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Abstract

Three new types of context sensitive parallel rewriting systems, called
global context L-systems, rule context L-systems and predictive context L-systems
are introduced in this paper. We investigate the generative power of these new
types of context sensitive parallel rewriting systems and we compare it to the
generative power of TOL-systems B1], L-systems with interaction [92], regular
grammars and context sensitive grammars.

1. Introduction

Parallel rewriting systems were introduced in [59, 60] as a mathematical
model for biological developmental systems. Most of the papers related to parallel
rewriting have dealt with rewriting systems of context free type, e.g. OL-systems
61, TOL-systems [81, and their generalisations [¢], [89].

A generalisation of context sensitive grammars with parallel rewriting
known as L-systems with interactions has been studied in [ 93. L-systems with
interactions have the same basic rules (productions) for rewriting as OL-systems,
but with restriction on their use given by right and left "context". A rule may be
applied only in the given context.

However, in the case of parallel rewriting it is quite natural to consi-
der different forms of “context". Since we are replacing all symbols at once, we
may restrict the use of a rule, a »~ o say, by the context adjacent to o after
simultaneously replacing all the symbols in a string rather than by the context
adjacent to a before the rule was applied. We will call this kind of context,
predictive context.

Even more generally, the restriction on the use of a rule may concern
rules used on adjacent symbols. We will call this type of restriction rule
context.

Clearly, all these generalisations make sense only in the case of
parallel rewriting.

We can also consider restrictions on the use of rules, which in distinc-
tion to the above are of a global rather than a local character. In a global
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context L-system, in addition to the set of labeled rules, a control set
over their Tabels is given. We can only rewrite a string with a sequence of

rules with labels from the control set.

The new types of context sensitive L-systems introduced in this paper
also have a natural biological motivation. The development of a cell might be
completely independent of the other cells, i.e. in OL-systems, or it might depend
on the configuration around the cell before the development takes place i.e. in
L-systems with interactions, or it might be restricted in such a way that only
compatible cells can occur adjacently, i.e. in predictive context L-systems, or
only compatible developments can occur adjacently, i.e. in rule-context L-systems,
or even the dévelopment of -an organism as a whole is restricted by certain
patterns, e.g. the development can be different in certain parts of the organisms,
i.e. in global context L-systems.

In this paper we investigate the generative power of these new types of
L-systems. Among other results it is shown that global context L-systems with
regular control sets (regular global context L-systems) are equivalent to rule
context L-systems. We also show that the family of regular global context
L-Tanguages properly contains the family of Tanguages generated by L-systems with
interactions and the family of TOL-languages.

2. Preliminaries

We shall assume that the reader is familiar with the basic formal
languages theory, e.g. [102].

Now, we will review the definitions of OL and TOL-systems [9f, [81, and
L-systems with interactions [92], and we will introduce some notation used
throughout the paper.

Definition 1. A table OL-system (TOL-system) is a 3-tuple G = (X,P,o), where:
(i) T is a finite, nonempty set, called the alphabet.

{i1) P is a finite set of tables, P = {PT’PZ""’Pn} for some n = 1, where
each P., 1 =1,2,...,n is a finite subset of I x 1*. Element
{a,a) of Pi’ 1 51 <1, is called a rule and is usually written in the
form a >~ o. P must satisfy the following condition of completeness.
For each a ¢ £ and i, 1 £ i < n, there exists o ¢ ¥ so that (a,a) P,.

(iii) o e Z+, the initial string of G.

Given a TOL-system G = (2,P,0), we write o => B, where o « Z+, g e ¥,
if there exist k = 1, a;,3,,...,3, € I, and BysBos.- By € ¥ so that
o= aq85...8, B = 8182"'Sk and for some table Pi e P, aj > Bj € Pi for 1 <j < k.

The transitive and reflexive closure of the binary relation g is
denoted by E>*.
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The language generated by a TOL-system G is denoted by L(G) and is
defined to be the set {a ¢ ©¥ic §>* al.

Definition 2. A TOL-system G = (%,P,0)} is called an OL-system if P consists of
exactly one table of rules, i.e. P = {P]}.

Notation. Throughout the paper if r is any binary relation, then r* denotes
the reflexive and transitive closure of r, without repeating it specifically in
every case.

Notation. The empty string is denoted by €. The length of a string a is denoted

by lal. For any string a and k = 1, we define Firstk(a) and Lastk(a) as follows.

Firstk(a) = if |al = k then first k symbols of o
else o.

Lastk(a) if lal = k then last k symbols of o

else a.

For any string o, we define

o]
g, First {a) =

Firsto(u) {Firstk(a)},

e, Last (o)

Lasto(a) {Lastk(a)}.

k=1
Definition 3. A context L-system is a 3-tuple G.= (Z,P,0), where

(i) Z is a finite, nonempty set of symbols, called the alphabet.
(ii) P is a finite subset of {#,e}+7* x ¥ x 1*.{#,e} x £*, called the
set of rules, where # is a symbol not in r called the endmarker. A
rule {0,2,8,y) « P is usually written as <a,a,B> > v.
(ii1) S Z+, the initial string.
Given a context L-system G = (Z,P,0) we write o T8 for o ¢ =¥,
g e £*, if there exist k = 0, 158y, .053y € £ and By,Bys... 1By € t* so that
& = ajdy...8), B = B]BZ"‘Bk and for every 1, 1 < i < k, there exist m,n =2 0
such that (Last (#aja,...a; 1).2;, First (a5 185,02, #),8,) < P.

Context L-system G must be strongly complete, i.e. for any o e 5% there
exists B e ¥ such that o 76

The language generated by a context L-system G is denoted by L(G) and
is defined to be the set {o ¢ I*:c ™ al.

Note. The definition of a context L-system given above is a simplification
and an unessential generalisation of the definition of an L-system with inter-
action from [92]. It is obvious that both types of systems have the same
generative power.
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Notation. We say that a language L is a A-language {where X may be OL, TOL,
context L, etc.) if there exists a A-system G such that L = L{G).

The family of context L-Tanguages will be denoted by Q.

If f is a mapping from I to subsets of A*, then f can be extended to
strings and languages over I as follows.

(1) fle) = {e}.

(i1) for a € L, 0 ¢ I¥, floa) = fla)-Fla), where "+" is the operation of set
concatenation.

(i11)  for L e ¥, f(L) = {o:a e f(B) for g e L}.

We will use these extended mappings later on without repeating the
process of extension in every single case.

3. Context sensitive parallel rewriting systems

Now, we will define three different types of context sensitive parallel
rewriting systems. A1l of them are using only one type of symbols, i.e. we are
not considering any nonterminals.

First we will give the definition of global context L-systems. A global
context L-system has, similarly as an OL-system, a finite set of context free rules,
however, each rule has a finite number of labels. The use of rules in a global
context L-system is restricted by a language over labels, called the control set.

Definition 4. A global context L-system is a 5-tuple G = (2,I,P,C,q), where:

(i) Z7is a finite, nonempty set of symbols, called the alphabet.
(ii) T is a finite, nonempty set of symbols, called the labels.
(ii1) P is a finite, nonempty subset of p{T) x £ x £*, where p(I') denotes the
family of nonempty subsets of T'. Element (B,a,0) e P is called a rule
and is usually written in the form B:a + a.
(iv) C < I'*, called the control set.

(v) o e ', the initial string.

Given a global context L-system 6 = {&,I',P,C,0), we write o 7 g for
o e, Bex*, if there exist k = 1, a1s8ps.nesdy € I, ByaByse.sBy € £* and
Bi:Bps...nBy € p{r') so that o = 348535 B = ByBy.. By, (Bj’aj’Bj) e P, for
j=1,2,...,k and B;B,...B, n C ¢ ¢!

The language generated by a global context L-system G is denoted by L(G)
and is defined to be the set {a ¢ I*:0 =% o}.

! 8152"‘Bk is the concatenation of sets B,,B,,...,B

12720 K’
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A global context L-system G is said to be a X global context L-system
if its control set is of the type A. In this paper only regular global context
L-systems will be studied and their control sets will be denoted by regular
expressions.

The family of regular global L-languages will be denoted by V.

Example 1 Let G; be a regular global context L-system, Gy = {{a},{S],SZ},P,C,a},
where P = {{s]}:a - aa]{sz}:a -+ aaa} and C is denoted by regular expression
s?+s;.

Clearly, at any step in a derivation, we can apply either the production
a > aa to all symbols in a string, or the production a + aaa is used throughout
the string. Therefore L(G1) = {a213J:1 >0, j =z 0}.

Since we may consider an L-system as a model of the development of a
filamentous organism, it is natural to require. that for any stage of the
development there exists a next stage of the development. Therefbre, a condition
of "completeness" is usually included in definitions of all versions of L-systems.

Now, we will give the formal definitions of the completeness and strong
completeness for regular global context L-systems.

Definition 5. Let G be a regular global L-system with an alphabet Z. G is
complete if for any a ¢ L(G), o # €, there exists B ¢ ¥ so that a 7 B.

Definition 6. Let G be a regular global L-system with an alphabet . & is
strongly complete if for any o ¢ gt there exists B e I° so that o T B.

Note that in [92] only strongly complete systems were considered
(and called complete). However, this is unnecessarily. restrictive, there is no
biological motivation to require that a next stage of the development is defined
also for configuraticns of cells which can never occur in the development. More-
over, it follows from the next lemma that every complete regular global context
L-system can be modified to an equivalent strongly complete regular global context
L-system.

Lemma 1. For any regular global context L-system G, there effectively exists an
equivalent regular global context L-system G' which is strongly complete.

Proof. Let G = (,I',P,C,0) be a regular global context L-system. Let f be a
finite substitution on I'* defined by a « f{k) if’and only if there exists a rule
{Bsa,a) ¢ P so that k « B. Let R = f(C), let Ry = £*-R. Since regular languages
are closed under finite substitution and complement, R and RI are regular languages.
If o ¢ R, then there exists 8 « ¥ such that o 7 B. If Ry = ¢ then G is strongly
complete.
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Suppose that R1 # ¢. Let s be a new symbol not in T. Let h be a
homomorphism defined by h{a) = s for any a in L. Let G' = {Z,I',P',C',0),
where I' =Ty {s}, C' = Cu h(Ry), and P' = P u {({s},a,a):a < £}. From the
construction of G' follows that G' is strongly complete and if a ¢ R, and v 7 8
for some B ¢ I*, then o E? 8, and if a ¢ R; then o E? a. Therefore L(G') = L(G)}. O

Lemma 2. It is undecidable whether a reqular global context L-system is
complete.

Proof. We will show that for any instance of Post's Correspondence Problem {103
there exists a regular global context L-system which is complete if and only if
the instance of Post's Correspondence Problem (PCP) does not have a solution,

Let & = {a],az,...,an} be a finite alphabet, and let A and B be two
1ists of strings in £+ with the same number of strings in each list. Say
A= 0y 50 s+« o 50y and B = BysBgs..osBy. Let G = (z',r,P,C,$) be a regular global
L-system, where ' = 2 u {§,¢}, T = {51,52,53,54} u {ri:i = 1,2,...,n},
P = {({S}}’$’ai $ 6:):1 = 1,2,...,0) U {({ri},ai,e):i =1,2,...,n} v
v {{{sghiagsaz)ei = 1,2,.000n) v {{{s,1,8,8)} v { ({s43.¢.¢)1, where Bg denotes

the reverse of 8,, and C is denoted by s§s1s§ + sgszsg + s“és4 + s4s§ + s§s4s§ +

* * * * * *
+ 53r1s4r153 + 53r254r253 + ...t s3rns4rns3.
Clearly, $ =% a. a. ...a; $8° 87 . .8% = . o, ...0; £
G 1] 12 1j 1j 1j—1 11 G 1] 12 Tj

T for j=1, 11,12,...,ij being integers smaller or equal to k.

r

BijB j-]"'BiI
If ca ¢ aB < L(G), where a,8 ¢ Z°, a ¢ I, then ca ¢ aB = o ¢ B. If ca £ b8 « L(G),
where 0,8 ¢ £¥, a,b « T and a # b then oa £ bB T oa ¢ gB is the only possible
derivation in G from ca ¢ bR. Therefore $ §>* ¢ if and only if the instance of

PCP has a solution. Since Sg ¢ C, G is complete if and only if the instance of

PCP does not have a solution. Thus it is not decidable whether G is complete. B

r
i

Now we will give the definition of a rule context L-system. A rule
context L-system has a finite set of context free rules, each rule having a finite
number of labels. For each rule p there are restrictions on what rules might be
used on the symbols adjacent to the symbol on which p is used. These restrictions
are specified by a finite number of triples.

Definition 7. A rule context L-system is a 5-tuple G = (z,I,P,C,o), where:
(i) Z is a finite, nonempty set of symbols, called the alphabet.
(ii) I is a finite, nonempty set of symbols, called the labels.

{(111) P is a finite subset of p(T) x £ x £, called the set of rules. Rule
{B,a,a) in P is usually written in the form B:a > a.
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(iv) C is a finite subset of {#,e}™ x I x I'™ {#,e}, called the context set,
where # is a special symbol not in T, called the endmarker.

(v) o ¢ ¥, the initial string.
Given a rule context L-system G = (Z,F,P,C,c)? we write o e 8 for
o e It, 8 er* if there exist k = 1, IR ZQ‘B],BZ,...,Bk e £* and
$15SpseeesSy € T so that a = 218500425 B = 8182...Bk and for every i, 1 <1 <k,
there exist (Bi’ai’si) e P and m,n = 0 so that s; ¢ By and (Lastm(#s}sz...si_])s
Firstn{s ..sk#}) e C.

is
13442

The Tanguage generated by a rule context L-system G is denoted by L(G)
and is defined to be the set {0 ¢ Z o E?* o}.

The family of rule context L-languages will be denoted by o.
Example 2. Let G2 be a rule context L-system, G, = ({a},{s],52,53,54},P,C,a},
where P = {{51}:a‘+ a3,{52}:a - a,{s3}:a - a4,{s4}:a > a2} and
C = {(#951 9#)3(#5543#)9(#351 352):(5', 3529#)3{5295] 352) :(S'] !52!5")5(#354353)3

(sa,s],#},(s],54,53),(54,53,31),(53,51,54)}. Let o be a string in a*. If the
length of string a is divisible by 3, then according to control set C we can apply
on o only rules with labels $155315, and the only string we can derive in G

from a is the string asa. If the length of o is even then we can derive in G

from o only the string ca. From tge initial string of 82 we can derive strings

aa and aaa. Therefore L(GZ) = {a2 :n 20} v {ad"in = 0},

Now, we will show that the family of rule context L-languages is
equal to the family of regular global context L-systems.

Theorem 1. ¥ = 9.

Proof. Let G] = (£,I,P,C,0) be a rule context L-system. Let k,m be positive
integers such that if {a,a,8) € C, then [a} < k and {B] <m. Let

L= First(#?k'l) U Fk, R = Last{rm'1#) u ™ Let A be a finite automaton,
A= (K,F,d,qO,F), where K= (L x T x R) v {qy}, F =Ko ((Tu (1% x T x {#1),
and § is defined as follows.

(1) If (#,p.8#) < C, where B ¢ I'™ then (#,p,p#) « 8{ag.p)-

(i1} If (#,p,8) € C where B ¢ I'*, then (#,p,By]#) € 6(q0,p) and
(#.p58Y,) < 8(agsp), for every v;,v, € I* sych that Byp#s 8yp < R.

(ii1) If (as,p,B8) « C, where o « I™ u {#1I*, 8 « I™,s,p € I then
(Last, (vqas),p,Bvpa) « 8((yya,5,pBy,).p), and

(Last) (vqas),p,Byz#) e 8({yqa,s,pBy5#),p) for any
qgelwu {#},yz,y3 e I¥, Y € #1% U 7 such that Byzq,8y3# e R and Yqoe L.
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{iv) If (e,p,B8) e C, where p ¢ T, B ¢ I'", then
(Last, (yys).p,By,a) € 8((y;,s.pBy,).p} and

(Last, (v;s),p.Bvg#) € 6((v;,s,pBy5#),p) for any
sel,qeluftl,ypelsvy vge I'such that BY,Q:8Y4# € R.

{v) If (os,p,B#) € C, where a ¢ I u {#IT*, B e I'", s,p e T then
(Last, (vqos).p.8#) € 8((vj0,5,p8#).p) for any v; < #* 5 17 such
that Yo € L.

(vi) If (e,p,B#) < C, where B ¢ I'*, p ¢ T, then

(Last) (v{s).p.6#) « 8((vy,s,pB#).p) for any v; < L.

L(A)} is a regular language and, clearly, o is in L{A) if and only if
o is a string of Tabels of rules which can be simultaneously applied to a string
in £* according to context set C. Therefore, the regular global context
L-system 62 = {2,I,P,L{(A),0) will also generate language L(G]} and thus 9 ¢ ¥.

Now, we will show the other inclusion. Let G = (Z,[,P.Q,0) be a
regular global context L-system. Let A = (K,T,G,qO,F) be a finite automaton such
that 8{q,s) = ¢ for any q « K and L(A) = Q. Let G; be a rule context L-system,
Gy = (Z,F3,P3,C3,o), where I'y = T x K, Pg = {(A x K,a,a):(A,a,0) € P}, and Cq
is defined as follows.

(i) If S(qo,a) # &, where a ¢ I', then (#,(a,qo),e) € Cy.

(i1) If r e 6(g,a) and 8(r,b) # ¢ where a,b ¢ I' and q,r € K, then
((a,q),(b,r),e) « Cy.

{ii1) If r e 8{g,a) and r € F, where q ¢ K, a < T, then (e,{q,a),#) ¢ Cs

It can be easily verified that o E> g if and only if o 7 8. Therefore
L(G) = L(B). 3 0

Let the completeness and strong completeness is defined for rule
context L-systems in the same way as for regular global context L-systems. Since
rule context L-systems are effectively equivalent to regular global context L-
systems, Lemma 1 and Lemma 2 also hold when replacing in them a regular global
context L-system by a rule context L-system.

Since any triple in the context set in a rule context L-system
implicitly includes also a restriction on the adjacent symbols, it is quite
obvious that the family of rule context L-languages includes context L-languages.
We will show in the next theorem that this inclusion is proper.
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Theorem 2. Q g ¢

Proof. Let 6 = {Z,P,0) be a context L-system. We construct a rule context
L-system 6' = {2,%,P',C,0), where P’ = {({a},a,s):(a},a,az,s} eP,acs, 8ez*,
oa € {#,e}z*,az ¢ I¥{#,e}} , and C = {(a,a,8):(a,a,B,y) < P for some y e £*}.

We have constructed the rule context L-system so that all rules for a symbol a in
% have the same label a, and the context set of G' allows to obtain in G' exactly
the same derivations as in G. Therefore L(G) = L(G'}. Thus we have shown that
2 c @ and it remains to show that the inclusion is proper. In Example 2 the
language L = a2 2 0} u {a3":n = O} s generated by a rule contex L-system.

It has been shown in [92], that L is not in . O

Now, we will give the definition of a predictive context L-system.
In a predictive context L-system the use of a rule is restricted by the context
of the right hand side of the rule after the simultaneous replacement of all
the symbols in a string.

Definition 8. A predictive context L-system G is a 3-tuple (Z,P,0), where

(i) I is a finite, nonempty set of symbols, called the alphabet.
(i1) P is a finite subset of & x {#,e}5* x * x 3* {#,e}, called the set of

rules, where # is a special symbol not in I, called the endmarker.
A rule (a,B],a,ez) in P is usually written in the form a - <By,a,B,>.
(We assume that "<" and ">" are symbols not in I.)

{ii1) o e Z+, the initial string.

Given a predictive context L-system G = (I,P,o), we write o = g8 for
@ e, Bex* if there exist k = 1, 37589s.0 58y € I and ByyBps... By € * so
that o = agap- - 2y, B = 8182“'8k and for every i, 1 <1 < k there exist m,n =2 0
such that

(aj Last (#81B,...B; _1).B5,First (B, 1B.o.. .8, #))  P.

The language generated by a predictive context L-system & is denoted by

L{8) and is defined to be the set {a ¢ £*ic E»* al.

The family of predictive context L-languages is denoted by I.

Example 3. Let G be the predictive context L-system {{a,b,c},P,abc), where
P ={a > <g,a,bc>, b » <a,b,c>, ¢ » <b,c,a>, ¢ + <ab,cabc,#>, a + <e,aa,bb>,
b ~ <aa,bb,e>, ¢ » <bb,cc,e>, a » <g,a,8>, b + <b,b,e>, ¢ > <c,c,e>.

Using the first four rules in P we can generate from the string abc the
string (abc)™, m = 1. If we decide to use a rule which would double a symbol,
then, clearly, we have to double each symbol throughout the whole string (abc)m.
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2)m and from any string of the form (a1b1c1)m, where

i+1pi+1 i+1ym

2.2
Therefore, (abc)" e (a"bc

i>1,m=1 only the string (a can be generated. Thus

L{6) = {(abich)™ i 21, m> 13,

We can define the completeness and strong completeness for predictive
context L-systems in the same way as for regular global context L-systems. We
can prove that it is undecidable whether a predictive context L-system is
complete. However, in this case we cannot show that for every predictive context
L-system it is possible to construct an equivalent strongly complete predictive
context L-system. We can only show that every complete predictive context L-
system can be made strongly comp1ete.

T5J
Lemma 3. The language L = {a3 2 :i 20, j = 0} is not a predictive context
L-1anguage.
Proof: Since the proof of this lTemma is very tedious, we will present it only
informally.

Suppose that there exists a predictive context L-system G = (%,P,o)
i,
such that L(G) = {a3 2_:1 2 0, j 20}. Then there exists exactly one integer j,
j = 0 such that a +<a1,a‘],ah> ¢ P for some integers i,h. Since L is infinite,
j 2 1. To be able to generate all string ad' for i =1, j has to be a power of
three, i.e.j = 3p, p 2 1. But then we cannot generate in G all strings
i
a2 for i > 1. 0

Theorem 3. I g ¥.

Proof: Let 6 = (Z,P,0) be a predictive context L-system. Let k, m be natural
numbers such that [o| < k, [yl <m for any (a,a,B,y) ¢ P. Let A be a finite
automaton, A = (K,P,5,q0,F), where K = (First(#zk_]) u Zk) x (Last(Zm_1#) U™y
u {qo}, F=Kn{zu{#7 x (#), and 6 is defined as follows.

(1) If p = (a.#,8,y#) < P where a ¢ I, and B,y e £*, then
(Last, (#8),v#) < 8(qp.p).
(ii) If p = (a,#,8,y) € P, where a € £, and B,y < I*, then

(Lastk(#B),YG]#) € G(qo,p) for any 8y € I* such that

18;1 < m-ly|-1, and (Last(#B),YGZ) e §(qy,p) for any 8, € *
such that l62| =m-{y|.
(i) If p = (a,0,8,y) € P, where o e = u #2¥ and B,y ¢ £, then

(LaStk(Y]OLB) sYYz(S) € 6((Y]0L38YY2)9P) for any Y] e I*u #Z*’YZ € Z*:
§ € I* v I*# such that (y]u, Byz) e Kand |8| = |8], and also

(LaStk(Y]uB),YYZ#) e 8((vj0,8yy,#),p) for any G ¥ v #I*, and
Yy € I* such that (y1a,8yy2#) e K.
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(iv) It p = (a,0,8,y#) ¢ P, where o ¢ z* u #77 and B,y ¢ &¥, then
(Last, (y1a8) ,y#) e 8((y;o,8y#),p) for any vy, ¢ & u #I° such that
k' 1 1

(yq0.8Y#) € K.

It follows from the construction of automaton A that if PyPye - P, € L(A),
where p; < P, p; = (ai’ai’si’Yi) for 1 < i <n, then aq8y...8, > ByBy...B and

n
vice versa. Therefore, the regular global context L-system G' = (2,P,P',L(A),0),
where P' = {({a,B,a,Y},a,0):(a,B,2,yY) € P}, generates also the language L(G).
Thus T ¢ VY.
3]
In Example 1 we have shown that the language L = {a i 20, j =0}
is a regular global context L-language. However, by Lemma 3, L is not a predictive

context L-language. Thus, the inclusion is proper. a

It has been shown in [92] that the family of regular languages is
included in the family of context L-systems. It is easy to modify this proof to
show that all regular languages containing a nonempty string are also included
in the family of predictive context L-languages.

Let the family of regular languages be denoted by REGULAR.

Theorem 4. REGULAR-{{e},} ¢ I.
Proof. Similar to the proof that REGULAR-{{e},¢} is included in @ in [92]. O

Now, we will compare the generative power of TOL-systems with that of
context sensitive L-systems. The family of TOL-languages will be denoted by TOL.

Theorem 5. TOL ? 1.

Proof. TOL does not include all finite sets as shown in [B1]. Therefore, it

follows from Theorem 4 that II ¢ TOL. We have shown in Lemma 3 that the language
153

L= {a3 2 :1 2 0,j = 0} is not a predictive context L-Tanguage. However, L is

generated by TOL-system G = ({a},{{ a -~ aa},{a >~ aaa},a). Therefore,
TOL ¢ 1. 0

Theorem 6. TOL g ¥

Proof. Let G = (&,P,0) be a TOL-system, where P = {Pl’PZ""’Pn}'
Let G' = (£,7,P',Q,0) be a regular global context L-system, where

r = {51’52""’Sn}’ Q is denoted by s? + S; +...+s:, and P' is defined as follows.

P' = {(R,a,0):a € £, a e ¥, (a,a) ¢ P, for some i, 1 < i <n and

A = {sj e I':(a,a) ¢ Pj}}, j.e. a rule p has label S5 if and only if p is in the
table Pj‘ Since the control set Q allows to use at one step in a derivation
only rules which all are from the same table of P we have L(G) = L(G'). Thus
TOL < V.
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It follows from Theorem 3 and Theorem 5 that the inclusion is
proper. ]

Lemma 4. The language L = {(a"™"c¢™™:n,m = 1} is not a context L-language.

Proof. We will give here only an informal proof to keep the paper short.
Suppose that there exists a context L-system G = (Z,P,o) generating
the language L = {{anbncn)m: n,m = 1}. Since G can generate all strings P

for n z 0, there exists exactly one integer i, i = 1 such that <ak,a,a3> >a'is

in P for some integer k,j. Similarly, for rules involving only symbol b and
only symbol c¢. Therefore, there exists a constant ¢ such that for any n = ¢,
if (anbncn)m §>* o then o = (akbkck)m for some integer k = n. Thus there exists
an integer j = 1 such that the following holds. There exist infinitely many
strings in L of type {ajbjcj)m for some integer m and (ajbjcj)m g (aq]bjchz) ],

3j 3y Jp 3z 3p.Mp . .
(a’bYc¥) g {a “b “c ©) © and m # My, 3y # Jp- Then we can generate in 6 also
strings not in L, which is a contradiction to L = L(G). 0

Since we have shown in Example 3 that the language

L= {(anbncn)m:n,m = 1} is a predictive context L-language, it is clear that
context L-Tanguages do not include all predictive context L-languages.

Theorem 7. T ¢ Q.

Proof. It follows directly from Lemma 4 and Example 3. ]

Now, we will compare the generative power of context sensitive grammars
with that of predictive context L-systems and regular global context L-systems.

Theorem 8. For each type 0 language L over alphabet T, there exists a predictive
context L-system G such that L = L{&) n T*.

Proof . Let L be generated by a type O grammar G = {N,T,P,S). Let

G = (z,P',S) be a predictive context L-system, where

£=TuNu {{p,p)iP eP} u {{p,A)ip e Pand A ¢ Nu T}, and P' is constructed
as follows.

(i) IfA+oeP,where AeN,ae (NuT)™, then A »a cP'.
{i1) Ifps= A]A2...An > B} 2...Bm ¢ P, where Al’AQ"'"An’BT’BZ""’BmsNUT’
m = n, then Ay~ <(p,A])B](p,A2)BZ...(p,Ai_1)Bi_1,(p,Ai)Bi,
(D ’Ai+] )B.H_'] (psA.‘+2)B.‘+2- . (PsAn_] )Bn_] (D sAn)Ban_*_} . -Bm(psp)> e P!
for 1 <1 < n-1, and AL <(p,A1)B](p,A2)82...(p,An_1)Bn_1,

(p,An)Ban+1...Bm(p,p),€> ¢ P'.
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(i11) Ifp-= A]Az...An - 3182“‘Bm ¢ P, where A]’AZ""’An’
81,82,...,Bm eNuvT, 1T<m<n. Then
Ay > <pahq)By(pahy)By. . (s 108y s (PaAIBy L (PuA )8y,
(p,Ai+2)Bi+2...(p,Am)Bm(p,Am+])(p,Am+2)...(p,An)> ¢ P for
U< i <m, and Ay > <(p.Ay)By(PuRy)By. . (PLA LB (PA L)

(PoA L) - (PR 1) s (PR ) (oA, ) (PaAL o). (PR )> € PP for

mtl < i <n.

(iv) Ifp= ATAZ“‘An > &, where Aj Ay, A e N u T, n>1, then

Ay > <(paAppsRs) o (paAy 1) (PsA ) (PoAs ) (PoA o) e (PR )> e P

for 1 < i <n.

(v) (p,A) > € e P', and (p,p) e ¢ P' foranypeP, AeNuT.
(vi) A+ AecP' forany AeNuT,

It follows from the construction that if aA]Az...AnB E? aB]BZ...BmB,
where AjLA,,. A By.Bys. B e Nu T8 ¢ (N u T)Y* using the rule
A]AZ"'An > 8182...Bm,m > n, then &A}ﬁz...ﬁns g a(p’Ai}BT(p’AZ)BZ"'
(p,An)Ban+]...Bm(p,p)8 g uB}BZ"'Bm8‘ and if ayB &> u(p,A])B](p,AZ)Bz...
(p,An)Ban+]...Bn(p,p), then y = A]AZ"'An' The same can be shown if other types

of rules of Gy are used. Therefore S Eﬁ* o, where a ¢ (N u T)* if and only if

S E»* a. Thus L{(G;) = L{G) n T*, o

1 1

Let the family of context-sensitive languages be denoted by CS.

Theorem 9. 1 $ cs.

Proof. Suppose that I ¢ CS. Since context sensitive languages are included in
recursive languages and recursive Tanguages are closed under intersection,

L n T¥ is a recursive language for any L in I and any alphabet T. This is a
contradiction to Theorem 8. Therefore, I ¢ CS.

153
We have shown in Lemma 3 that the language L = {a3 2 iz 0,j =0}
is not in 1. However, L is clearly a context sensitive language. Therefore,
€S ¢ 1. 0

Now, we would like to compare the family of context sensitive languages
to the family of regular global context L-languages. It is clear from the
previous theorem and from Theorem 3 that the family of regular global context
L-languages is not included in the family of context sensitive languages. To
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prove that the family of regular global context L-languages does not contain
all context-sensitive languages we introduce the concept of exponentially dense
languages.

Definition 9. Language L is called exponentially dense if there exist constants
3 and <) having the following property: For any n = 0 there exists a siring
o in L such that cqe n-licp . la] < c]encz.

Lemma 5. Any regular global context L-language which is infinite is exponentially
dense.

Proof. Let L be an infinite, regular context L-language. Let 6 = (z,I,P,C,0)
be a regular global context L-system generating L. Let ¢ = lol,

d, = max {Iyl:(A,a,y) € P for some A, a e £ and v « £*1. Let ¢, = Tog d,.
Since L is infinite, d2 >1. If n=0 then,clearly, S lg| < 3 ecz. Let n

be an arbitrary fixed integer, n > 0. Since L is infinite, there exists o ¢ L

nc2

such that o] =2 ¢ e As a e L and |al > |o| there exist k > 1 and

81’62""’Bk e L so that Bi = 81+1 for 1 ici < k-1, 6] =g andnfcak = a., Let j be
an integer, 1 < j < k such that |Bj| < cqe 2 and |Bj+1| 2cq e 2, Clearly,

ne (n“] )C
such integer § exists. Now we have {8.] z |B 2 2,

3 j+]iid2 zcye /d2 =cy e
n
Lemma 6. The language {322 :n =z 0} is not a reqgular global context L-Tanguage.
2“
Proof. The Tanguage {a2% :n 2 0} s not exponentially dense and therefore by
Lemma 6 is not a regular global context L-language. a

Theorem 10. CS % v,
Proof. By Theorems 3 and 9, ¥ is not included in CS. The language

n
L= {a22 :n > 0} is a context sensitive language, however, L is not in ¥ by
Lemma 6. a



