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i - Turing ma-
Complexity measures usually are based on a machine model (1-tape

; 3 access ma-
chine, nulti-tape Turing machine, bounded activity machine, random

ia]l time is
chine). The class of all functions which are computable in polynomia

: ; his c¢lass
the same for a wide variety of machines (for characterizations of t

ther hand
see A. Cobham (2], D.B. Thompson [8], and S.A. Cook [3]). On the o
the classes Lk of all functions which are computable in time ¢ '

. complexity
k € N depend very much on the machine model taken as a basis for the
measure,

; i n about
Whereas the machine models cap be described easily, not much is know

. . ccess ma-
their complexity classes., In this paper we consider & simple random a

an un-
chine (RAM) which works i many aspects like a real computer. It has

. . ” snd h&s
bounded 8equence of registers, a bounded number of "index registers

Furthermore the con=

i in one
tents of any index register can be increaseq by 1 or compared with 0

8tep. We show that the clasges

sges
L, (and more generally the complexity cla
C(2(n)

hich be-
determined by primitive recursive time functions T: N— N ) v

long to this machine mode] can be described b

eth-
¥ using primitive recursive 2
ods,

. ive
Ve define g class Ft (vheref: is any finite alphabet) of primitive recurs

: x me in-
functions Rapping N x 2 into N, as the 8mallest clase which contains 80

rm of
vhich is ¢logeq under substitution and & special fo
limited brimitive recursion. we show that

#*
: 2:-)l%,|
holds fop each RAM-honest function T.

CR(T(n)) - F(T(n)) "g{f 3 fe FZ such that “}

£(w) = F(2(1(w)),v) Vvel
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Therefore the family of all complexity classes of the RAM is described by the

class (f)Et . If we take as additional basic operation a function or a predi-
cate belonging to F. , this does not incresse the speed of a random access ma-

T

chine by more than a constant factor.

Furthermore there is & relationship between time bounded RAMs and pushdown au-

tomata with counters. It is well known ([4], [5]) that any language which is

acceptable by a deterministic pushdown automaton vhich has in addition to its

pushdown tape a counter of length L(n) (CPDA with counter length L(n)) can be

recognized by a RAM within time c-L(n). The language {ucvl v substring of u},

for example, which belongs to the "string matching problem" is accepted by &

deterministic two-way pushdown automaton {CPDA with counter length n) and this

implies that it is recognized by a RAM in linear time. On the other hand it

vas shown by the author ([6]) that any language which is recognized by our

HAM with time bound T(n) is acceptable also by a CPDA with counter length

(n).(l0g 7(n))?.

In this paper we show that the classes p(L(n)), consisting of all functions

which are computable by CPDAs with counter length L(n), can also be described

by using recursive methods, and by the application of gimilar methods in de-

scribing the complexity classes of both, the RAM and the CPDA, the close rela-

tionship between these two families of complexity classes becomes quite evi-

dent,

For each partial recursive function f: 0 — W we define classes G(f(n)),

B(f(n)) ot partial recursive functions as the smallest classes which contain

some initial functions and which are closed under substitution and a special

form of limited recursion. We show that for each CPDA-honest function £(n) the
following holds:

p(£(n)) = 6(£(n)) ¢ B(f(n)) € F(f(n)) = Cpf(n))

B(f(n)) ¢ G{f(n)-1log f(n))

F(£(n)) ¢ H(f(n)-log f(n))
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As 8 corollary we get:
P(£(n)) € ¢y(f(n))
¢y(f(n)) € P(£(n)-(1og £(n))?)
It seems possible that some further insight into the structure of complexity

classes can be gained by applying these recursive methods.

B 7]'
The results presented in this paper can be found with more details in [

1. Definition of the RAM

. ratea on
A random access machine (RAM) consists of a finite program which ope

al number
an infinite sequence of registers, Each register can store any natur

ce X X4
(including 0). The contents of the registers are denoted by the sequence X X

X510+« « The program consists of instructions of the following types:

. . X.4+1
xif—xxjr xxi('—x‘], 11"—.]

Read xi y TRA m if xi> 0

. - mahidif—
(the operation xie—-x3+ X, 18 not allowed in one step and this is the

ference to Cook's RAM {41)

ol of
The effect of most of these instructions is evident. Normally the contr

A mif
the program is transferred from one line to the next

. The instruction TR

instruction,

an
At the beginning of the computation of a RAM M the control of the progr

nce
pointe to the first line, the contents of al] registers is O and a seque

11, 12100-, in' 0 Vith ike'm, k.1,2

tion
**eeylly Serve as inputs., The instruc

4 in up *°
Read X; causes M to transfer the first number which has not been reas

this time into register i,

Let M be a RAM

vhich starts with the input sequence 1
M(1

1,...9 in’ 0'

e
1----,in) denotes the contents of the register 0 after the end of tb
computation,
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Definition: M computes a function f: Ef—)ﬂk, where } = {31""'ar} is a fi-
nite nonempty set, iff M(i ,..., in) - f(ai vl ) for all ne W
1 n
Bnd 811 ike {1,-0" 1‘1 ] k-1,-on,no

Definition: M computes a function f: ZLNO with time bound T(n), iff

a. M computes f
. . . { 3
b. For every input sequence 1,,..., i 0, where 1k€ {1,..., ry

Vk-1,...,n, M halts after at most T(n) steps.

CR(T(n)) denotes the class of all functions which are computable by & RAM with

time bound 4-T(n) for some constant d€N.

It is not difficult to show that a multi-tape RAM (that ig a random access ma-

chine which operates on a finite number of infinite sequences of registers and

8
the program of which consists of jnatructions of the form xx?‘"'xj ' .....)
i

can be simulated on our normal RAM without enlarging the time bound by more

than a constant factor.

2. Description by schemes with arrays

A RAM can be described quite naturally using notions which are defined in the

theory of program schemes with arrays and in many programming languages.

Let x,y,z,... be variabies and let 4,B,C,..- be arrays. we consider finite pro-

grams which consist of instructions of the form:

y-x+1,y-A(x),A(y)-1.

read (y), If x»0 then goto m,

¥ith the usual semantic interpretation. This interpretation includes a certain

storage structure since the value of x or of A(x) is available without loosing

time,

It is evident that there is a bijective correspondence between such programe

and RAMs (1 array ¢-» 1 infinite sequence of registers) and that the time bound

18 not changed by this correspondence (the time bound of & program is defined
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a8 the number of instructions which are performed during the computation).

If we want to describe the behaviour of a multi-tape Turing machine by a simi-
lar program we have to consider the fact that a Turing machine has access only
to the cells which are scanned by its heads and that its heads can reach in

one step only a neighbouring cell. In order to describe this behaviour we have

to introduce two types of variables.

Let x,y,2,... be assignment variables, let ¢,d,... be counter variables and
let 4,B,C,... be arrays. Then there is a bijective correspondence between mul-
ti-tape Turing machines and finite programs which consist of instructions of
the form:

Y=a (aEN]O),c-c+1,c:-cA1,

x = 4(c), Afe) = X, read (x), If x = & then goto m

The time bound is changed by this correspondence (1 array ¢y 1 tape, 1 counter

variable < 1 head) at most by a constant factor.

These simple considerations already show that the complexity classes of & RaX
can be described more easily than the complexity classes of a Turing machine

if we take methods which are used in mathematics and programming theory.

3

- Characterization of the complexity clasges by limited primitive recursion

In this section we wil}l characterize time-bounded computations of a RAM by

classes of functions which we define by limited primitive recursion, In order

to do this we have g define an 8rithmetization of the RAM and we cannot 8pPlY

the usual methoq (where the whole inscription of the tape is coded by a number)

because ip this case the 8rowth of the functions is determined by the tape
bound and not by the tipme bound,

Let M ve g gy R =
Mo Lety {a1,..., ar} be a finite set. In order to describe

the computation of y for a given wey® i
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read in after t steps of M

L(t,w) - number of the register the contents of which is altered in the t-th

step of M

I,(t,w)- contents of the j-th register after t steps of M (for all j such that

xj appears in the program of M)

I(t,w) - number which is transferred in the t-th step of M

1t should be noted that all these functions are lineary bounded in t. These
functions can be defined simultaneously by primitive recursion if we use the

: »
maximum-operator which associates with two functions f,e: N% X Z-*ﬁ~m% a func-
-1
tion [f™ g]: No x T No by:

[f-1g] (xyw) = max{ycﬂol y=0vy£x A £(y) = 8(1)}

For the sake of brevity we don't give the vhole defining scheme here. For ex-

ample L, I are defined by:

o, if P(t,v) 2 no instruction v TRA m if x, >0
L(t+1,w) = i, if p(t,w) @ S X 6Tyt 1 v Read x,
Ii(t,w), if P(t,w) = xxﬁ‘ x;
rI([L"xj](t,u),w), if P(t,w) & By
Ij(t,w), if P(t,v) & xx;-—.xj
I(t+1,w) = { Ij(t,w) + 1, if p(t,w) & Xy 6= X+ 1
i(K(t,w),w), if P(t,w) 8 Read X,
L0 if P(t,w) € no instruction

v TRA m if 11> 0
We write P(t,w) 24 if 4 is the imstruction in the P(t,vw)-th line of the pro-

gram. Of course this fact can described by using a simple funetion. In the de-

finition of I the maximum-operator is used to determine that point in the com-

Putation of M in which the contents of the register j have been changed for

the last time.

We define a class of functions in the following wey:
Let §:1 2 — f1,...,r} be the mapping which

Let J « {510--,&r} be a finite set.
class F is defined by:

is defined by g(,i) i for all i = 1,..,r. Then the
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i)

1)

iii)

iv)
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initial functions

P(wi) = X, 5(‘!") =X+ 1, co(xs“') = 0,
0, if x = 0v x>1(w)
i(x,v) - {

f(bx), if 14x2l(w), v = b1...b1(w)

are elements of FZ

substitution

If £,8€E then the function Ax,w [f(g(x,w),v)]

is an element of FI

some kind of primitive recursion

Let 8,q¢ W and let fij (14i¢8, 12£52q) e elements of K.

Let the functions 3’1,...,3’3 be defined by the scheme:

"fi((),w) = dl (dle NO) VJ, 2 15,4048

ri1 (x11(xlw) ,V) 1 if p11 (xlw)

'fi(x+1,u) - fi2(XI (x’w)’")’ i pi2(x’w) Vi s 1400048

fiq(xiq("‘")"")' if piq(x.V)

where:

e X (xw) = oy gy ;;20(”33 (x,w),w)

with some «131""’(132"’(135 51-‘2 u{5’1,...,ffs}

2. Pij("v"’) can be composed of expressions of the form

-1
8(0(1([0(2 0(3] (XN),W) = 0 by means of—u,A,V

{vwhere g€ F and d?, 0(2,0(36qu{‘:§1,...,3;_§ ).

3. For any x¢ N, wveI", j¢ {1,___.3} there is exactly

one J€{1,...,q1 such that Py;(x,¥) holds.

3’1,---.5'. are dements of K- if there is a c €M such that
B (x,v) ¢ cox for

i 3
‘11 1l = 1..‘.,3' xe“, Hez‘

ii), iii) hold

Substitution and
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primitive recursion are allowed only for the first variasble. Classes of primi-
tive recursive functions usually are closed under the application of simulta-
neous recursions including case distinctions. FPor our class we have to mention
this explicitely in the definition because there seems to be no other way to

define a class of functions in one variable with this property.

Our arithmetization of the RAM now leads to the following definition:
* ~ s V l'}
Fy (t(n)) = {f= )3 ——-)Nol 3f €F; such that f(w) = T(P(1(w)),w) Vwel

F(?(n)) = Lz/ F (7(n))

Theorem 1: F(T(n)) = cR(T(n)) for each RAM-honest function T: W—N/

We already indicated how CR(T(n)) ¢ P(T(n)) is proved. To prove the other di-
¥
rection it is shown that for each f€ Fy , y €W, we I f(o,w), £(1,9),...,f(5,v)

can be computed by a HAM which uses no more than c-y steps (where c depends on

f but not on y or w).

4. Pushdown automata with counters and the recursive description of their

comnlexitx classes

S T

A deterministic counter pushdown automaton (CPDA) consists of a finite memory,

8n input tape (alphabet X ) the head of which may move in both directione and

Bay move off the input string to the right, and a pushdown tape. Such an auto- ! :

¥ . :
Raton M defines a partial mapping fM, fH: “0 I L= No. M starts with 4wf ’

¥
(veX on its input tape, with its input head on the n-th cell (n€K ) and

with a distinguished symbol TB on its pushdown tape. M stops when its pushdown

tape ig empty. In this case the position of the input head is the result

fy(n,w) of the computation. If M does not stop then fn(n,w) is undefined.
It is known that such an sutomaton can compute each partial-recursive function.

We define complexity classes by bounding the pmaximum counter length:

QE(L(n)) consists of all functions which are computable by a CPDA vhich has

the following property:
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*
There exists a c€ M such that for each input string we I and
for each initial position x¢ No of the input head, this input

head does not leave the first c-max{x. L(I(W))} cells during

its computation,

(It should be noteq that for a "smooth" function L it is equivalent whether

x-
the automaton has one counter with maximum length L(n) or k counters with ma

imum length (]I.(n))vk each,)

We will characterize the classes P;(L(n)) by using recursive schemes of the

form:

{d(x,w), if x:0 mod k
f(x,w) =

Ot o) n), 1 x3vmod k(1 29 2 k1)
with some ke and total functions d'F1""’Fk-1’ ) RSREEEER SURE

A scheme of thig form defines g partial function f; “o b ¢ Z*—) No in the ususl

vay. Furthermore it defines an algorithm for the computation of f(x,w) in &n

obvious way, Thig 8lgorithm stops irg £(x,w) is defined. During this algorith®
for a given XEN , we Z* the function f has to pe evaluated at several points

(y)w). Let Ipx,w (set of intermediate Points) be the set of all such ¥.

Formally Ipx,w is defineq by

1) If x=z Bod k then Ip
X

w " {d (X,H)}

LERFe = P
) then P, P v TP,

1) If xzp mog k (

where y . Yy (x,¥) and 5 py(f(yy (x,w),w),w)

tion
¥ schemes to which there exist a func

L: R— llo 8nd a ceM sycy that y < c.pay {x, L(l(w))j holds for all y€ 1P  y
and for g3} 1(“0' vex*

. of
(This condition corresponds to the counter length
8 CPDA)

Latz - {‘1’-...&1‘}

g(‘i) = 1 vit‘,...'?
defined by,

e & finite got and let § .5 {1,_“’1.} be defined BY

« Then ¢ ¥ is
OF any function 1, N— N a class Gz(L(n))
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i) p, 8, ¢, i are in GE(L(n)).

(p, s, c ) i are defined as in the definition of F )
ii) If f,gGG;(L(n)) then Ax,w [f(g(x,v),w)] is in GE(L(n)).

iii) Let ke N and let o, F1""’Pk-1'b/1""’Xk-1 be total

functions belonging to G{(L(n)). Let f be defined by:

A {x,w), if x= 0 mod k
f(x,w) =

f(pj(f(xj(x,w),v),w),v), if x= j mod k, 1 £jsk-1

Let IPx be the sets of intermediate points which belong to

this scheme. Then f is an element of GE(L(n)) if there exist

¢c,d€ N such that for all T €M _, W€ 5% the following holds:
y 4 c.max {x, d.L(1(vw))} for all y€IP_ .
X,

iv) If G is a class of functions such that i), ii), iii) hold,

then Gy (L(n))cC C.

Theorem 2: If L: N— N is a function such that L(n)>»n holds for all né€ M,

then Gy(L(n)) = Py (b(n)).

The relation GE(L(n))c P{(L(n)) is proved by applying the usual methods by

means of which pushdown automata compute functions which are defined by recur-

Bive gchemes.

To prove P;_:(L(n))c G;(L(n)) ve associate (this was done first in [1]) with

each CPDA M (S - state set, [' - pushdown alphabet) a function EH vhich maps

Mxsx N x %"into S x M in the following vey:

let ses, ye[', xem, we 5% pe arbitrarily chosen. Let M gtart with the head
0

Position x, with the internal state s, with ¥ on its pushdown tape and with

4%l on its input tape. If M stops with an empty pushdown tape end with inter-

nal state s' and head position x', then E (28, x,v) = (s',x'). Othervise

En(r- 8,x,w) is undefined.

E, can be defined by 2 recursive scheme (this was already used in [4) and [5])

and this leads to the proof of Theorem 2.
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he classes
5. Relationships between the complexity classes of the RAM and t

which are defineg by CPDAs with bounded counter length

icted form of con-
The classes G;(L(n)) are defined by using only a very restricte

; ierarchie of
ditional expressiong. If we drop this restriction we get another h

partial recursive functions,

Let I a {31,...,ar}
§(ai) =1 Via1

defined ip the

fined by
be a finite get ang let §:2X-— {1,...,r} be de

+
: L(n)) i
v¢++, T, Then for any function L: N%‘_)m% & class Hz( (
following way:

i) p, s, ¢» i are in H;(L(n)).

B Lg €U (L(n)) then A x,y [£(a(x,w),w)] 16 in 5} (L(n)).

1) Let ke N and 1ot ¢ by defined by the following conditional
expression (Me Carthy's notation):
f(x,w) = (91(1

o))
W)y f 1(%w),p, (x .w)—>f (x,%)5 000, (x,0) £, (209 W)
where:

1. ¢ (x V) - g (O( b( F’ (x,v),w),w),w)
j' ’ are tota) functions out of HI(L(H)) and ¥ ’11'

are total functions out of H

2. p (x,w) can be compogeq out of ex
3 B () ) ).

(where S'j, dj,x‘] {‘j

functiong 3

:(L(n)) or f = f or‘X = f.

pressions of the form
¥) = 0 by means of 9, A, V.

have the sape properties as the

'dj’.xj FJ of 1, )

v be the geta of inter
thie 8cheme,

Let 1 ®ediate points which belong to

Then £ 14 gp slement of H}(L(n)) if there exist
©19EN such they pop 811 x€N_, ve X% 4pe following holds:
Y< comax {x, d. L(l(w))% for al1 y¢ IPx,v-
iv) 1t ¢ is & class of functiong s

ueh that 1), 1), 111) hold,
then H;(L(n))c G.

The clagses H{(L(n)) are

e~
defined by "8N8 of more general conditional expr
8ions

func”
than the tlasses G;(L(n)) and thtrotore it is obvious that for each
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tion L the relation G;_’(L(n)) < H;(L(n)) holds.

Let M be a CPDA and let us assume that M alwaye starts with its head on the
leftmost cell of the input tape. Then M defines in a natural way a function
— * —

fyt L —R_. So fM(w) = fM(O,w) where f, is the function associated to M in

section 4. This leads to the following definition:
P(1(n)) = [ £: Zon [ IFCR (L(n)) such that £(v) = fow) Ywel'}
P(L{n)) = U B (L(n))
3

Similary we define G{L(n)) and H(L(n)).

Theorem 3: P(f(n)) = 6(f(n)) ¢ H(f(n)) C F(f(n)) = CR(f(n)) holds for any

RAM-honest function f: mo—)mo

Theorea 4: H(f(n)) ¢ 6(f(n)-log f(n)) and F(£(n)) ¢ E(f(n)-log £(n)} hold

for any CPDA-honest function f: Ro—)“o

In theorem 3 only the relation H(L(n)) ¢ P(L(n)) has to be proved and this

¢ of the relation P(f(n)) € CR(f(n))
]Jand [5] .

Proof goes along the lines of the proo

vhich vas given for slightly different machine modele in [4

To prove theorem 4 we have to describe the maximum operator by means of a re-

cursive scheme, Let f,g: N x Z*—-) No be arbitrary functions. We define a
0

funetion v, *
f,g mioxmon —_) “o by:

?
, the first i bits of f(x‘,vz}
vf’g(x’ipw) = max{ x! ] 1t OVX'£€TA 1y o(x,v) are equal
T -1 4
hen we have [f g] (x,w) = Vf’g(x,logzx,w). The function Vf’g can be define

bY & recursive scheme with conditional expressions of the general type and

this leads to the relation F(f(n)) ¢ H(f(n)-lo8 £(n))-
On the other hend each scheme out of Hz(f(n)) can be gimulated by a CPDA with

counter length f(n)-log f(n) (the factor log f(n) is needed to write the head

POsition in binary motation on the pushdown tape without destroying the head
Position) and this completes the proof.

2
18 a corollary ve get: P(f(n)) € cB(f(n)) and cn(f(n))cp(f(n)-(loc £(2))")

v e e

B

s g W s b ¢ e e

G K
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6. More general random agcess machines

; x+1
So far we considered only a very simple model of a random access machine (

. a RAM
is the only arithmetica) operation), We can show that the efficiency of

. itional
is not altered if we allow additional arithmetical operations or additi

i 1 instructi-
predicates which belong to the class Fi (for example the additiona

e
one x. ¢~ x.+ 1, TRA m if X, = x‘j do not increase the speed of a RAM by mor
1 J

than a constant factor).

Our methods can be extended to include random access machines with

‘ t the
more general arithmetical operations of the form xie— y(x provided tha

5)
maxizum word length is bounded by ¢-T(n).

. ared
Furthermore (in cooperation with R, Wejicker and G, Fleischhauer) we comp

the efficiency of the RAM with other machine models:

. ine
a., Let C;(T(n)) be the complexity classes which are defined by a mach

vhich has randop 8ccess 1o a k-dimensiona} storage. Then we have:

C;(T(n)) = C;(T(n)) Vk2

2

CR(T(H)) C €, (T(n)1og T(n))
b, Let €,(T(n)) be the COmplexity classes which are defined by a Turing
machine with 88sociative accegg to the memory (

see R, Weicker, [9] )-
Then we have:

“A(2(=) € ¢ (2(n) 10g (n))

CR(T(n)) C CA(T(n)1+£) for each £ > ¢
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