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ABSTRACT. Motivated by practical implementation-methods for 

recursive program-schemata we will define and study presetting tech- 

niques for push-down automata. The main results will characterize 

the languages of preset pda's in terms of types of iterated substi- 

tution languages. In particular when conditions of "locally 

finiteness" and of "finite returning" are imposed we get a feasible 

machine-model for a class of developmental languages. The accepted 

family extends to the smallest AFL enclosing it when we drop the 

condition of locally finiteness. At the same time this family will 

be the smallest such full AFL. If all conditions are removed, preset 

pdaJs exactly represent the family of iterated regular substitution 

languages, a sub-family of the indexed languages. Deterministic 

preset pda's are also studied, and the language-family they define 

is shown to be closed under complementation, generalizing a classical 

result. 

"Any theory ... formulates an ideal average 

which abolishes all exceptions at either end 

of the scale and replaces them by an abstract 

me an." 

in C. G. Jung: The Undiscovered Self. 

* This work has in part been supported by the Center for Mathematical 
Methods in the Social, Biological, and Health Sciences (SUNY at 
Buffalo), by NSF grant GJ 998, and by NATO grant 574. 
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I. INTRODUCTION 

Eventually we like to introduce what might be called: 

"developmental systems - a programmer's point of view", but we will 

not immediately emphasize it here. We rather follow the original 

approach which led to such implications and start with analyzing some 

automaton-theoretic concepts. 

Push-down automata represent the execution-mechanism of parame- 

ter-less recursion. They were successfully used in context-free 

language theory, occasionally in the theory of (monadic) program- 

schemata, and the deterministic version has been extensively analyzed 

in parsing. 

There has been a twofold motivation for presetting the amount of 

storage in machine-models with a stack-like external memory. First 

of all in most implementations there is a definite series of locations 

allocated as a push-down register, whenever it is required. Secondly 

familiar types of (single variable) recursion can most efficiently be 

simulated when the stack is implicitly used as a counter at the same 

time. In the latter type of application the machine will basicly 

recognize/execute instruction-sequences which appear on the input-tape, 

a not very common but certainly useful interpretation of input. 

By presetting a push-down automaton we mean that at the very 

beginning of a computation a certain stack-square is allocated as the 

maximum location (or "highest" point) to which the stack may grow 

during that computation. 

We wish to remark that if this were all, the accepted languages 

would still be context-free, but not all computations would terminate 

because the allocated space might be insufficient. The new feature 

is to let an overflow-indicator (or "interrupt") actively influence 

the computation. 

Therefore the machine-model will have two transition-functions: 

(to be used whenever the stack is not maximal) and ~ (to be 
top 
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used when the stack reached its preset maximum), both having well- 

known formats. 

There is one more practical concept never mentioned for ordinary 

pda's but relevant when the stack is going to be used as implicit 

parameter-value. It is the concept of an "empty" location, but this 

can only be argumented with more information about how we look at 

what can occupy locations. In the "squares" on the stack are pieces 

of program (or rather, pointers to subroutines). 

) al; a 2 

> * * * 

s 2 

When Cl is a recursive call, it will be removed from the 

current (top-most) location and the procedure-body called for will 

be pushed in the next one. When we return and find that a 2 is a 

recursive call as well, an "empty" location is created and no garbage- 

collectioning should happen as it would improperly destroy the 

counting. Empty locations in the body of the stack are filled with ~. 

2. PRESET PUSHDOWN AUTOMATA 

We give a formal description of the general model. 

Definition. A preset pda is an 8-tuple 

~= <Q, Z, F, 6, 6to p, q0' Z0' F> with Q (states), 7. (inputs), 

F (stack-symbols) , q0 (initial state) , Z 0 (initial stack-contents), 

F (final states) as usual, and for all p e Q, a E 7 u {i}, Y e F 

6 (p, a, Y) a finite set of instructions of the form (q, #), (q, A), 

(q, ~A), (qr AB) (A, B e F) and, similarly, 6top( p, a, Y) a 

finite set of instructions of the form (q, #), (q, A). 
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There can be more general definitions that allow for writing 

longer words per move, but it can be shown (see [55]) that there is 

no gain in power. Observe that this version is close to the program- 

cruncher we motivated it with, and 6to p for instance never writes 

beyond the permissible limit. The given version is a normal form. 

Here is an example of a preset-pda, with notions of accepta- 

bility defined (as usual) by empty store and final state. 

2 
Example. A preset pda for L = {a n I n ~ I} would operate as 

follows. Say the stack is preset at k, with Z 0 as bottom- 

marker, with instructions 6(state, a, Z0) = {(state, Z0Z)}, 

6(state, a, Z) = {(state, ~Z)} it will make k-i moves on input a 

and push a Z to the top. It reverses with 6top(State, a, Z) = 

{(state, ~)} and returns to the (first) Z 0 it finds downwards on 

l-input.- Then it lifts Z 0 two locations higher (on l-input) and 

repeats the same cycle as before over and over again. When, lifting 

Z 0 , it would have passed the preset limit it stops in a non-accepting 

state, otherwise it goes on until at last Z 0 is lifted into the 

maximal location and sweeps down on 6top(State, a, Z 0) = 

{(final state, #) }. 

.k+l.2 
At a successful termination k + (k - 2) + ... + 1 = ~-~--) 

(an integer) moves on input a were made, and the machine will 

accept all and exactly all the squares. 

Instantaneous descriptions of a preset pda are of the form 

(state, remaining input, push-down contents, n), where n is the 

presetting relevant and constant for the particular computation. 

Definition. A language L is called a preset pda-language if and 

only if a preset pda ~ as above exists such that 
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L= {xE ~ 

n > i}. 

I 3qeF(q0, x, Z0, n)~- (q, i, ~, n) for at least one 

In the definition it is emphasized that more than one presetting 

might actually be appropriate for acceptance. 

As usual for non-deterministic machines there may be both 

accepting and rejecting computations for an input-string, but it 

will still be counted in the language. 

3. THE LANGUAGES OF PRESET PDA'S 

Here we will develop a generative (as opposed to analytic) 

description of preset pda's in terms of their languages. The 

general theory rightaway leads into the algebraic F-iteration 

grammars developed in [57] and made more explicit in [103]. Most 

general results proved for various parallel rewriting systems follow 

from a few Iuheorems in this area ([57]). Here we only give a few 

of the abstract concepts that were developed and found useful. 

A family of languages will be defined as usual, but in addition 

we always assume closure under isomorphism. 

Definition. Let 

extension of F 

~J T k * 
k>0 ($) n ~ , 

alphabet. *) 

F be a family of languages. The hyper-algebraic 

consists of all languages of the form 

where T is an F-substitution and Z an 

When F is a quasoid (i.e. containing C and closed under 

R and finite substitution), the hyper-algebraic extension becomes 

an AFL closed under iterated F-substitution. Several algebraic 

*) Footnote. In later generalizations hyper-algebraic extensions 
were defined differently and more widely! 
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results were obtained. 

The characterization theorem we will prove for preset pda 

languages is an interesting analogue of a classically known theorem 

for context-free languages (which can be described as the algebraic 

extension of the family of regular languages~)). 

THEOREM. The family of preset pda languages is the hyper-algebraic 

extension of the regular languages. 

Proof. 

Let T be a regular substitution, ~a = <Qa' E, ~a' qa' Fa> 

a finite automaton for T(a). ~a may have A-transitions, and 

we will in fact for simplicity assume that always qa ~ Fa" Non- 

empty stack-locations will have a contents as shown below. 

q; a I 
P 

where q E Qa' representing that in generating a member of T(a) 

we got as far as q in the finite automaton for it. 

The idea is not to generate the word from T(a) immediately as 

a whole, but symbol by symbol and each time a next symbol is gener- 

ated to use it to expand its T-image to the preset top first before 

proceeding with the next symbols. Thus we generate T(S) in 

strictly leftmost manner and use the finite automata as a finite code 

for the (possibly) arbitrarily long strings we can rewrite individual 

symbols with. .a 
s 

/" ,q in ~a 

J ...... ~ b[ 

// % 

*) Footnote. See van Leeuwen, J., "A generalization of Parikh's 
theorem in formal language theory", Tech. Rep. 71, Dept. of Comp. 
Sciences, SUNY, Buffalo, 1974. 
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Here is how the instructions look like. We only give their 

basic schemes. First realize that expansion to the present top is 

entirely on A-input, only 6to p checks input. Therefore 

6(state, A, [q; ~a ]) = {(state, [r; ~a]) I r ~ 6a(q, A)} t2 

{(state, ~) I ~rCFa r c 6a( q, A)} 

{(state, [r; OZa] [qb; %]) I b e Z and r c 6a( q, b)} 

{(state, ~[qb;~b]) I b e 7 and ~rCFa r E 6a(q,b)}. 

Note that we may or may not stop in a final state when generating a 

word of T (a). When the preset maximum (which actually stands for 

how far we iterate) is reached, then ~top(State, b, [q; %]) = 

{(state, [r; 6~a]) I r c ~a(q, b)} 

{(state, #) I 3re F r ~ 6a( q, b)} 
a 

and the obvious rules on A-input for traversing possible 

A-transitions. Successful termination now is actually on empty 

store but as standard we may non-deterministically send the machine 

in a final state at the same time. 

The formal proof of the reverse is tedious but follows the 

same lines as the restricted case worked out in detail in [55]. Here 

we give the basic type of constructs. 

Let ~q = <Q, Z, F, ~, ~top' q0' Z0, F> be a preset pda 

recognizing L. The iterated (regular) substitution T for L 

will have basic symbols of the form 

[~, A, B, q] (p, q e Q, A e F, B e F u {~}) 

with the following semantics. 

[p, A, B, q] (B £ F): when in state p with A under the 

pointer, (after a local move) it will write B and move 

upwards, later returning in state q (which will then 

continue on the B) 

(p, A, ~, q] : similarly, but (after a local move) 

it will empty the location and move upwards, later 
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sweeping down in state q. 

Thus "variables" will represent recursions. The "terminal" 

symbols will actually be coded as a, and later finish with the 

well-known cycle a ÷ a + ~ (where ~ ÷ ~ and ~ outside the 

terminal range) to enforce synchronous termination. There is a 

problem there when subsequent expansions and 6top-instructions are 

on A-input, which in the iteration would be an untimely termination 

of that branch. However, the hyper-algebraic extension of regular 

languages is closed under arbitrary homomorphisms (from a more 

general result in [57]), and we may as well let the machine read $ 

instead of l all the time and erase it later from the language. 

Replacement rules become 

[p, A, B, q] ÷ {wq[Pl, A I, B I, ql]w2 ... wk[Pk , A k, 4, q]} I 

starting in state p with A on the stack ~ will do 

a (local) computation on Wl input and recur in state 

Pl writing BA 1 on the stack, then all possible strings 

w i for local computation from qi-i on Bi_ 1 leading 

to Pi with A i on the stack (note the final return 

state)} u 

{wI[Pl , A I, B 1, ql]w2 ..- wk[Pk , A k, B k, qk]W--k+l I 

similarly, but now Wk+ 1 also inducing a local compu- 

tation from qk on B k emptying the location and 

returning in state q} v 

{wl[Pl , A I, q] I w I inducing a local computation from p 

on A eventually leading to state Pl and stacking BAI}° 

It is straightforward that the (possibly infinite) set of 

strings by which [p, A, B, q] may be rewritten is a regular 

language. The construction goes through for B = ~ as well. Note 

that by previous assumption now all wi's are ~ X. 

The symbols [p, A, q] represent when ~top has to be used. 
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The rules are 

[p, A, q] ÷ {w I (unbarred this time) w induces a local 

computation with 6top from p and A finally emptying 

the location and returning in state q (w is M ~ by 

assumption)} 

With appropriate start rules (a presetting 1 is to be treated 

separately, but there is closure under union) the generated iteration- 

language is exactly L. 

It follows that preset pda languages form an AFL (even a full 

AFL). Later we will see when or when not you get an AFL with the 

restricted preset pda-models. 

COROLLARY. Preset pda languages are indexed, and (hence) strictly 

included in the context-sensitive languages. (see [56]) 

4. DETERMINISTIC PRESET PDA'S 

As opposed to classical machine-models this time it is not 

immediately clear when a preset pda should be called deterministic. 

Obviously 6 and 6to p have to yield applicable instructions 

unambiguously and should be chosen as for deterministic pda's, i.e., 

with regards to the present modifications. But what about presetting? 

It can be shown that as far as computational power is concerned, the 

stack in preset pda's need never grow more than linear in the length 

of input strings and that would reasonably limit choices when we 

were to preset the stack functionally in the input (in global theory 

it may be different). We will argue that another form of 

"determinism" is more useful here, but illustrate it with an example 

first. 

Example. A preset pda for L = {ww R I w e Z } would operate 
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as follows. It copies input in the stack until the presetting is 

reached, then with 6top it changes mode and removes symbols from 

the stack while checking against input. 

It is important to observe that for any word ww R c L there 

can be only one presetting of the given machine which would lead to 
2 

acceptance. In fact, the machine for {a n I n > i} designed before 

had the same feature and was structurallystrong enough to "enforce" 

the appropriate presetting of the stack. 

Definition. L is called a weakly deterministic preset pda language 

if there is a preset pda ~ with deterministic 6 and 6to P 
* 

accepting L such that ~weL ~ ! n (q0' w' Z0' n) ~-- (q, l, 7, n) 

for some q E F, with the preset maximum location reached at least 

once. 

All deterministic context-free languages are weakly deter- 

ministic preset pda, but we get many more. 

The next result is a generalization of a classical theorem on 

deterministic pda's. 

THEOREM. The family of weakly deterministic preset pda languages 

is closed under complementation. 

The main step in the proof is to eliminate non-terminating 

computations on l-input at r~un-time (there can be no pre-calculation 

as is the classical proof for ordinary deterministic pda's). Tables 

stored in all locations to record past symbol-state configurations at 

that location are used to check for periodicities. 
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5. LOCALLY FINITENESS AND FINITE RETURNING 

Returning to the original motivation, preset pda's as formalized 

so far may not yet be what computer scientists would call "practical". 

Further restrictions that are necessary were extensively discussed 

in [55], and basically relate to the original idea that in the stack- 

locations procedure-bodies would be stored. Implementation leads to 

bounds on size and, in slightly informal terminology, we would like 

preset pda's to have the following properties: 

locall~ finiteness - a fixed bound on the length of local 

computations, i.e., with non-moving pointer. 

finite returnin 9 - a fixed bound on how many recursions there 

can be from a base-location. 

Here is the relation to developmental systems. 

THEOREM. The family of languages defined by locally finite preset 

pda's which have the finite return property coincides with the 

family CROL (or EOL). 

The proof is in [55] but follows the same lines as the general 

result in section 3. 

This representation for CROL-languages is very powerful, and of 

interest also from a schematologist's point of view. 

Finite returning imposed alone would permit machines to do 

arbitrary long calculations on the same location. 

THEOREM. (Representation theorem) L can be accepted with a preset 

pda that has the finite return property if and only if there is a 

l-free regular substitution T and a language L' e CROL such that 

L = T(L'). 
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The virtue of this theorem, that it directly uses the machine- 

representation and the previous result, contrasts with more abstract 

approaches. 

In particular, the following results can now be derived very 

easily. They were independently also given in [7] in an entirely 

different approach. 

THEOREM. The least AFL enclosing CROL at the same time is the least 

such full AFL. 

THEOREM. (Representation theorem) L belongs to the least full AFL 

enclosing CROL if and only if L = T(L') for some L' e CROL and 

A-free regular substitution T. 

The results were found through the machine-approach. 


