[“}:z mazx__dm o k('x,x’) 1D ux) 2' :('x ) , (4)
(m) x,x'c§ [ oe o]
where Kk , m are integer vonnegative numbers, o« e [0,1]

() is distance from x Yo nearest square angle,

d(x,x’):mln{d(x),d(m')}, 2 isaa—x or _éa_%

We use usual classes of smoothness (s.f. [ 57 ): C?’OL (6)

is a class of functions which have in G ¢ continuous deriva-
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tives and the quantity

4
Nl = 2 My [F1+ M3, D51, (5)

Q
is limited.
Cou (1) is the set of functions from Ca,oc () for any
closed set &2 ¢ G .
-

It follows from momograph | 51 +that notwithstanding good

snoothness of the right part:
Fe Chpuna (6) (6)
the solution of ({)—(2) is valid for

e 82245,4 (&) 5 (7)

but not for

U € Copuza (6).

I.e, quantities in the right part of (5) may be infinite. But
investigation of [ 5] shows that asymptotic behaviour of
discontinuities is less than some orders of 1/x |, namely, quanti-

ties
MoTULMITUL, M lul  Vim=2,...,2043, My, o Tul  (8)
are limited.
Moreover it is sufficient that one has more weak assumptions for it
fe Coppur,al®) and quantities
MILST, M [4] Womo= 4, 204, My, 041 (9
are limlted.
Some difficultieswith infinite derivatives are avoided with the
help of a special choice of a discrete mesh which is condensed near

the discontinuities points. Let
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ES 4
¢ )= (f21(1—z)xdz)/£z"(4~z)xdz Vie [0,41. (10)

A positive parameter Y will be chosen later. ILet us fix integer

n >0 and let h=1/n  ana

Gy, = {ocio,= glihy, %,=Q(jh), Yi=0,...,n

r

_ —_ 1)
Vj=0,...,n}, 6,=6,n6, L =6NT.
The basic functions are introduced as follows :
Wy (x,xN=plxy, xD plx, ) Ve,
- Qe -h if ¢ .
@ @®)- @R € (G (t-h), ¢)] (12)
p(t,t’): { {
Q- g te (@), Qe
g (+h) - g(t)

\ O or else
We multiply every term of the equation (1) by a basic functi-

on, integrate it over x’ o Then we chenge some integrals

(after integration by parts) for simplest quadrature formulae:Vxe G,

X

-0

J‘%z}i ()@ (x,x)dat’ = (@x,+h) - q?(xaum)/g x
&

(13.a)
} = Aux),

. { (g, %) =R (e h, %) et rh, e, ) - U (%)
Wx,) — @lxy;—h) @ (xy+hy - @ (xy)

J 84 (o, (xxhdx’ ~ (o) - g -h) /2 x
2

s 0%
(13.1)
}E B {2) u(x).

‘ {uh(mx,:"a)‘“h(mhmz‘m _ uh (2,2, +0) - U (4 »Xy)
@x,) - @lx,~h) QP x+h) = @ x,)

Thus let us note that discrete operators A and B are

defined. An approximate system may be written in a form
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A () uh(x) + B(x) uh(m)nff(x) Wy (x,xNdx’ Vxe G,
G

(14
uh () = 0 Y ox e fy. )

The special form of an approximating error permits us to obtain
(even in case fe 4, (6) ) the speed of convergence is equal

to W% (o € (0,9)) in the norm
-~ .
leneol, = L2 & P (or (0?17, (15)
h

where P () is the area of the support of the function

@y, (x,x") with respect to x' . Namely for any Y- 0 and
even for (&) =4 (i.e. the mesh is regular) the solution of the
systen (14) converges to the solution of the problem (1) - (2)

and there is an estimation
(o) -ut ooy < e Fll,, e h'™ oL e (0,1)

where consbtant e depends on o only.
To prove this stabtement and the more general one we shall heed

some resulbs about a steady characteristic and approximation.

Lemma 1. If functions ¢ and ¥ are defined on G, and

satisfy sysbtens

H

(Ao + Brxd) @) = Al § () V xe 6,

H
<

q)('.')i,\ Vme i_h

and

(A« By (%) = B(x) §(x) Vxe 6,
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g (x) =0 YV xe Th

then the estimations are valid
Tl < cdl&ll,  ana ), ¢, |51,
where ¢, , ¢, do not depend on A and § .

Temma 2. Iet w(x) be the solution of the problem (1) - (2)
and the condition (8). Then

L.
A{x) ulx) + By u(x) =jf(‘3t) (e, xydax' + Z’nhf Gu(3)Qy, (e, x Y+
G i G

L=

. h” +Baol B (o) £y (20) + IR R A(—_x_)qh(m‘) Vxeby

where the functions ¢ do not depend on h . And if in for-
mula (10) 9 iey condition

y>/22+5+ot, (16)

then g satisfies(9), where { -i is instead of [ ; T

and Y\h depend on h but they are regular bounded with respect

Inull, ¢y and NEnlléc, - 17

This result 1is sufficient for using the proof which is similar
to the second section proof (see also the proof scheme in [1] ).

This gives us

Lemma 3., In conditions (9) the solution of the system (14)
converges to the solution of the problem (1) ~ (2) and there are
(2+1) functions vV, € Cyy ny.z.a (&) which do not depend

on th and for any n >1(0<h <1)
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Q4
W(x) = U(X)+ T w0+ gh ) Vxe Gy, (18)
k=1
If 4> 22 +3+4 then for each 4%,  the condition (8) is
valid ( 2 -k is instead of ¢ ) and the function gh is

bounded for all Hh in the sense:
ferill, €cs. (19)

Remark. The estimate (19) involves estimate modulo

fer (] £ ¢ W Yo | e I, ¥V xe by, (203

where di{x) is defined by {(4).
ig

That is why the final resultYformilated as follows.

Theorem 1. Given the conditions of lemma 3 one may find
(with the help of (¢+2) solutions of the system (14) with diffe-
rent mesh sizes h, ) the approximate  solution of the problem 1) -

(2) which has a precision of order R®2**2*<

.

fu(x) - W) £ ¢y d ¥ () R2ETETH

where ¢, do not depend on x , h and K = max h, .
iekgl+2
Remark. The proof and the above technique are suitable for the

problem (1) -~ (2} in the cases:

a), when the Tight part of (1) bas first sort discontinuity
lines which are parallel to coordinate axes;

b). when the solution has first sort discontinuity on such

lines and there are conditions for the solution

wix-0Y= u{x+0)

and for itsnormal derivative
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u
= (x-0) = -g%(moww
(n is a unit normal direction). An argument x + O means that
we take a limit on the right side of the discontinuity lines., It is
similar for «-0 .
Both in the first case and in the second case it is necessary
that the disconbinuity lines are the mesh lines. But in the second

case we mugdt condense the mesh lines near intersection of boundary and

the discontinuity lines.

4, The elliptic equation in a domain with a smooth boundary.

When we solve the elliptic equation in a domain with a smooth
boundary we have some difficulties of an approximation because the
mesh is not regular near boundary.

A way to avoid this difficulty is to adjust mesh and the
domain., We explain it by example with a domain with one boundary
component, Let there be transformation which is smooth enough and
which bransforms the initial domain to the circle. Then we need
introduce polar coordinates. Now the domain is a rectangle, where
the equation is defined. If the domain has two boundary components
we reduce it to ring and s0 on.

When the transformation may be found easily such a way has an
algorithmical profit.

If the Dirichlet problem is examined then one may use a
method, described in [4 7 . This method contains a multipoint
interpolation formula which has a high precision. By choice of free
parameters in formula one may take a diagonal dominance in the

obtain algebraic eqguations. It permits us to put up stable system

of algebraic equations.
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Using the indicated methods one may soclve Dirichlet?s problem
in a different domain,

In this section we examine the question about an improvement
of a solution of the penalty method. It follows from [ 6 ] that
the use of & boundary penalty in the Ritz method permits us to
come from the Dirichlet  problem Yo the third boundary problem.
And if the solution is smooth enough then adding the penalty

to the variational functional is equivalent to coming from a problem

Lw=F in G 1)
w =g om r
to the problem
Lué =f in &
(2)
us + 2:\" =g on r
Here
p o
22 DU
A= -2 oy Bxiew; T buea e (3)
: =

is the elliptic differential operator, 0  is a domain in P -
space Rp with a boundary [ , m is an unit external co-nor-
mal.

Similar as above let us suppose the existence of the decompo-

sition
L '
ui=u+§_4a}v.u+a *Es, 70, me 0,4 (&)

where the functions U do not depend on g  and the function
E,& is bounded. Then we substitute (4) in the problem (2) and

compare coefficients for every power & . Thus we put up a
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sequence of problems:

1) Lhu-=7 in &
U.=% on r,

2) Ly =0 in &
m:-% on r,

i) hv, =0 in 6
v =-2 on T Vi=d, ., €
€. ; 6

2+}u) LE Q axn

S g

If this problem has a unique solution then the functions
are found recurrently . The quantity of the members in (4) is
bounded by a power of smoothness of the problem data.

If one has the decomposition (4) one may obtain the soclution
of (1) by linear combination with accuracy of order gl

?
using for it {+41 solutions with different &,

-

5. The numerical solution of an evolutional problem with a bounded

operator.

We need this section to show that this method is universal

for any type of equations.

In Hilbert’s space X with a norm lix|i=(x,x)? we
consider functions of one real variable te [0,T] . In this
sectlon we write § e ek if £ has a value in X  and has

k continuous derivations (s.f. [ 81 ).

Let us examine a problem



258

= +tAu =1, w(0) = U,

) 0

where A: X -+ X is a linear operator, which is regular bounded
on [0,T] and positive semi-definite in a sense: {Ax,x)=0
Vee X, t«l[0,T] . Let the operator A be decomposed in the
sum AR =§ AL , where A_;X — X are linear operators,
which are regular bounded and positive semi-definite om [0,T] .

For numerical solving we use a splitting-up scheme

(I+ 7A@ UT(£-T ) s uT(4-2) + TH(+)

(I+ A, U (- TE2)=ul (¢ -2

(2)

(1+TAUTE) = uT (£ =T )

Vie we

and

wT Y = u, ,

Here ¢ is a regular net with the size T=T/M s, 1 is a
unit operator. It follows from [1 ] +that the scheme is stable:

max JutEM & Juoll + Tmax I (OH |
iem’c te Wy

Let us note that the semi-definiteness is taken for the
stableness. We mey lay aside this supposition if we choose the
size T from the condition of the limitation of the operators

Ay

Theorem 1. Let §e< C° and A{t) has a smoothness which

is enough to have a unique solution ue CK*! for any

right part fe C* and any initial value wu,eX (0¢k g g),
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Then there are (s-1) functions w; e €S-t which do not
depend on ¢ and decomposition

S-14 .
uT() = u @) + 2 Ty W+ (1) te &g (%)

=1
is valid. Here discrete fumction ¥ is bounded:

.t mcga: 1gcllgc,

where constant ¢ depend on norms of derivatives of ¢ and

does not depend on < .

Proof may be constructed cuch a way. At first let us suppose
the decomposition (%) exist,

Let us fix any te g , expel Ut (L) and WT(t-0)
from (2) (using decomposition (3)) and substitute Taylor’s
formula for any functions 1 that we have functions only in
the point ¢ + Comparing coefficient of all powers of T we

put up discrete systems
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a3 A =f, tew, v(0)=0. €]
Besides,expressions taking part in §; include only w, t,...,0 ., «
If we change the domain W, on the interval (0,T) we oblain

list of problems and v may be found recurrently The
smoothness of U follows from supposition of the theoren and
the independence of < follows from a kind of the equations and
their right part.

Assuming 4 to be given we define g, 80 that (3) is

valid. Then from the way which we find it follows that

L
n
H(1+‘ZA-L(+.))§T(Q=§T(+.~‘I)+ftf,r(+.3, tew,, gﬂ(o):o_ (5)
i=1

From the stability of this system and from a kind of J.
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(which is a combination of derivatives of W, v; and any multi-
plications by A, ) estimates follow for E¢ .

On the basis of this result the usual considerations give us

Theorem 2. Given the conditions of theorem 1 and solving s
problem with different mesh size T, one may find approximate s01lu~-
tion of the problem (1) which has precisiemof order 0(zf) in

the norm of space X  in each point of [0,T] (here %= max T, ).
146248

LITERATURE

1e Go.I.Marchuk. Methods of computing mathematics. Novosibirsk,
“Nauka", 1973.

2+ ReBellman, Inbtroduction in matrix theory. New York, Toronto,
London, 1960.

3. S.L.Sobolev. Some applications of functional analysis in mathe-
matical physics. Printed by Siberian Brunch of AS of
the USSR, Novosibirsk, 1962.

4, E.A,Volkov. Solving Dirichlet’s problem by: method of improvement
by higher order differences "Differential equations",
v. 1, No 7, 8, 1965.

5. 0.A.Ladizenskaja, N,N.Uraltzeva. Linear and quasi-linear equati-
ons of elliptic type. Moscow, "Nauka", 1964.

6. J.Le.Lions. Quelgues méthodes de résolution des problémes aux
limites non linéaires. Paris, 1969.

7., A.A.Samarski., Introduction in theory of difference schemes.
Moscow, "Nauka"™, 1971.

8, H.Cartan. Calcul différentiel. Formes différentielles. Paris,

1967.



