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Abstract 

This paper is concerned with the numerical solution of partial differential 

equations describing fluid flow problems in real space and in phase space. One im- 

portant goal is to show conclusively that the Accurate Space Derivative methods can 

be used with success for solving such problems numerically. We describe a method for 

the numerical solution of the Korteweg-de Vries-Burgers equation. We show numerical- 

ly that the solution of this equation evolves asymptotically into a steady shock wave 

with monotonic and oscillatory profile. We present numerical solutions of the 

Vlasov-Poisson system of equations which describes the motion of an ideal incompres- 

sible fluid in phase space. These problems are related to longitudinal oscillations 

in two- and three-dimensional phase space. 

I. INTRODUCTION 

Partial differential equations describing fluid flow problems have been solved 

successfully by: (i) transform methods, in which the variables are expressed in 

terms of orthogonal polynomials; and (2) finite difference methods. The former ap- 

proach proved to be very accurate in Fluid Mechanics 23 and in Plasma Physics I for 

problems with simple boundaries. Although finite difference methods are well suited 

to solving realistic problems with complex boundaries, 5,10, 26 they seldom achieve 

more than a rather modest accuracy in practice [26, p. 24]. The significantly larger 

error terms in finite difference methods are due to the approximation of the space 

derivatives by some finite difference expressions. Space differencing errors can be 

reduced substantially by the accurate computation of the space derivative terms. A 

numerical method based on this principle can be expected to possess similar accuracy 

as the corresponding transform method if similar time differencing methods are em- 
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ployed. Indeed, it was found by Orszag 25 that the pseudospectral (collocation) ap- 

proximation 24 and the spectral (Galerkin) approximation 23 give similar errors. In 

the pseudospectral approximation the space derivatives are computed by Fourier meth- 

ods 24 and "leapfrog" (or midpoint rule) time differencing is used to march forward in 

time. 

Recently the author reported on higher order (in time) numerical schemes Iz'13 

based on the Accurate Space Derivative (ASD) method. In this approach to time dif- 

ferencing we start from a Taylor series in t~ following in principle Lax and Wendroff 

[26, p. 302]. The time derivatives are then substituted by expressions containing 

only space derivative terms. The numerical evaluation of the space derivative terms 

is based on the use of finite Fourier series. In this respect our method is similar 

to the pseudospectral approximation. 24'25 

The role of the finite Fourier transform techniques in the ASD methods is limi- 

ted to the efficient computation of the space derivative terms. In the case of non- 

rectangular coordinate systems other types of orthogonal polynomials may prove to be 

more convenient than finite Fourier series. Nevertheless, the application of the ASD 

methods over such a computational grid appears to be entirely feasible, so long as 

the space derivatives are evaluated at the grid points by making use of all the in- 

formation that can be supported by the computational grid. It is, therefore~ incor- 

rect to regard the ASD method as a spectral method. The fast Fourier transform algo- 

rithm is merely a tool, i.e., a "black box," for the procedure of differentiation. 

The ASD methods have been applied successfully to one-dimensional problems. 12-15 

In this paper we study numerical solutions to nonlinear differential equations with 

one~ two, and three space variables. In Section II we discuss a numerical method for 

the Korteweg-de Vries-Burgers (KdVB) 18 equation. This type of equation occurs in 

some classes of nonlinear dispersive systems with dissipation. We show numerically 

that the solution of the KdVB equation evolves asymptotically into a steady shock 

wave with monotonic or oscillatory profile. Sections III and IV are devoted to the 

numerical simulation of the Vlasov-Poisson system of equations, which describeSthe 

behavior of collisionless fully ionized plasmas. The electron velocity distribution 

function is commonly referred to as "phase space" fluid, since the Vlasov equation 

describes the flow of an ideal incompressible fluid in phase space. 3,22 In Section 

iII, we present results on linear and nonlinear Landau damping of electrostatic os- 

cillations in urmlagnetized plasma. In Section IV we consider electrostatic waves in 

a magneto-piasma~ These simulations require one space variable~ x, and two velocity 

variables v and v . Here we show results related to perpendicularly propagating ey- 
x y 

elotron harmonic waves. 
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II. NUMERICAL SOLUTION OF THE KORTEWEG-DE VRIES-BURGERS EQUATION 

In this section we consider the Korteweg-de Vries-Burgers equation 18 

~u + 2u ~u ~2u + ~ ~3u 
- -  = 

2-T YTx- ~ ~x2 ~ 0, (i) 

where ~ is the coefficient of diffusivity and ~ is the dispersive parameter. This 

type of equation occurs in some classes of nonlinear dispersive systems with dissipa- 

tion. The steady state version of Eq. (i) has been used by Grad and Hu 17 to describe 

a weak shock profile in plasmas. Propagation of waves on an elastic tube filled with 

viscous fluid is also described by the KdVB equation in a particular limit. 18 In 

more recent studies 19 it has been found that the surface profile above a fully devel- 

oped Poiseuille channel flow is also described approximately by the KdVB equation. 

Our problem is defined by fixing the upstream and downstream boundary conditions 

that must be satisfied by Eq. (i) at all time, t $ 0. These are 

lim u(x,t) = u~, lim u(x,t) = u+, u~ > u~. (2) 

For simplicity, we choose u~ = i, and u~ = 0. 

The steady-state solutions of the KdVB equation have been studied in some detail 

by Johnson. 19,20 For nonzero dissipation, v # 0, the steady-state solution is of the 

following two types: (a) a monotonic shock wave if ~2 $ 4p; or (b) a shock wave os- 

cillatory upstream and monotonic downstream when v2 < 4p. One of the goals of this 

study is to show numerically that for any initial data satisfying (2), e.g., 

I f, x < x 0 
u(x,0) = (3) 

0, x > x 0 

the solution of Eq. (i) evolves asymptotically into the steady shock wave with the 

predicted monotonic or oscillatory profile. 

The initial value problem stated in Eqs. (i) and (3) is solved by the Accurate 

Space Derivative (ASD) method 12 of order three. By this method, u(x,t+At) is compu- 

ted from u(x,t) by means of the following expression 

g(_t ~ A t  z ~3u(t) At 3 
u(t+At) = u(t) + ~It ----~) At + -T ÷ a---~t (4) 

3~ 

The time derivatives in Eq. (4) are computed from Eq. (i) by successive differentia- 

tion as follows; 

~u - 2u ~u ~2u ~3u 
2-7 = YTx + ~ ~ - p ~ (5) 

~t ---f = 8-~ ~-~ - ~x + ~ ~ - ~ ~-~ (6) 

~t 3 ~t 2 Sx 4 ~ ~x ($tJ - 2u ~x [~-t-fJ + ~ ~ I~t--~J - ~ ~ I~t-~J (7) 
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The x derivative terms in Eqs. (5-7) are computed by Fourier methods. Let 

U(k,t) be the finite Fourier transform of u(x,t) defined over the computational do- 

main D. The %th order derivative of u(x,t) is given by 

a~u ~ (ik) % U(k,t) exp(ikx) (8) - -  = 

ax £ k 

where i = (-1) 1/2 and the summation in (8) is carried out for all wave numbers k 

which can be represented over the computational mesh without ambiguity. This method 

of computing the space derivatives gives results which are substantially more accu- 

rate than those obtained from finite difference expressions. 

In order to satisfy the conditions expressed in Eq. (2), the principle domain 

D = (x; 0 ~ x ! L} (9) 

is partitioned into two subdomains 

D = D O + D I 

as shown in Figure i. Here D I is the true computational domain over which new u val- 

ues are computed. The values of u over D O are fixed and are being kept constant 

throughout the entire computation. The unique purpose of D O is to provide a smooth 

transition between the two end points of D I and to assure periodicity over D. This 

configuration permits the computation of the space derivatives of u by the Fourier 

method outlined above. 
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Figure i. An oscillatory wave solution of the Korteweg-de Vries-Burgers 

equation at t = 65. 



41 

Our numerical results confirm that for any initial condition satisfying Eq. (2) 

the solution of Eq. (I) evolves asymptotically into a steady state shock wave with 

the predicted monotonic or oscillatory profile. 18 The dispersion parameter was set 

= I in all cases with u~ = I and u + = 0. Under these conditions the theoretical 

speed of propagation is unity, i.e., c = i. Figure I shows an oscillatory profile, 

= 0.i, as it evolved from a step function, Eq. (3), after 65 time units. The com- 

putations were done with time step At = 0.005. The speed of propagation of this wave 

at this point is c = 0.994. In Figure 2 we show the profiles of a mildly oscillatory 

case, v = 0.5, at different times. The speed of propagation of this wave at t = 50 

is c = 0.997. The evolution of a monotonic shock wave is shown in Figure 3. Note 

that the initial conditions are somewhat different from a step function in that 

u(x,0) = 1.2 for 160 ! x < 200. The speed of wave propagation in this case (~=6) was 

c = 0.998. The space and time increments were Ax = 2 and At = 0.02. 
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Figure 2. Evolution of a mildly oscillatory wave solution of the KdVB 

equation. The time separation between plots is 25 time units; 

the numbers on the curves are values of time. 

These numerical results demonstrate the feasibility of the ASD method for the 

numerical solution of nonlinear partial differential equations with other than peri- 

odic boundary conditions. It should be noted that the coefficients ~ and ~ need not 

be constants. The numerical method outlined above can be applied to problems whose 

coefficients are functions of x, i.e., ~ = ~(x) and ~ = ~(x) o We found considerably 

better agreement between exact and computed speeds of the wave propagation for the 

Burgers equation 12 than for the KdVB equation. The most probable cause for this is 

the presence of the third derivative term whose computation may result in more round- 

off errors. 
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Evolution of a monotonic wave solution of the KdVB equation. 

Time separation between plots is 20 time units; the numbers 

on the curves are values of time. 

III. ELECTROSTATIC OSCILLATIONS IN UNMAGNETIZED PLASMAS 

The system of equations under consideration consists of the Vlasov equation for 

the electron distribution f(x,v,t), 

~f + ~f Sf 
~-~ v ~x- E ~7v = 0 (i0) 

and the Poisson equation for the electric field E(x,t) 

DE f 
-- = I - I f dv (ii) 
~x 7 

These equations are written in dimensionless units. I The basic unit of time t and 

velocity v are the reciprocal of the plasma frequency (mp)-I and the mean thermal 

velocity v t. Length x is measured in units of the Debye length. The equilibrium 

electron distribution in all our computations is Maxwellian, i.e., 

_i 
1 f0(v) = (2~) 2 exp(- ~ v 2) (12) 

and the initial condition for the electron distribution is 

f(x,v,o) = f0(v) (i + ~ cos k x) 

where k is the wavenumber and e is the initial perturbation amplitude. 

electric field amplitude is 

(13) 

The initial 
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E0 = ~ • (14) 

~f [ ~f 8f0] 127 
One can linearize Eq. (i0) by holding ~v constant i.e., replacing ~v by ~v]" ' 

This procedure gives the well known result that the amplitude of the wave damps as 

exp(yt) where the Landau damping coefficient is determined by the wavenumber k. 9 On 

the other hand, if we linearize Eq. (i0) by holding the amplitude of the wave constant 

(i.e., replacing E(t) cos(kx - ~t) by E 0 cos (kx - ~t)), we find that the distribution 

function is strongly modified in the resonant region. The time scale for this modif- 

ication is the oscillation period for the resonant electron in a trough of the wave 

! 
-I = ~-2 

T = ~B (15) 

where ~B is the bounce frequency. 7,9,27 According to this analysis, which is valid 

when Iy~[ << i and also when E 0 << i, the electric field damps according to the line- 

ar Landau theory for times less than T. For times greater than the bounce time 

there is an oscillatory modulation of E(t) with period of the order of ~. 

According to a recent numerical study 7 using the Fourier-Hermite method I the 

critical value y~ = 0.5 separates the oscillatory (y~ < 0.5) from the monotonically 

damped behavior (yT > 0.5) of the electric field. However, the numerical simulation 

of the oscillatory behavior for one complete cycle (or longer) of the modulating fre- 

quency proved to be computationally unfeasible with the Fourier-Hermite method. We 

shall present in this paper results obtained by the ASD method in which the above de- 

scribed oscillatory behavior is clearly observable. 

The numerical method used for the solution of the Vlasov-Poisson system of equa- 

tions is a third order ASD method, which is similar to the one described for the KdVB 

equation. The electron distribution function is advanced by approximating f(x,v,t+At) 

from f(x,v,t) by means of the expression 

3 ~£ £ 
f(x,v,t+At) = ~ f(x,v~t) (At) 

£=0 ~t £ £! (16) 

The time derivatives in Eq. (16) are obtained from Eq. (i0) by means of successive 

differentiation, i.e., 

~f ~f Sf 
~--~ = - v ~xx + E ~-~ (17) 

~t  2 = - V T x  + E + - ~  (18)  

~t' ~ .... v ~x [~t2j ~v [~t21 + 2 ~ ~v [~t) + ~t 2 ~v (19) 

The derivatives with respect to x and v are computed by using finite Fourier trans- 

form methods. 12 The electric field E(x,t) and its derivatives with respect to t are 

obtained from f(x,v,t) and its time derivatives, Eqs. (17) and (18). This we do by 
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using standard Poisson solver techniques. 1,5'22 

In the first example considered here the amplitude of the perturbation is very 

small, ~ = 0.00i. In this case yT = 4.85 and the electric field undergoes exponen- 

tial damping until t ~ 55 as shown in Figure 4. After a short transition region an 

approximate recurrence of the initial state can be observed at t ~ 75. This apparent 

explosive growth of the electric field was sometimes mistaken for beaming instabil- 

ity, a physical phenomenono 21 It was shown recently that the reason behind this 

phenomenon is entirely numerical, which is related to the velocity resolution of the 

numerical procedure. 8 The above computation was performed by using an 8 × 64 grid to 

represent the (x,v) phase plane with time step At = 0.05. When the same computer ex- 

periment was repeated over an 8 x 256 grid, oscillation frequency and damping rate 

obtained from the numerical output averaged over the peaks from t = 4.7 to t = 26.9 

were w = 1.417 and -y = 0.1537, respectively. The exact values obtained from Lan- 

dau's dispersion equation are ~ = 1.416 and -y = 0.1534. 

Figure 4. 
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The numerical solution of the Vlasov equation for Maxwellian 

distribution shows the classical linear Landau damping. The 

explosive growth at t = 70 is the recurrence of the initial 

state due to aliasing effects in velocity space. 

120 

In Figure 5 we show the results of a nonlinear problem characterized by the pa- 

rameter values k = 0.5, ~ = 0.io For this case yT = 0.485. We compared these results 
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with those obtained from the Fourier-Hermite method. We found a three significant 

figure agreement in the peak values of the electric field obtained from these two 

methods up to t = 35. There is a minimum value of the wave amplitude at t = 56 after 

which a slight growth can be observed, indicating that the value ~T = 0.485 is close 

to the critical value. In the Fourier-Hermite code we used 1200 Hermite terms and 

three Fourier terms. In the ASD method we used a 16 x 128 grid which assures about 

twice the resolution in both x as well as in v. The third order ASD method was found 

2.35 times faster. Thus for comparable space and velocity resolution in this range 

the third order ASD method appears to be an order of magnitude faster than the 

Fourier-Hermite method. 
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Figure 5. Electric field versus time for a nonlinear wave. 

In Figure 6 we show the results of a strongly nonlinear problem. The parameter 

values are k = 0.5, ~ = 0.3, and yT = 0.343. The oscillatory behavior of the modu- 

lating envelope over these oscillations is observable showing a good qualitative 

agreement with theoretical predictions. 
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IV. ELECTROSTATIC OSCILLATIONS IN A MAXWELLIAN MAGNETO-PLASY~ 

In this section~ we shall consider longitudinal electrostatic waves in a warm 

magneto-plasmao We assume an infinite colllsonless Maxwellian plasma with an ex- 

ternally applied uniform magnetic field B. There is no damping for waves propagating 

an right angles to the magnetic field. These waves, first predicted by Bernstein, 4 

are restricted to passbands associated with the harmonics of the electron cyclotron 

frequency ~c .2 For this reason they have been referred to as Cyclotron Harmonic 

Waves (CHW). Computer simulation~of these waves were carried out by using particle 

methods. II,16 Particle simulation models are subject to fluctuations which interfere 

with externally excited small amplitude perturbations. For this reason the particle 

models permitted only the observation of the undriven Bernstein modes obtained from 

the fluctuations of the computer plasma. II'16 Here we shall consider electrostatic 

oscillations excited by means of small amplitude perturbations similar to those in 

the previous section. 

If we assume that B is directed along the z axis and all quantities to be func- 

tions only of the spatial dimension x, and the velocity dimensions Vx, Vy, the Vlasov- 

Poisson system can be written in dimensionless variables as 

~f + ~f Sf I f $_ ] ~-~ v x~-E~+~c <vy~-Vx ~Vyj (2o) 
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~xa-EE = 1 - I f dvx dVy (21) 

where ~c is the cyclotron frequency. 

The numerical method followed here is the same (3rd order ASD) as in the previ- 

ous section generalized to include three phase space variables. The equilibrium dis- 

tribution function used is 

= 1 (v~ + v~)) (22) f0(Vx,Vy) (2~) -I expl- 

and the initial condition for the electron distribution is 

f(X,Vx,Vy,0) = f0(Vx,Vy) (i + ~ cos k x) (23) 

where k is the wavenumber of the longest wave and the perturbation amplitude was set 

= 0.001. 

The time behavior of the electric field amplitude is characterized by steady, 

undamped oscillations. These oscillations are not monochromatic, and therefore, the 

E vs. time plots are not very informative. After accumulating the E values (i.e., 

its first spatial Fourier coefficient) over 4096 time steps, the Fourier transform of 

the time sequence was found and the spectrum was computed. The spectrum of a repre- 

sentative spatial mode is shown in Figure 7. The position of peaks indicate~frequen- 

cies at which cyclotron harmonic waves can propagate. We compared these values with 

those predicted by small amplitude perturbation theory,2, II and found that they agreed 

within 1% expressed in units of ~c" 
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Figure 7. Spectrum of longitudinal oscillations in a magneto-plasma. 
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V. CONCLUSIONS 

In this paper we demonstrated that ASD methods can be applied with success to 

fluid flow type problems, ioe., problems in which the convective term plays a domin- 

ant role. Our results from the numerical study of the KdVB equation suggest that the 

method is well suited to nonlinear partial differential equations with shock-like so- 

lutions. From these results it is also clear that periodic boundary conditions are 

not prerequisites for these methods. The only purpose of the finite Fourier trans- 

form algorithm is to compute the space derivatives efficiently. It is quite conceiv- 

able to think of situations in which other (than Fourier) techniques are preferable. 

According to our experience, the ASD method in plasma computations proved to be 

superior to the Fourier-Nermite method I or to finite difference methods. 5 The compu- 

tation of strongly nonlinear problems (e.g., the one shown in Figure 6> with the 

third order ASD method requires about one tenth of the CPU time required by the other 

numerical methods in order to attain similar overall accuracy. 
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