
STRUCTURED OL-SYSTH~MS

Department of Applied Analysis

and Computer Science

University of Waterloo

Waterloo, Ontario, Canada

and

Geselschaft fur Mathematik und Datenverarbeitung Bonn

ABSTRACT A new type of Lindenmayer systems, called Structured 0L-systems (SOL sys-

tems)~is studied which gives a formal tool for investigation of structured

organisms and structurally dependent developments. It is sho~na that a

restricted version of SOL-systems is equivalent to codings (length-preser-

ving homomorphisms) of OL-Languages. The properties of unrestricted SOL-

systems are then studied. It is for example shown that the languages

generated by them properly include the languages generated by extended table

OL-Systems.

I. Introduction.

Lindenmayer systems have been the object of extensive study during recent years. The

systems, also called developmental systems, were introduced in connection with a theo-

ry proposed to model the development of filamentous organisms. The stages of develop-

ment are represented by strings of symbols correspondings to states of individual

cells of an organism. The developmental instructions are modelled by grammar-like pro-

ductions. These productions are applied simultaneously to all symbols to reflect the

simultanity of the growth in the organism. This parallelism is the main difference

between Lindenmayer systems and ordinary generative grammars. Another difference is

that in most of the versions of Linde~nnayer systems only one type of symbols (terminals)

is considered which means that all the intermediate strings in a derivation are

217

strings in the generated language. The simplest type of Lindenmayer systems are the

OL-Systems [61] in which every symbols is rewritten independently of its neighbours.

When we compare 0L-systems and the corresponding class of grammars, context-free

grammars, we see that OL-systems are missing one important feature of context-free

grammars, namely they are not structuring the generated strings. A derivation in a

context-free grammar can be represented as a derivation-tree which describes the

structure of a string with respect to this derivation. We can consider the analogous

derivation tree for a derivation in an OL-system but in this case the branching nodes

are labelled by terminal symbols rather than nonterminals (grammatical categories) and

the tree does not reflect the possibly ihteresting structure of an organism.

In this ps@er we introduce Structured OL systems (SOL-systems) which not only

allow to describe the structure of generated strings but also give a formal tool to

study the cases when the development is structurally dependent. A simple example is

the case when all the stages of a developing organism consist of certain fixed number

of partes and there are different development rules for every part of the organism.

From a mathematical point of view the SOL-systems give another interesting type of

context-sensitivity in parallel rewriting (compare with IC01T). A structured organism

is represented in an SOL-system as a labelled tree. The labels of the leaves of the

tree represent the individual cells of an organism, the labels of its branching nodes

represent the structural "units" of the organism.

An SOL-system is given by a single starting structure and a finite number of

developmental rules. At every stage of the development the rules are applied simul-

taneously to all cells and structural units (nonterminals) of an organism. According

the rules each structural unit can change its state or disappear (but not divide) and

every cell can be replaced by a substructure, i.e. it can divide into several parts

each of which can be either a single cell or another structured part. At every step a

cell can divide only into a limited number of subparts but there is generally no limit

on the number of subparts of a structural unit which can be created during the

~ICOI : K. Culik II and J. Opatrn#~ Context in parallel rewriting, in this volume.

218

development, i.e. there is generally no limit on the number of sons of a branching

node.

Types of structural units will be represented by labels from an alphabet which

corresponds to the nonterminals of a context-free grammar. We will define SOL-systems

in such a way that rewriting of a nonterminal may depend on its father but not on

its sons in a tree. We consider parallel rewriting~ at every step of a derivation

all labels in a tree must be simultaneously rewritten. The language generated by an

SOL-system is the set of 8~1 frontiers of the generated trees.

We will consider a special subfamily of SOL-systems, called simple SOL-systems,

in which essentially only labels on leaves (individual cells) are rewritten, i.e. in a

simple SOL-system it is possible to create new structural units but once a unit is

created it never changes its state. We will show that the languages generated by simp-

le SOL-systems are exactly length preserving homomorphisms (coding) of OL-languages

[10,20]. Then we will investigate the properties of the family generated by unrestric-

ted SOL-systems (SOL). We will show that SOL is closed under Kleene operation (u,.,~)

and under e-free homomorphism but not under intersection with a regular set.

The closure result will help us to establish the relations of SOL to other known

families of languages. It is easy to show that SOL ~ TOL [81] and then, using the

closure results, that SOL ~ ETOL [89]. The fact that the later inclusion and therefore,

of course, also the former is proper follows from the result that SOL is incomparable

with the family of context-sensitive languages. Actually it will be shown that any

recursively enumerable set over T with an end marker can be expressed as an inter-

section of an SOL language over an extended alphabet with the set of all the terminal .

strings with the endmarker.

219

2. Preliminaries.

We assume the knowledge of the basic notions and notation of formal language

theory, see e.g. [HU+,Io2]. We start with a slightly modified, but equivalent, defi-

nition of extended table OL-systems [89], involving as special cases OL-systems ~I]

~oL-system~ [3~] ~d ~OL-systems [81].

Definition: An extended table L-system without interaction (ETOL szstem) is a

4-tuple G = (V,T, @,~) where

(i) V is a finite nonempty set, the alphgbet of G,

(ii) T [V, the terminal alphabet of G,

(iii) @ is a finite set of tables. @ = {PI,...,Pn} for some n ~ I, where each

V)(V ~ . Pi Element (u,v) of Pi' I < i < n, is called a production and

is usually written in the form u + v. Every Pi' I < i < n, satisfies the

V ~ following (com~letness) condition: For each a { V there is w [so that

(a,w) 6 Pi'

(iv) ~ e V +, the axiom of G.

Definition: An ETOL-system G = (V,T, @,a) is called

(i) a TOLusystem if V = T;

(ii) an EOL-system if @= {PI};

(iii) an OL,system if V = T and @ = {P~}.

Definition: Given an ETOL-system G = (V,T,P,~) we write x ~ y if there

~. ~. V ~ exist a I ..,a k E V and Yl "''Yk £ so that, x = al...ak, y = yl...yk and

for some P'I 6 @ , aj ÷ yj ~ Pi' j = 1,...,k.

The transitive and reflexive closure of binary relation ~ is denoted by ~---> ~.
G G

Definition : Let G = (V,T, ~ ,q) be an ETOL system. The language generated

by G is denoted by L(G) and defined as L(G) {w ~ T ~ = : c ~ w}.
G

Notation: A language generated by an XYZ system, for any type XYZ will be called an

XYZ-lamguage. The family of all the XYZ languages is denoted by XYZ.

i" IHUI : J.E. Hopcroft and J.D. Ullman: Formal Languages and their Relation to
Automata, Addison-Wesley, 1969.

220

Before we can define SOL-systems we need to introduce a notation for labelled

trees (forests). We will recursively define labelled rooted ordered forests and ex-

pressions denoting them. We are not interested in names of particular nodes in a

forest, i.e. we actually consider the equivalence classes of isomorphic forests. We

consider forests with labels of leaves from one alphabet and labels of branch nodes

(nonleaves) from another distinct alphabet.

Definition: Let T,N be two alphabets, T ~ N = ~,

reserved symbols not in T u N.

(i)

and let [, ~ and k be

is a forest expression and denotes the empty tree (forest), i.e. the tree

with no nodes.

(ii) For a ~ T, a is a forest expression and denotes the tree with a single node

(root)labelled by a.

(iii) If e],e 2 are forest expressions denoting nonempty forests ~ , ~ consisting

from trees ~1'''''am and B 1,...,Bn, respectively, then ele 2 is a forest

expression and denotes the forest consisting from trees ~1,...,~m,S1,...,Sn.

(iv) If A ~ N and e is a forest expression denoting nonempty forest ~ consisting

of trees ~1,...,an then A[e] is a forest expression and denotes the tree

with the root labelled by A and the sons of the root,from left to right,the

the roots of subtrees al,...,mn.

Notation. The set of all the forest expressions (forests) over alphabets N (labels

of branch nodes) and T (labels of leaves) is denoted by (N,T)~. Let (N,T 4 =

(N,T)~ - {k}. In the following the elements of (N,T)~ will be called structures

(over N,T) and we will not distinguish between an expression and the forests denoted

by it.

Notation. Let a be a particular occurence of symbol a in forest expression ~. The

label at the father of the node labelled by the considered occurence of a will be

denoted by Father (a). This notation will be used in such a way that there will be

no confusion of which oceurence of a is being considered.

Notation. Mapping Y (yield) maps k to empty string (denoted by s) and a forest in

(N,T~ to the string of the labels of its leaves (from left to right).

221

3. Structered OL Systems.

Now we are ready to define formally structred 0L systems.

Definition: A structured OL-schema (SOL-system) is a tuple G = (N,T,P,a) where

N is an alphabet of nonterminals (states of structural parts),

T is an alphabet of terminals,

P is a finite set of productions from

~ (N,T)+ , the initial structure.

The productions of an SOL-schema will be written in the following form (all

possible types are given). A ÷ C, A.B + C, a + ~ and A.a ÷ ~ where A,B E N,

C ~ N u{~}, a ~ T, ~ e (N,T)~ and "÷" "." are special reserved delimiters.

Definition: We write ~ ~ 8 for ~ ~ (N,T~ B 6 (N,T)~ where ~ = x I x2...x n for

x iE NuTv{[,]]},] < i < n, if there exists 8' = w]w2...w n so that for I < i < n:

(i) i f x i £ {I,I} then w i = xi;

(ii)

(iii)

(Nu (N×N)) × (N v (k }) k~(Tu(N×T)) x (N , T) ~ ,

if x. E TuN then either x. + w. E P or
I l l

A . x i ÷ w i e P whe re A i = f a t h e r ~ (x i) ;

is obtained from B' by repeated replacing of each subexpression of the

form XXY,X[Z] or A[X] by XY,Z or X, respectively, until either B = X

or there is no occurenee of X in ~.

Let ~ be the transitive and reflexive closure of relation ~ .

Definition: The set of structures generated by G is denoted T(G)

the set T(G) = {~ : a ~ ~}.

The language generated by G~ denoted by L(G), is the set of the yields of all the

structures generated by G. Formally L(G) = (Y(~) ; ~ET(G)}.

D_efinition: A structured OL-schema G is called a structured OL-system (SOL-system)

if it satisfies the condition of completness: For every ~ ~ T(G) there exists

such that ~ =~ 8.
G

Our definition of completness requires that for every structure which can be

developed from the starting structure there is a "next step" in development. After

some definitions and auxiliary results it will be shown that the choice of a more

restrictive definition of completness (strong completeness) requiring existence of a

and defined to be

222

"next step" forevery structure in (N,T~ does not change the families of sets of

structures or languages generated by SOL-systems.

Definition: An SOL-system G = (N,T,P,~) is called full if

P ~ {s ÷ s}u ((N×~) × (~u{~})) u((N×T) × (~,T)~,

where N = N - {S), S being the root of o, i.e. the father-context appears on the left

side of every production with the exemption of the production which keeps unchanged

the (reserved) label of the root.

Definition: SOL-systems G I and G 2 are called equivalent if L(G]) = L(G2).

Lemma]: For every SOL-system there exists an equivalent full SOL-system.

Proof. Given an SOL-system G = (N,T,P,~) we construct a full SOL-system

G' = (N',T,P',~') where N' = N u {S) for a new symbol S not in N u T, ~' = semi,

arid P' = {A-X+w : A.X÷wEP} u {A-X÷w : X÷w 6 P and A ~ N'} u (S÷S}.

Clearly, L(G') = L(G).

Definition: An SOL-system G = (N,T,P,~) is called strongly complete if for every

e (N,T)+ there exists B such that ~ ~ ~.
G

Theorem I: For every SOL-system G there exists an equivalent strongly complete SOL

system.

Proof.

system

By Lena I we may assume that G = (N,T,P,o) is full. We construct the SOL-

G' = (N~T,P'~a) where P' = P u {A.X÷X : A 6 N,X 6 N u T and there is no

production of the form A.X÷W in P}.

Clearly, G' is full and L(G') = L(G).

Now we will study a special case of SOL-system, called simple SOL-system (SSOL-

systems), in which essentially onl~ ~ terminal symbols are rewritten at every step of

a derivation. We will show this subclass of SOL-systems generates exactly the same

family of languages as several other types of systems known already to be equivalent~

namely FMOL systems [9]~ E0L systems [35], and length preserving homomorphisms of OL

languages EIO,20]. This does not mean SSOL-systems are without interest, on the

contrary they give an alternative mechanism for the description of languages from a

very natural class with the advantage to exhibit explicitly the structure of generated

objects. They also contribute another evidence to our opinion that the family of the

223

length-preserving homomorphisms of OL-languages is a very natural class of languages.

Definition: AN SOL-system G = (N,T,P,q) is called simple (SSOL) if

P = {A+A : A ~ N} u P' where P' c (N×TuT) × (N,T)~.

In the following we omit the "identity productions" of form A÷A whenever an

SSOL-system is exhibited.

Notation. Let COL = {h(L) : L E OL, h is a length-preserving homomorphism}.

Lemma 2 : COL c SSOL.

Proof. Let G = (Z,P,~) be an OL-system and h be a homomorphism from Z ~ to T *.

Clearly, we can assume withnout loss of generality that Z ~ T = ~.

Construct SSOL system G' = (Zu{S},T,P',o') where

(i) S is a new symbol not in Z u T.

(ii) Let o = a I ...an, a i c Z for i = 1,2,...n. Then

o' = S ia l [h (%)] a 2 [h (%)] a n [h (a n)]] .

(i i i ~ P' = { a ' h (a) + b 1 [h (b ~)] % [h (b 2)] . . . bk [h (b~)] :

: a,b 1,b2,...,b kE ~ and a+blb 2...b k ~ P}.

Clearly, h(L(G')) = L(G).

Lemma 3: SSOL c COL.

Proof. Let G --; (N,T,P,o) be an SSOL-system. By modification of Lemma 1 we can

clearly assume that P ~_ (NxT) x (N,T)~ with "identity" productions omitted. Let

Z = N×T and let g be the mapping from (N,T). into Z * which maps a structure

E (N,T)~ to the string (A 1,a I) ... (An,a n) such that a 1...a n = Y(~) and A.m =

father (a i) for I < i < n. In pa-~icular g(k) = s. We construct OL system

G' = (Z,P',o') where o' = g(o) and P' = {(A,a)-~g!AIB I) : A E N, a E T and

A.a÷ S ~ P}.

Note that if forest B does not include a tree consisting from a single node only,

then g(AIBI) = g(S). Let h be the homomorphism from Z to T defined by

h((A,a)) = a for every (A,a) E Z.

It is easy to verify that h(L(G')) = L(G).

Theorem ~: SSOL = COL = E0L = FMOL.

Proof. By Lemma 2 and 3 we have the first eq[uation; the definitions of FMOL languages

and other results are in [9,20]

224

h. Closure Properties of SOL.

To show the relation of SOL to other known families of languages we will need

some closure results which will be shown first. The most interesting is the closure

of SOL under s-free homomorphisms which in particular means that codings (length-

preserving homomorphisms) do not increase the descriptive power of SOL-systems.

Theorem 3: Family SOL is closed under s-free homomorphisms.

Proof. Given an SOL language L over T and a homomorphism h from T * to Z ~ we may

assume by Lemma I that L is generated by full SOL system G = (N,T,P,o) and we

construct SOL-system G' = (N',Z,P'o') as follows.

Let N' = NuTv(N×T) u {A : A e N} u {Q} where Q is a new symbol not in NuT.

Let f he the homomorphism from (N,T)~ into (N',Z)~ defined as follows. The forest

expression f(a) is obtained from expression e by replacing every terminal symbol from

T, say a, by subexpression a [a lQ[a2]Q[a3] . . . Q[an~] where h(a) = a l a 2 . . . a n .

Let e' = f(~) and productions P' be constructed as follows:

(i) A+A is in P' for every A in N.

(ii) A.a+(A,a) is in P' for all A in N and a in T.

(iii) a.t÷t is in P' for all a in T and t in Z.

(iv) S÷S is in P'.

(v) If A.B÷X is in P then A.~X is in P' for all A,B in N and X in N u {l}.

(vi If A.a÷~ is in P and h(a) = ala2...a n then (A,a)-a1÷f(a) is in P' for all A

in N and a in T.

(vii (A,a)÷l is in P' for all A in N and a in T.

(viii Q÷~ is in P'

(ix) Q't÷~ for every t in Z.

Clearly, in any derivation in G' the productions (i)-(iii) and the productions

(iv)-(ix) can be used only in alternative steps, namely, the former in odd steps and

later in even steps of any derivation. Realizing this it is straigthforward to verify

that L(G') = h(L(G)).

Theorem 4: The family SOL is closed under union, concatenation and star.

Proof. Let G I = (N],T~,PI,~ 1) and G2= (N2,T2,P2,o 2) be SOL-systems. Assume that

N I m N 2 = ¢.

225

To show the closure under union we construct an SOL-system

follows. Let N 3 = N tun 2u{S,Q}

Assume Y(o I) = al...a n. Let o 3

+o2,Q.ai÷X for i = 2,...,n}.

(N3,T I ~ T2,P3,o 3) as

with S and Q new symbols not in N I u N 2 u T I u T 2.

: S[aiQ[a2...an]] and P3 : PIUP2U {S'a1÷ol, S.a1+

Clearly, L(G3) = L(GI) u L(G2).

To show the closure under concatenation we construct SOL-system (N4,T] u T2,P4,~4)

as follows. N 4 = NIu N 2U{S,A,B,C,D,E,F,H,Q} where S,A,...,Q are new symbols.

Assume Y(o I) = a1'''an and Y(o2) = bl...bm. Let ~4 = s[AEc[al]E[a2"''an]]A[D[bl]E

= PI u P2U P¼ where P~ consists of the following productions: P4

(I) A÷A (II) A÷B

A" C÷C B. C+F

A-D+D B'D+H

A • E÷E B • E+Q

C'a1+a I F'a1+o I

D'b1+b I Q-a.÷l 1

E.a ÷a.m m for i = 2 , . . . , n H.bl*o 2

E.b.÷b. for i=2,...,n Q.b.+X
1 1 1

for i=2,...,n

for i=2,...,m.

Productions of group (I) allow to delay the start of the generation of strings

in L(G I) or L(G 2) to assure that even by parallel generation all strings in

L(GI).L(G 2) are obtained. Once the production A÷B is used the productions of group

(II) assure the start of generation from o I by productions PI or from a 2 by produc-

tions P2" It is straightforward to verify that L(G 4) = L(GI).L(G2).

Finaly, to show the closure of SOL under star we construct SOL-system

(N5,TI,P5,a 5) as follows. Let

bols not in N I v T I. Assume

= A [C E a l b E a 2 % . . . %]] . Let

tions:

N 5 = N I~ {S,A,B,C,D,E} where S,A,B,C,D,E are new sym-

O1 = ala2"''a "n Let o 5 = S[aiQ[a2a3...an]] and

P5 = PI U P' where P' consists of the following produc-

226

S+S A.C+C

S.a1+e~ 5 A.D+D

S.a1÷l B.C÷E

Q+~ B. D+Q

Q.ai+l for 2 < i < n C-a1+a I

A÷A D.a.÷a. for 2 < i < n
1 1

A÷B E.a1÷~ l

It is straigthforward to verify that G 5 generates only strings in L(G I).~ To

see that all such strings are generated we observe that S ------~ S[~S[~S[~...S[e]]...]]
G 5

and tha t ~_____~k a~------~B[C [al]D [a2a3...an]]~--->B [E [al] Q[a2a3 . , ,an]]~>B[E [~I]]~----->B[E[8]]

for all k >0 and 8 in T(GI). Therefore for any m> 1 and B I 8 m in T(G I)

w~ have ~__~ki i]] a--------~> ~ B[E[~ for I < i < m and by suitable choice of ki,

I < i < m, we can "synch ron ized" d e r i v a t i o n S ~ * S [B [E [B I]] S [B[E[62]] . . .

. . .

Since ~5 -------> ~ also e g L(G5).

5. Relation of SOL to other Families of Languages.

First we show that SOL-systems can simulate TOL-systems and then using the clo-

sure of SOL under e-free homomorphisms this result will be generalized to ETOL-sys-

tems. It is easy to see that these results can be further generalized to (E)TOL-sys-

tems with some restrictions on the sequences of productions which may be used in a

derivation.

Lemma ~: TOL ~ SOL.

Proof. Given TOL system G = (T,{PI,...,Pn},~) we construct SOL-system

G' = (T,N,P,~') where N = {O,l n}, ~' = 0[~] and P = {i.a÷w : a÷w ~ P.}U
l

U{i+j : ig N, j ~ N - {0}} U {O-a÷a : a a T}.

Clearly, L(G') = L(G) and therefore T0L ~ SOL.

The following lemma shows that in certain restricted manner every recursively

enumerable set can be represented by an SOL-system.

Lemma 5: Let L be a recursively enlmlerable set over Z and let @,@ be not in Z. There

e x i s t s era. SOL language L' c (Z u { $ }) ~ } such t h a t L {# } = L' f] 2m{@}.

227

P r o o f . I t f o l l o w s f r o m r e s u l t s i n - - ~fLG,H~P]; s e e f o r e x a m p l e Lemma 1 i n " ~LpjCthat L

can be generated by a phrase-structure grammar G = (N,T,P,S) with productions only

of the form A÷B, A÷BC, AB÷AC, A+a or A÷s for A,B,C ~ N and ae T, i,e. there are only

context-free or "left-context-sensitive" productions in P. We can then construct SOL

system G' = (N',T',P',o) where T' = T U {$,~}, N' = N u N 2~{A : A e N} u {Q} for

(ii) If A+a, B+b are in P and d is in T u {$} then the following productions are

in P'.

A-d+a

(A,~)-~÷a QIhl

L#+~# .

(iii) If A÷a is in P then D.A÷Q is in P' for every D in N.

If A÷B is in P then D.A÷B is in P' for every D in N.

If A÷BC is in P then D.A÷(B,C) is in P' for every D in N.

If AB+AC is in P then A.B+C is in P'.

Let h be the homomorphism from (NuN 2U{A : A6N}) ~ into N ~ defined by

h(A) = h(A) = A for every A in N and h(A,B) = AB for all A,B in N. It can be verified

(by induction on the length of a derivation) that if o ~ ~ then ~ must be of the
G'

IGI: A.V. Gladkij, Formal grammars and languages (in Russian) Mir, Moscow, 1973

IHI: L.H. Haines, A representation for context sensitive languages, Transaction of
the Amer. Math. Society, to appear.

IP]: M. Penttonen, LCS = CS, t o a p p e a P in I n f o P m a t i o n a n d C o n t r o l .

Q not in NuTu{$,#}, 0 = S[$ #] and P' is defined as follows.

(i) For all A,B,C in N and a in T u{$} the following productions are in P'.

A.B÷B (A,B) .a÷$

(A,s)-C+(B,C) ~

(A,~). (C,D)÷(B,C) Q.a÷X

A.(mC)÷B A. # ÷ #

A.~+B ~. # ÷ $@

(A,B).~+(B,C) (A,B). #+~ [#]

A" a-~$

2 2 8

form X1[tiX2Ft2X3[...Xk_1[tk_iXkFtk~]7...7]]_ ~ . . ~ ~ ~ - ~ w h e r e t.l is in Tu{$} for

i = 1,...,k, X.l is in NuN 2 for i = I,...,k-I and X k is in NuN2u{A : A~N} and

h(X1X 2 . . .X k) i s in L(G). Moreover, i f t l t 2 . . . t k is in T* then a lso t l t 2 . . . t k is

in L(G). Thus L(G')g_L(G)nT*{#}.

To show the reverse inclusion we observe that every string x in L(G) can he

generated by a derivation S ------->~ ~ N ~ w -------> x such that w ~ and we do not use the

productions of the form A÷a in the derivation S -----> w and on the other hand we

use only such productions in w -------> x. Further we can see that

(i) If AIA2...A n -------> BIB2...B m for A. in N for I < i < n and B. in N for I < j < m
G m U

then there exist t t , . . . ~ t n ~ S l , . . . , s m in Tu{~)} such tha t

%[tl%[t2 A~b"%-~[tn-~ % [t n ~] ' ' ']]] G, Bl[sl%[s2 h L . .

• "- ~-1 [Sm-l~[Sm~]'"]]l"
(ii) If A.÷a. £ P for I < i < k then

1 1

% [tl%[t2"' "~-1 [tk-l~[tk~l-]"" '~] 7 , % [a~% [a2"" "%-~ Ea~_~%[%~]]...]1.
Therefore every derivation in G can be simulated by a derivation in G' and

L(G)~ T*{#} ~ L(G').

Theorem 5. Family SOL is incomparable with the family of context sensitive languages

(CSL).

Proof. Every SOL languages is clearly exponencially dense in the terminilogy of [CO]~

i.e. for every SOL language L there exist constants p,q such that for every string u

in L of length n, n > p there is string v in L of length m so that ~ < m < n. There

are context-sensitive languages not satisfying this property, e.g. the language

{a22n: n ~ O} therefore CSL ~ SOL.

CSL is closed under intersection with a regular set therefore for every context-

sensitive language L' the language L'N Z~{~) is again context sensitive. Thus the

assumption SOL ~ CSL is in contradiction with Lemma 5.

Corollary: Family SOL is not closed under intersection with a regular set.

Proof. By Lemma 5 and Theorem 5-

Theorem 6. ETOL ~ SOL u [{~}}.

% ICOl K. Culik II and J. Opatrny, Context in parallel rewriting, in this volume.

229

Proof. In ~7] it is shown that ETOL -{{E}}is equal to the closure of TOL under

length-preserving homomorphisms (codings). Therefore it follows by Lemma 4 an8 Theo-

rem 3 that ETOL q SOL ~ {{s}~ In [7] it is shown that ETOL is included in the family

of indexed languages [A] T. Thus our inclusion is proper by Theorem 5.

From Lemma 4 and results in [CO] ~ it follows that SOL is included neither in the

family of languages generated by L-systems with interaction [88] nor in the family

of predictive context languages ~0]*. We conjecture that both these families are

incomparable with SOL.

f IAI: A.V. Aho, Indexed grammars - an extention of context-free grammars,
JACM 153 (1968), 647 - 671.

* IC01 K. Cullk ii and J. 0Patrn~ Context in parallel rewriting, in this volume.

