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ABSTRACT A new type of Lindenmayer systems, called Structured 0L-systems (SOL sys- 

tems)~is studied which gives a formal tool for investigation of structured 

organisms and structurally dependent developments. It is sho~na that a 

restricted version of SOL-systems is equivalent to codings (length-preser- 

ving homomorphisms) of OL-Languages. The properties of unrestricted SOL- 

systems are then studied. It is for example shown that the languages 

generated by them properly include the languages generated by extended table 

OL-Systems. 

I. Introduction. 

Lindenmayer systems have been the object of extensive study during recent years. The 

systems, also called developmental systems, were introduced in connection with a theo- 

ry proposed to model the development of filamentous organisms. The stages of develop- 

ment are represented by strings of symbols correspondings to states of individual 

cells of an organism. The developmental instructions are modelled by grammar-like pro- 

ductions. These productions are applied simultaneously to all symbols to reflect the 

simultanity of the growth in the organism. This parallelism is the main difference 

between Lindenmayer systems and ordinary generative grammars. Another difference is 

that in most of the versions of Linde~nnayer systems only one type of symbols (terminals) 

is considered which means that all the intermediate strings in a derivation are 
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strings in the generated language. The simplest type of Lindenmayer systems are the 

OL-Systems [61] in which every symbols is rewritten independently of its neighbours. 

When we compare 0L-systems and the corresponding class of grammars, context-free 

grammars, we see that OL-systems are missing one important feature of context-free 

grammars, namely they are not structuring the generated strings. A derivation in a 

context-free grammar can be represented as a derivation-tree which describes the 

structure of a string with respect to this derivation. We can consider the analogous 

derivation tree for a derivation in an OL-system but in this case the branching nodes 

are labelled by terminal symbols rather than nonterminals (grammatical categories) and 

the tree does not reflect the possibly ihteresting structure of an organism. 

In this ps@er we introduce Structured OL systems (SOL-systems) which not only 

allow to describe the structure of generated strings but also give a formal tool to 

study the cases when the development is structurally dependent. A simple example is 

the case when all the stages of a developing organism consist of certain fixed number 

of partes and there are different development rules for every part of the organism. 

From a mathematical point of view the SOL-systems give another interesting type of 

context-sensitivity in parallel rewriting (compare with IC01T). A structured organism 

is represented in an SOL-system as a labelled tree. The labels of the leaves of the 

tree represent the individual cells of an organism, the labels of its branching nodes 

represent the structural "units" of the organism. 

An SOL-system is given by a single starting structure and a finite number of 

developmental rules. At every stage of the development the rules are applied simul- 

taneously to all cells and structural units (nonterminals) of an organism. According 

the rules each structural unit can change its state or disappear (but not divide) and 

every cell can be replaced by a substructure, i.e. it can divide into several parts 

each of which can be either a single cell or another structured part. At every step a 

cell can divide only into a limited number of subparts but there is generally no limit 

on the number of subparts of a structural unit which can be created during the 

~ICOI : K. Culik II and J. Opatrn#~ Context in parallel rewriting, in this volume. 
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development, i.e. there is generally no limit on the number of sons of a branching 

node. 

Types of structural units will be represented by labels from an alphabet which 

corresponds to the nonterminals of a context-free grammar. We will define SOL-systems 

in such a way that rewriting of a nonterminal may depend on its father but not on 

its sons in a tree. We consider parallel rewriting~ at every step of a derivation 

all labels in a tree must be simultaneously rewritten. The language generated by an 

SOL-system is the set of 8~1 frontiers of the generated trees. 

We will consider a special subfamily of SOL-systems, called simple SOL-systems, 

in which essentially only labels on leaves (individual cells) are rewritten, i.e. in a 

simple SOL-system it is possible to create new structural units but once a unit is 

created it never changes its state. We will show that the languages generated by simp- 

le SOL-systems are exactly length preserving homomorphisms (coding) of OL-languages 

[10,20]. Then we will investigate the properties of the family generated by unrestric- 

ted SOL-systems (SOL). We will show that SOL is closed under Kleene operation (u,.,~) 

and under e-free homomorphism but not under intersection with a regular set. 

The closure result will help us to establish the relations of SOL to other known 

families of languages. It is easy to show that SOL ~ TOL [81] and then, using the 

closure results, that SOL ~ ETOL [89]. The fact that the later inclusion and therefore, 

of course, also the former is proper follows from the result that SOL is incomparable 

with the family of context-sensitive languages. Actually it will be shown that any 

recursively enumerable set over T with an end marker can be expressed as an inter- 

section of an SOL language over an extended alphabet with the set of all the terminal . 

strings with the endmarker. 
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2. Preliminaries. 

We assume the knowledge of the basic notions and notation of formal language 

theory, see e.g. [HU+,Io2]. We start with a slightly modified, but equivalent, defi- 

nition of extended table OL-systems [89], involving as special cases OL-systems ~I] 

~oL-system~ [3~] ~d ~OL-systems [81]. 

Definition: An extended table L-system without interaction (ETOL szstem) is a 

4-tuple G = (V,T, @,~) where 

(i) V is a finite nonempty set, the alphgbet of G, 

(ii) T [ V, the terminal alphabet of G, 

(iii) @ is a finite set of tables. @ = {PI,...,Pn} for some n ~ I, where each 

V )( V ~ . Pi Element (u,v) of Pi' I < i < n, is called a production and 

is usually written in the form u + v. Every Pi' I < i < n, satisfies the 

V ~ following (com~letness) condition: For each a { V there is w [ so that 

(a,w) 6 Pi' 

(iv) ~ e V +, the axiom of G. 

Definition: An ETOL-system G = (V,T, @,a) is called 

(i) a TOLusystem if V = T; 

(ii) an EOL-system if @= {PI}; 

(iii) an OL,system if V = T and @ = {P~}. 

Definition: Given an ETOL-system G = (V,T,P,~) we write x ~ y if there 

~. ~. V ~ exist a I ..,a k E V and Yl "''Yk £ so that, x = al...ak, y = yl...yk and 

for some P'I 6 @ , aj ÷ yj ~ Pi' j = 1,...,k. 

The transitive and reflexive closure of binary relation ~ is denoted by ~---> ~. 
G G 

Definition : Let G = (V,T, ~ ,q) be an ETOL system. The language generated 

by G is denoted by L(G) and defined as L(G) {w ~ T ~ = : c ~ w}. 
G 

Notation: A language generated by an XYZ system, for any type XYZ will be called an 

XYZ-lamguage. The family of all the XYZ languages is denoted by XYZ. 

i" IHUI : J.E. Hopcroft and J.D. Ullman: Formal Languages and their Relation to 
Automata, Addison-Wesley, 1969. 
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Before we can define SOL-systems we need to introduce a notation for labelled 

trees (forests). We will recursively define labelled rooted ordered forests and ex- 

pressions denoting them. We are not interested in names of particular nodes in a 

forest, i.e. we actually consider the equivalence classes of isomorphic forests. We 

consider forests with labels of leaves from one alphabet and labels of branch nodes 

(nonleaves) from another distinct alphabet. 

Definition: Let T,N be two alphabets, T ~ N = ~, 

reserved symbols not in T u N. 

(i) 

and let [ , ~ and k be 

is a forest expression and denotes the empty tree (forest), i.e. the tree 

with no nodes. 

(ii) For a ~ T, a is a forest expression and denotes the tree with a single node 

(root)labelled by a. 

(iii) If e],e 2 are forest expressions denoting nonempty forests ~ , ~ consisting 

from trees ~1'''''am and B 1,...,Bn, respectively, then ele 2 is a forest 

expression and denotes the forest consisting from trees ~1,...,~m,S1,...,Sn. 

(iv) If A ~ N and e is a forest expression denoting nonempty forest ~ consisting 

of trees ~1,...,an then A[e] is a forest expression and denotes the tree 

with the root labelled by A and the sons of the root,from left to right,the 

the roots of subtrees al,...,mn. 

Notation. The set of all the forest expressions (forests) over alphabets N (labels 

of branch nodes) and T (labels of leaves) is denoted by (N,T)~. Let (N,T 4 = 

(N,T)~ - {k}. In the following the elements of (N,T)~ will be called structures 

(over N,T) and we will not distinguish between an expression and the forests denoted 

by it. 

Notation. Let a be a particular occurence of symbol a in forest expression ~. The 

label at the father of the node labelled by the considered occurence of a will be 

denoted by Father (a). This notation will be used in such a way that there will be 

no confusion of which oceurence of a is being considered. 

Notation. Mapping Y (yield) maps k to empty string (denoted by s) and a forest in 

(N,T~ to the string of the labels of its leaves (from left to right). 
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3. Structered OL Systems. 

Now we are ready to define formally structred 0L systems. 

Definition: A structured OL-schema (SOL-system) is a tuple G = (N,T,P,a) where 

N is an alphabet of nonterminals (states of structural parts), 

T is an alphabet of terminals, 

P is a finite set of productions from 

~ (N,T)+ , the initial structure. 

The productions of an SOL-schema will be written in the following form (all 

possible types are given). A ÷ C, A.B + C, a + ~ and A.a ÷ ~ where A,B E N, 

C ~ N u{~}, a ~ T, ~ e (N,T)~ and "÷" "." are special reserved delimiters. 

Definition: We write ~ ~ 8 for ~ ~ (N,T~ B 6 (N,T)~ where ~ = x I x2...x n for 

x iE NuTv{[,]]}, ] < i < n, if there exists 8' = w]w2...w n so that for I < i < n: 

(i) i f  x i £ {I,I} then w i = xi; 

(ii) 

(iii) 

(Nu  (N×N)) × ( N v ( k } )  k~(Tu(N×T)) x ( N , T ) ~ ,  

if x. E TuN then either x. + w. E P or 
I l l 

A . x  i ÷ w i e P whe re  A i = f a t h e r ~ ( x i ) ;  

is obtained from B' by repeated replacing of each subexpression of the 

form XXY,X[Z] or A[X] by XY,Z or X, respectively, until either B = X 

or there is no occurenee of X in ~. 

Let ~ be the transitive and reflexive closure of relation ~ . 

Definition: The set of structures generated by G is denoted T(G) 

the set T(G) = {~ : a ~ ~}. 

The language generated by G~ denoted by L(G), is the set of the yields of all the 

structures generated by G. Formally L(G) = (Y(~) ; ~ET(G)}. 

D_efinition: A structured OL-schema G is called a structured OL-system (SOL-system) 

if it satisfies the condition of completness: For every ~ ~ T(G) there exists 

such that ~ =~ 8. 
G 

Our definition of completness requires that for every structure which can be 

developed from the starting structure there is a "next step" in development. After 

some definitions and auxiliary results it will be shown that the choice of a more 

restrictive definition of completness (strong completeness) requiring existence of a 

and defined to be 



222 

"next step" forevery structure in (N,T~ does not change the families of sets of 

structures or languages generated by SOL-systems. 

Definition: An SOL-system G = (N,T,P,~) is called full if 

P ~ {s ÷ s}u ((N×~) × (~u{~})) u((N×T) × (~,T)~, 

where N = N - {S), S being the root of o, i.e. the father-context appears on the left 

side of every production with the exemption of the production which keeps unchanged 

the (reserved) label of the root. 

Definition: SOL-systems G I and G 2 are called equivalent if L(G]) = L(G2). 

Lemma ]: For every SOL-system there exists an equivalent full SOL-system. 

Proof. Given an SOL-system G = (N,T,P,~) we construct a full SOL-system 

G' = (N',T,P',~') where N' = N u {S) for a new symbol S not in N u T, ~' = semi, 

arid P' = {A-X+w : A.X÷wEP} u {A-X÷w : X÷w 6 P and A ~ N'} u (S÷S}. 

Clearly, L(G') = L(G). 

Definition: An SOL-system G = (N,T,P,~) is called strongly complete if for every 

e (N,T)+ there exists B such that ~ ~ ~. 
G 

Theorem I: For every SOL-system G there exists an equivalent strongly complete SOL 

system. 

Proof. 

system 

By Lena I we may assume that G = (N,T,P,o) is full. We construct the SOL- 

G' = (N~T,P'~a) where P' = P u {A.X÷X : A 6 N,X 6 N u T and there is no 

production of the form A.X÷W in P}. 

Clearly, G' is full and L(G') = L(G). 

Now we will study a special case of SOL-system, called simple SOL-system (SSOL- 

systems), in which essentially onl~ ~ terminal symbols are rewritten at every step of 

a derivation. We will show this subclass of SOL-systems generates exactly the same 

family of languages as several other types of systems known already to be equivalent~ 

namely FMOL systems [9]~ E0L systems [35], and length preserving homomorphisms of OL 

languages EIO,20]. This does not mean SSOL-systems are without interest, on the 

contrary they give an alternative mechanism for the description of languages from a 

very natural class with the advantage to exhibit explicitly the structure of generated 

objects. They also contribute another evidence to our opinion that the family of the 
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length-preserving homomorphisms of OL-languages is a very natural class of languages. 

Definition: AN SOL-system G = (N,T,P,q) is called simple (SSOL) if 

P = {A+A : A ~ N} u P' where P' c (N×TuT) × (N,T)~. 

In the following we omit the "identity productions" of form A÷A whenever an 

SSOL-system is exhibited. 

Notation. Let COL = {h(L) : L E OL, h is a length-preserving homomorphism}. 

Lemma 2 : COL c SSOL. 

Proof. Let G = (Z,P,~) be an OL-system and h be a homomorphism from Z ~ to T *. 

Clearly, we can assume withnout loss of generality that Z ~ T = ~. 

Construct SSOL system G' = (Zu{S},T,P',o') where 

(i) S is a new symbol not in Z u T. 

(ii) Let o = a I ...an, a i c Z for i = 1,2,...n. Then 

o' = S ia l  [ h ( % ) ] a  2 [ h ( % ) ]  . . . .  a n [ h ( a n ) ] ] .  

( i i i ~  P' = { a ' h ( a ) + b 1 [ h ( b ~ ) ] % [ h ( b 2 )  ] . . .  bk [h (b~) ]  : 

: a,b 1,b2,...,b kE ~ and a+blb 2...b k ~ P}. 

Clearly, h(L(G')) = L(G). 

Lemma 3: SSOL c COL. 

Proof. Let G --; (N,T,P,o) be an SSOL-system. By modification of Lemma 1 we can 

clearly assume that P ~_ (NxT) x (N,T)~ with "identity" productions omitted. Let 

Z = N×T and let g be the mapping from (N,T). into Z * which maps a structure 

E (N,T)~ to the string (A 1,a I) ... (An,a n ) such that a 1...a n = Y(~) and A.m = 

father (a i) for I < i < n. In pa-~icular g(k) = s. We construct OL system 

G' = (Z,P',o') where o' = g(o) and P' = {(A,a)-~g!AIB I) : A E N, a E T and 

A.a÷ S ~ P}. 

Note that if forest B does not include a tree consisting from a single node only, 

then g(AIBI) = g(S). Let h be the homomorphism from Z to T defined by 

h((A,a)) = a for every (A,a) E Z. 

It is easy to verify that h(L(G')) = L(G). 

Theorem ~: SSOL = COL = E0L = FMOL. 

Proof. By Lemma 2 and 3 we have the first eq[uation; the definitions of FMOL languages 

and other results are in [9,20] 
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h. Closure Properties of SOL. 

To show the relation of SOL to other known families of languages we will need 

some closure results which will be shown first. The most interesting is the closure 

of SOL under s-free homomorphisms which in particular means that codings (length- 

preserving homomorphisms) do not increase the descriptive power of SOL-systems. 

Theorem 3: Family SOL is closed under s-free homomorphisms. 

Proof. Given an SOL language L over T and a homomorphism h from T * to Z ~ we may 

assume by Lemma I that L is generated by full SOL system G = (N,T,P,o) and we 

construct SOL-system G' = (N',Z,P'o') as follows. 

Let N' = NuTv(N×T) u {A : A e N} u {Q} where Q is a new symbol not in NuT. 

Let f he the homomorphism from (N,T)~ into (N',Z)~ defined as follows. The forest 

expression f(a) is obtained from expression e by replacing every terminal symbol from 

T, say a, by subexpression a [a lQ[a2 ]Q[a3]  . . .  Q[an~ ] where h(a) = a l a 2 . . . a  n . 

Let e' = f(~) and productions P' be constructed as follows: 

(i) A+A is in P' for every A in N. 

(ii) A.a+(A,a) is in P' for all A in N and a in T. 

(iii) a.t÷t is in P' for all a in T and t in Z. 

(iv) S÷S is in P'. 

(v) If A.B÷X is in P then A.~X is in P' for all A,B in N and X in N u {l}. 

(vi If A.a÷~ is in P and h(a) = ala2...a n then (A,a)-a1÷f(a) is in P' for all A 

in N and a in T. 

(vii (A,a)÷l is in P' for all A in N and a in T. 

(viii Q÷~ is in P' 

(ix) Q't÷~ for every t in Z. 

Clearly, in any derivation in G' the productions (i)-(iii) and the productions 

(iv)-(ix) can be used only in alternative steps, namely, the former in odd steps and 

later in even steps of any derivation. Realizing this it is straigthforward to verify 

that L(G') = h(L(G)). 

Theorem 4: The family SOL is closed under union, concatenation and star. 

Proof. Let G I = (N],T~,PI,~ 1) and G2= (N2,T2,P2,o 2) be SOL-systems. Assume that 

N I m N 2 = ¢. 
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To show the closure under union we construct an SOL-system 

follows. Let N 3 = N tun 2u{S,Q} 

Assume Y(o I) = al...a n. Let o 3 

+o2,Q.ai÷X for i = 2,...,n}. 

(N3,T I ~ T2,P3,o 3) as 

with S and Q new symbols not in N I u N 2 u T I u T 2. 

: S[aiQ[a2...an] ] and P3 : PIUP2U {S'a1÷ol, S.a1+ 

Clearly, L(G3) = L(GI) u L(G2). 

To show the closure under concatenation we construct SOL-system (N4,T ] u T2,P4,~4) 

as follows. N 4 = NIu N 2U{S,A,B,C,D,E,F,H,Q} where S,A,...,Q are new symbols. 

Assume Y(o I) = a1'''an and Y(o2) = bl...bm. Let ~4 = s[AEc[al]E[a2"''an]]A[D[bl]E 

= PI u P2U P¼ where P~ consists of the following productions: P4 

(I) A÷A (II) A÷B 

A" C÷C B. C+F 

A-D+D B'D+H 

A • E÷E B • E+Q 

C'a1+a I F'a1+o I 

D'b1+b I Q-a.÷l 1 

E.a ÷a.m m for i = 2 , . . . , n  H.bl*o 2 

E.b.÷b. for i=2,...,n Q.b.+X 
1 1 1 

for i=2,...,n 

for i=2,...,m. 

Productions of group (I) allow to delay the start of the generation of strings 

in L(G I ) or L(G 2) to assure that even by parallel generation all strings in 

L(GI).L(G 2) are obtained. Once the production A÷B is used the productions of group 

(II) assure the start of generation from o I by productions PI or from a 2 by produc- 

tions P2" It is straightforward to verify that L(G 4) = L(GI).L(G2). 

Finaly, to show the closure of SOL under star we construct SOL-system 

(N5,TI,P5,a 5) as follows. Let 

bols not in N I v T I. Assume 

= A [ C E a l b E a 2 % . . . % ] ] .  Let 

tions: 

N 5 = N I~ {S,A,B,C,D,E} where S,A,B,C,D,E are new sym- 

O1 = ala2"''a "n Let o 5 = S[aiQ[a2a3...an] ] and 

P5 = PI U P' where P' consists of the following produc- 
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S+S A.C+C 

S.a1+e~ 5 A.D+D 

S.a1÷l B.C÷E 

Q+~ B. D+Q 

Q.ai+l for 2 < i < n C-a1+a I 

A÷A D.a.÷a. for 2 < i < n 
1 1 

A÷B E.a1÷~ l 

It is straigthforward to verify that G 5 generates only strings in L(G I).~ To 

see that all such strings are generated we observe that S ------~ S[~S[~S[~...S[e]]...]] 
G 5 

and tha t  ~_____~k a~------~B[C [al]D [a2a3...an]]~--->B [E [al] Q[a2a3 . , ,an]]~>B[E [~I]]~----->B[E[8]] 

for all k >0 and 8 in T(GI). Therefore for any m> 1 and B I ..... 8 m in T(G I) 

w~ have ~__~ki i ] ]  a--------~> ~ B[E[~ for I < i < m and by suitable choice of ki, 

I < i < m, we can "synch ron ized"  d e r i v a t i o n  S ~ *  S [B [E [B I ]  ] S [B[E[62]  ] . . .  

. . .  

Since ~5 -------> ~ also e g L(G5). 

5. Relation of SOL to other Families of Languages. 

First we show that SOL-systems can simulate TOL-systems and then using the clo- 

sure of SOL under e-free homomorphisms this result will be generalized to ETOL-sys- 

tems. It is easy to see that these results can be further generalized to (E)TOL-sys- 

tems with some restrictions on the sequences of productions which may be used in a 

derivation. 

Lemma ~: TOL ~ SOL. 

Proof. Given TOL system G = (T,{PI,...,Pn},~) we construct SOL-system 

G' = (T,N,P,~') where N = {O,l ..... n}, ~' = 0[~] and P = {i.a÷w : a÷w ~ P.}U 
l 

U{i+j : ig N, j ~ N - {0}} U {O-a÷a : a a T}. 

Clearly, L(G') = L(G) and therefore T0L ~ SOL. 

The following lemma shows that in certain restricted manner every recursively 

enumerable set can be represented by an SOL-system. 

Lemma 5: Let L be a recursively enlmlerable set over Z and let @,@ be not in Z. There 

e x i s t s  era. SOL language L'  c (Z u { $ } ) ~ }  such t h a t  L {# }  = L'  f] 2m{@}. 
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P r o o f .  I t  f o l l o w s  f r o m  r e s u l t s  i n  - -  ~fLG,H~P]; s e e  f o r  e x a m p l e  Lemma 1 i n  " ~LpjCthat  L 

can be generated by a phrase-structure grammar G = (N,T,P,S) with productions only 

of the form A÷B, A÷BC, AB÷AC, A+a or A÷s for A,B,C ~ N and ae T, i,e. there are only 

context-free or "left-context-sensitive" productions in P. We can then construct SOL 

system G' = (N',T',P',o) where T' = T U {$,~}, N' = N u N 2~{A : A e N} u {Q} for 

(ii) If A+a, B+b are in P and d is in T u {$} then the following productions are 

in P'. 

A-d+a 

(A,~)-~÷a QIhl 

L#+~# . 

(iii) If A÷a is in P then D.A÷Q is in P' for every D in N. 

If A÷B is in P then D.A÷B is in P' for every D in N. 

If A÷BC is in P then D.A÷(B,C) is in P' for every D in N. 

If AB+AC is in P then A.B+C is in P'. 

Let h be the homomorphism from (NuN 2U{A : A6N}) ~ into N ~ defined by 

h(A) = h(A) = A for every A in N and h(A,B) = AB for all A,B in N. It can be verified 

(by induction on the length of a derivation) that if o ~ ~ then ~ must be of the 
G' 

IGI: A.V. Gladkij, Formal grammars and languages (in Russian) Mir, Moscow, 1973 

IHI: L.H. Haines, A representation for context sensitive languages, Transaction of 
the Amer. Math. Society, to appear. 

IP]: M. Penttonen, LCS = CS, t o  a p p e a P  in  I n f o P m a t i o n  a n d  C o n t r o l .  

Q not in NuTu{$,#}, 0 = S[$ #] and P' is defined as follows. 

(i) For all A,B,C in N and a in T u{$} the following productions are in P'. 

A.B÷B (A,B) .a÷$ 

(A,s)-C+(B,C) ~ 

(A,~). (C,D)÷(B,C) Q.a÷X 

A.(mC)÷B A. # ÷ # 

A.~+B ~. # ÷ $@ 

(A,B).~+(B,C) (A,B). #+~ [#] 

A" a-~$ 
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form X1[tiX2Ft2X3[...Xk_1[tk_iXkFtk~]7...7]]_ ~ . . ~ ~ ~ - ~  w h e r e  t.l is in Tu{$} for 

i = 1,...,k, X.l is in NuN 2 for i = I,...,k-I and X k is in NuN2u{A : A~N} and 

h(X1X 2 . . .X k) i s  in L(G). Moreover, i f  t l t 2 . . . t  k is  in T* then a lso  t l t  2 . . . t  k is  

in L(G). Thus L(G')g_L(G)nT*{#}. 

To show the reverse inclusion we observe that every string x in L(G) can he 

generated by a derivation S ------->~ ~ N ~ w -------> x such that w ~ and we do not use the 

productions of the form A÷a in the derivation S -----> w and on the other hand we 

use only such productions in w -------> x. Further we can see that 

(i) If AIA2...A n -------> BIB2...B m for A. in N for I < i < n and B. in N for I < j < m 
G m U 

then there exist t t , . . . ~ t n ~  S l , . . . , s  m in Tu{~)} such tha t  

%[tl%[t2 A~b"%-~[tn-~ % [ t n ~ ] ' ' ' ] ] ]  G, Bl[sl%[s2 h L . .  

• "- ~-1 [Sm-l~[Sm~]'"]]l" 
(ii) If A.÷a. £ P for I < i < k then 

1 1 

% [tl%[t2"' "~-1 [tk-l~[tk~l-]"" '~] 7 ,  % [a~% [a2"" "%-~ Ea~_~%[%~]]...]1. 
Therefore every derivation in G can be simulated by a derivation in G' and 

L(G)~ T*{#} ~ L(G'). 

Theorem 5. Family SOL is incomparable with the family of context sensitive languages 

(CSL). 

Proof. Every SOL languages is clearly exponencially dense in the terminilogy of [CO]~ 

i.e. for every SOL language L there exist constants p,q such that for every string u 

in L of length n, n > p there is string v in L of length m so that ~ < m < n. There 

are context-sensitive languages not satisfying this property, e.g. the language 

{a22n: n ~ O} therefore CSL ~ SOL. 

CSL is closed under intersection with a regular set therefore for every context- 

sensitive language L' the language L'N Z~{~) is again context sensitive. Thus the 

assumption SOL ~ CSL is in contradiction with Lemma 5. 

Corollary: Family SOL is not closed under intersection with a regular set. 

Proof. By Lemma 5 and Theorem 5- 

Theorem 6. ETOL ~ SOL u [{~}}. 

% ICOl K. Culik II and J. Opatrny, Context in parallel rewriting, in this volume. 
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Proof. In ~7] it is shown that ETOL -{{E}}is equal to the closure of TOL under 

length-preserving homomorphisms (codings). Therefore it follows by Lemma 4 an8 Theo- 

rem 3 that ETOL q SOL ~ {{s}~ In [7] it is shown that ETOL is included in the family 

of indexed languages [A] T. Thus our inclusion is proper by Theorem 5. 

From Lemma 4 and results in [CO] ~ it follows that SOL is included neither in the 

family of languages generated by L-systems with interaction [88] nor in the family 

of predictive context languages ~0]*. We conjecture that both these families are 

incomparable with SOL. 

f IAI: A.V. Aho, Indexed grammars - an extention of context-free grammars, 
JACM 153 (1968), 647 - 671. 

* IC01 K. Cullk ii and J. 0Patrn~ Context in parallel rewriting, in this volume. 


