
Organizing for Structured Programming

F. T. Baker; IBM Federal Systems Division, Gaithersburg,

Maryland, USA

ABSTRACT

A new type of programming methodology, built around structured

programming ideas, has been gaining widespread acceptance for

production programming. This paper discusses how this method-

ology has been introduced into a large production programming

organization. Finally it analyzes the advantages and disad-

vantages of each component of the methodology and recommends

ways it can be introduced in a conventional programming environ-

ment.

INTRODUCTION

At this point in timer the ideas of structured programming

have gained widespread acceptance, not only in academic

circles, but also in organizations doing production program-

ming. An issue [1] of Datamation, one of the leading business

data processing oriented magazines in the U.S., featured

several articles on the topic. The meetings of SHARE and

GUIDE, two prominent computer user groups, have had an in-

creasing number of sessions on subjects related to structured

programming. The IBM Systems Science Institutes are offering

courses and holding seminars, and several books on the topic

are in print°

What is perhaps not so widely appreciated, however, is that

the organizations, procedures and tools associated with the

implementation of structured programming are critical to its

success. This is particularly true in production programming

environments, where program systems (rather than single pro-

grams) are developed, people come and go, and the attainment of

reliable, maintainable software on time and within cost esti-

mates is a prime management objective. In this environment,

89

module level coding and debugging activities typically account

for about 20~ of the effort spent on software development [2] .

Thus, narrow applications of structured programming ideas limited

only to these activities have correspondingly limited effects.

It is therefore desirable to adopt a broad, integrated approach

incorporating the ideas into every aspect of the project from

concept development to program maintenance to achieve as many

quality improvements and cost savings as possible.

BACKGROUND

The IBM Federal Systems Division (FSD) is an organization in-

volved in production programming on a large scale. Although

much of its software work is performed for federal, state and

local governmental agencies, the division also contracts with

private business enterprises for complex systems development

work. Work scope ranges from less than a man-year of effort

on small projects to thousands of man-years spent on the de-

velopment and maintenance of large, evolutionary, long-term

systems such as the Apollo/Skylab ground support software.

Varying customer requirements cause the use of a wide variety

of hardware, programmihg languages, software tools, documenta-

tion procedures, management techniques, etc. Problems range

from software maintenance through pure applications programming

using commercially available operating systems and program

products to the concurrent development of central processors,

~eripherals, firmware, support software and applications soft-

~are for avionics requirements. Thus, within this single or-

ganization can be found a wide range of software development

efforts.

FSD has always been concerned with the development of improved

software tools, techniques and management methods. Most re-

cently, FSD has been active in the development of structured

programming techniques [3] This has led to organizations,

procedures and tools for applying them to production program-

ming projects, particularly with a new organization called a

Chief Programmer Team. [4] The Team, a functional organization

40

based on standard support tools and disciplined application

of structured programming principles, had its first trial on

a major software development effort in 1969-71. [5],[6] In the

three years since the completion of that experimental project,

FSD has been incorporating structured programming techniques in-

to most of its software development projects. Because of the

scope and diversity of these projects, it was impossible to

adopt any single set of tools and procedures or any rigid type

of organization to all or even to a majority of them. And be-

cause of the ongoing nature of many of these systems, it was

necessary to introduce these techniques gradually over a period

of many years. The approach which was adopted, the problems

which have been encountered and the results which were achieved,

are the subject of this paper. It is believed that any software

development organization can improve the quality and reduce the

costs of its software projects in a similar way.

PLAN

To introduce the ideas into FSD work practices and to evaluate

their use, a plan with four major components was implemented.

First, a set of guidelines was established to define the termi-

nology associated with the ideas with sufficient precision to

permit the introduction and measurement of individual components

of the overall methodology. These guidelines were published,

and directives regarding their implementation were issued.

Second, support tools and methodologies were developed, par-

ticularly for projects using commercial hardware and operating

systems. For those projects where these were not employed,

standards based on the developed tools enabled them to provide

their own support. Third, documentation of the techniques and

tools, and education in their user were both carried out. These

were done on a broad scale covering management techniques, pro-

41

gramming methodologies and clerical procedures. Fourth, a

measurement program was established to provide data for tech-

nology evaluation and improvement. This program included both

broad measurements which were introduced immediately, and de-

tailed measurements which required substantial development

work and were introduced later. The next four sections cover

the components of this plan and their implementation in detail.

GUIDELINES

A number of important considerations influenced the establish-

ment of a set of guidelines for the application of structured

programming technology within FSD. First and most important,

they had to permit adaptation to the wide variety of project

environments described above. This required that they be use-

ful in program maintenance situations where unstructured program

systems were already in being, as well as in those where com-

pletely new systems were to be developed. Second, they had to

allow for the range of processors and operating systems in use.

This necessitated the description of functions to be provided

instead of specific tools to be used. Third, they had to allow

for differences in organizations and methodology (e.g., speci-

fications, documentation, configuration management) required

or in use on various projects.

The guidelines resulting from these considerations are a

hierarchical set of four components, graphically illustrated

in Figure I. Use of the component at any level presupposes use

of those below it. Thus, by beginning at a level which a

project's environment and status permit, and then progressing

upward, projects can evolve gradually toward full use of the

technology.

42

1. Development Support Libraries

The introductory level is the Development Support Library,

which is a tool designed with two key principles in mind:

a° Keep current project status organized and visible at

all times. In this way, any programmer, manager or

user can find out the status or study an approach di-

rectly without depending on anyone else.

b. Make it possible for a trained secretary to do as

much library maintenance as possible, thus separating

clerical from intellectual activity.

A DSL is normally the primary responsibility of a Programming

Librarian~ Programmers interface with the computer primarily

through the library and the Programming Librarian. This allows

better control of computer activity and ensures that the library

is always complete and current. Programmers are always working

with up-to-date versions of programs and data, so that misunder-

standings and inconsistencies are greatly reduced. A version

and modification level are associated with all material in the

library to permit change control and assist in configuration

nanagement. In general, the library system is the prime factor

in increasing the visibility of a developing project and thus

reducing risk and increasing reliability.

The guidelines provide that a Development Support Library is

being used if the following conditions prevail:

ao A library system providing the functional equivalent of

the PPL (see TOOLS below) is being used.

b.

c.

d.

e.

f.

43

The library system is being used throughout the develop-

ment process, not just to store debugged source or ob-

ject code, for example.

Visibility of the current status of the entire project,

as well as past history of source code activities and

run executions, is provided by the external library.

Filing procedures are faithfully adhered to for all runs,

whether or not setup was performed by a librarian.

The visibility of the code is such that the code itself

serves as the prime reference for questions of data for-

mats, program operation, etc.

Use of a trained librarian is recommended.

2. Structured Pro~rammin~

In order to provide for use of structured programming tech-

niques on maintenance as well as development projects, it was

necessary to depart from theclassical use of the terminology

and adopt a narrower definition. In FSD, then, we distinguish

between those practices used in system development (Top-Down

Development) and those used in coding individual program modules

(Structured Programming). Our use of the term "structured pro-

gramming" in the guidelines thus refers primarily to coding

standards governing control flow, and module organization and

construction. They require three basic control flow figures and

permit two optional ones, as shown in Figure 2. They refer to

a Guide [7] (see DOCUMENTATION below) which contains general

information and standards for structured programming, as well as

44

detailed standards for use of various programming languages,

They also require that code be reviewed by someone other than

the developer~ The detailed guidelines for structured pro-

gramming are as follows:

a. The conventions established in the Structured Programming

Guide are being followed. Exceptions to conventions are

documented. If a language is being used for which con-

ventions have not been published in the Guide, then use

of a locally generated set of conventions consistent with

the rules of structured programming is acceptable.

b. The code is being reviewed for functional integrity and

for adherence to the structured programming conventions.

c. A Development Support Library is being used.

3. Top-Down Development

Top-down development refers to the process of concurrent design

and development of program systems containing more than a single

compilable unit. It requires development to proceed in a way

which minimizes interface problems normally encountered during

the integration process typical of "bottom-up development" by

integrating and testing modules as soon as they are developed.

Other advantages are that:

a. It permits a project to man up more gradually and should

reduce the total manpower required.

bo Computer time requirements tend to be spread more evenly

over the development period.

45

c. The user gets to work with major portions of the system

much earlier and can identify gross errors before ac-

ceptance testing.

d. Most of the system has been in use long enough by the time

it is delivered that both the user and the developer have

confidence in its reliability.

e. The really critical interfaces between control and function

code are the first ones to be coded and tested and are in

operation the longest.

The term "top-down" may be somewhat misleading if taken too

literally. What top-down development really implies in every-

day production programming is that one builds the system in a

way which ideally eliminates (or more practically, minimizes)

writing any code whose testing is dependent on other code not

yet written, or on data which is not yet available. This re-

quires careful planning of the development sequence for a large

system consisting of many programs and data sets, since some

programs will have to be partially completed before other pro-

grams can be begun. In practice, it also recognizes that exi-

gencies of customer requirements or schedule may force devia-

tions from what would otherwise be an ideal development sequence.

The guidelines for top-down development are as follows:

a. Code currently being developed depends only on code al-

ready operational, except in those portions where devi-

ations from this procedure are justified by special

circumstances.

b.

c.

d.

e.

46

The project schedule reflects a continuing integrationr

as part of the development process, leading directly to

system test, as opposed to a development, followed by

integration, followed by system test, cycle.

Structured Programming is being used.

A Development Support Library system is being used.

(While ongoing projects may not be able to meet this

criterion, an implementation of structured coding practice

is acceptable in these cases.)

The managers of the effort have attended a structured

programming orientation course (see EDUCATION below).

4. Chief Progrgmmer Teams

A Chief Programmer Team (CPT) is a functional programming or-

ganization built around a nucleus of three experienced pro-

fessionals doing well-defined parts of the programming develop-

ment process using the techniques and tools described above.

It is an organization uniquely oriented around them and is a

logical outgrowth of their introduction and use. Described in

detail in [4], [5], and [6], it has been used extensively in

FSD on projects ranging up to approximately i00,000 lines of

source code and is being experimented with on larger projects.

The guidelines for CPT's are as follows:

as A single person; the chief programmer, has complete

technical responsibility for the effort. He will

ordinarily be the manager of the other people.

47

b. There is a backup programmer prepared to assume the role

of chief programmer.

c. Top-D~wn Development, Structured Programming and a De-

velopment Support Library are all being used.

d. Top level code segments and the critical control paths of

lower level segments are being coded by the chief and

backup programmers.

e. The chief and backup programmers are reviewing the code

produced by other members of the team.

f. Other programmers are added to the team only to code

specific well defined functions within a framework es-

tablished by the chief and backup programmers.

TOOLS

Tools are necessary in order to permit effective implementation

of, and achieve maximum benefits from the ideas of structured

programming. Development Support Libraries, introduced above,

are a recognized and required component of the methodology em-

ployed in FSD. Standards are necessary to ensure a consistent

approach and to help realize benefits of improved project com-

munications and manageability. Procedures are required for

effective use of the tools and to permit functional breakup and

improved overall efficiency in the programming process. Final-

ly, other techniques of design, programming, testing and manage-

ment can be helpful in a structured programming environment as

well as in a conventional one.

48

1. Development Su~ort Libraries

The need for and value of Development Support Library (DSL)

support, both as a necessity for structured programming and

as a vehicle for project communication and control, has been

thoroughly covered in [4], [5], [6], [7], and [8]. Early work

on DSL's centered on the provision of libraries for projects

using IBM's System/360 Operating System and Disk Operating Sys-

tem. The OS/360 Programming Production Library (PPL) is

typical of those we are using in batch programming development

situations. It consists of internal (computer-readable) and

external (human-readable) libraries, and office and machine

procedures. Similar concepts and approaches apply to our other

library systems, including those working in an online environ-

ment.

The PPL keeps all machineable data on a project - source code,

object code, linkage editor language, job control language~

test data, and so on - in a series of data sets which comprise

the internal librar~ (see Figure 3). Since all data is kept

internally and is fully backed up, there is no need for program-

mers to generate or maintain their own personal copies. Cor-

responding to each type of data in the internal library there

is a set of current status binders which comprise the external

librar[(see Figure ~). These are filed centrally and used by

all as a standard means of communication. There is also a set

of archives of superseded status pages which are retained to

assist in disaster recovery, and a set of run books containing

run results. Together, these record the activities - current

and historical - of an entire project and keep it completely

organized°

49

The machine procedure s , as the name implies, are cataloged

procedures which perform internal library maintenance, back-

up, expansion and so on. Most of them are used by Program-

ming Librarians by means of simple control cards they have

been trained to prepare. A complete list is given in Table i.

The 0ffice procedures are a set of "clerical algorithms" used

by the Programming Librarian to invoke the machine procedures,

to prepare the input and file the output. Once new code has

been created and placed in the library initially, a programmer

makes corrections to it by marking up pages in the external

library and giving them to the Programming Librarian to make

up control and data cards to cause the corresponding changes

or additions to be made to the internal library. As a result,

clerical effort and wasted time on the part of the programmers

are significantly reduced. Figure 5 shows the work flow and the

central role of the Programming Librarian in the process. Be-

cause programmers are served by the Librarian and the PPL, they

are freed from interruptions and can work on more routines in

parallel than they previously did. ~ The PPL machine and office

procedures are documented for programmers in [7] and for

librarians in [9].

Subsequent work on DSL's in FSD has extended the support to some

of the non-System/360 equipment in use and also introduced

interactive DSL's for use both by librarians and programmers.

Furthermore, a study of general requirements for DSL's has

been performed under contract to the U. S. Air Force and has

been published in [i0]. DSL's are now available for and in

use on most programming projects in FSD.

50

2. Standards

To support structured programming in the various languages

used, programming standards were required. These covered

both the implementation of the control flow figures in each

language as well as the conventions for formatting and in-

denting programs in that language.

There are four approaches which can be taken to provide the

basic and optional control flow figures in a programming

language, and each was used in certain situations in FSD.

a~ The figures may be directly available as statements in

the language. In the case of PL/I, all of the basic

figures were of this variety. In COBOL, the IFTHENELSE

(with slight restrictions) and the DOUNTIL (as a

PERFORM) were present'.

b. The figures may be easily simulated using a few standard

statements. The CASE statement may be readily simulated

in PL/I using an indexed GOTO and a LABEL array, with

each case implemented via a DO-group ending in a GOTO to

a common null statement following all cases.

c. A standard pre-processor may be used to augment the basic

language statements to provide necessary features. The

macro assembler has been used in FSD to add structuring

features to System/360, System/370 and System/7 Assembler

Languages.

d. A special pre-processor may be written to compile aug-

mented language statements into standard ones, which may

then be processed by the normal computer. This was done

51

for the FORTRAN language, which directly contains almost

none of the needed features.

The result of using these four approaches was a complete set

of figures for PL/I, COBOL, FORTRAN and Assembler. Using these

as a base, similar work was also done for several special-

purpose languages used in FSD.

To assist in making programs readable and in standardizing

communications and librarian procedures, it was desirable that

programs in a given language should be organized, formatted and

indented in the same way. (This was true of the Job Control and

Link Editor Languages as well as of the procedural languages

mentioned above.) Coding conventions were developed for each

covering the permitted control structures, segment formatting,

naming, use of comments, labels, and indentation and formatting

for all control flow and special (e.g., OPEN, CLOSE, DECLARE)

statements.

3. Procedures

An essential aspect of the use of DSL's is the standardization

of the procedures associated with them. The machine procedures

used in setting up, maintaining and terminating the libraries

were mentioned above in that connection. However, the office

procedures used by librarians in preparing runs, executing them

and filing the results are also quite extensive. These were

developed and documented [9] in a form readily usable by non-

programming oriented librarians.

~. Other

While the above constitute the bulk of the work originated by

FSD, certain other techniques and procedures have been assimi-

52

lated into the methodology in varying degrees. These include

management techniques, HIPO diagrams and structured walkthroughs.

FSD has been a leader in the development of management tech-

niques for programming projects. A book [II] resulting from

a management course and guide used in FSD has become a classic

in the field. As top-down development and structured program-

ming came into use, it became apparent that traditional manage-

ment practices would have to be substantially revised (see

IMPLEMENTATION EXPERIENCE below). An initial examination was

done, and a report [12] was issued which has been very valuable

in guiding managers into using the new methodology. This

material is now being added to a revised edition of the FSC

Programming Project Management Guide, from which the book [II]

mentioned above was drawn.

A documentation technique called HIPO (Hierarchy plus Input-

Process-Output) diagrams [8,13] developed elsewhere in IBM has

proved valuable in supporting top-down development. HIPO con-

sists of a set of operational diagrams which graphically de-

scribe the functions of a program system from the general to the

detail level. Not to be confused with flowcharts, which de-

scribe procedural flow, HIPO diagrams provide a convenient means

of documenting the functions identified in the design phase of a

top-down development effort. They also serve as a useful intro-

duction to the code contained in a DSL and as a valuable main-

tenance tool following delivery of the program system.

Structured walk-throughs [8] were developed on the second CPT

project as a formal means for design and code reviews during the

development process. Using HIPO diagrams and eventually the

53

code itself, the developer "walks through" his efforts for the

reviewers. These latter may consist of the Chief or Backup Pro-

grammer (or lead programmer if a CPT is not being employed),

other programmers and a representative from the group which will

formally test the programs. Emphasis is on error avoidance and

detection, not correction, and the attitude is open and non-

defensive on the part of all participants (today's reviewer will

be tomorrow's reviewee). The reviewers prepare for the walk-

through by studying the diagrams or code before the meeting,

and followup is the responsibility of the reviewee, who must

notify the reviewers of corrective actions taken.

DOCUMENTATION AND EDUCATION

Once the fundamental tools and guidelines were established, it

was necessary to begin disseminating them throughout FSD. Much

experimental work had already been done in developing the tools

and guidelines themselves, so that a cadre of people familiar

with them was already in being.

Most of the documentation has been referred to above. The pri-

mary reference for programmers was the FSC Structured Pro@ram-

min@ Guide [7] In addition to the standards for each language

and for use of the PPL, it contained general information on the

use of top-down development and structured programming, as well

as the procedures for making exceptions to them when necessary.

It also contained provisions for sections to be added locally

when special-purpose languages or libraries were in use. Dis-

tributed throughout FSD, the Guide has been updated and is still

the standard reference for programmers. The FSC Pro~rammin~ Li-

brarian's Guide [9] serves a similar purpose for librarians and

also has provisions for local sections where necessary. While

54

the use of the macros for System/360 Assembler Language was in-

cluded in the Pr_ogrammin~ Guide, additional documentation [14]

was available on them if desired. Finally, management docu-

mentation in the form of [ii] and [12] was also available.

It was recognized that providing documentation alone was not

sufficient to permit most personnel to begin applying the tech-

niqueso Structured programming requires substantial changes

in the patterns and procedures of programming, and a significant

mental effort and amount of practice is needed to overcome old

habits and instill new ones. A series of courses (one for each

major language) was set up to train experienced FSD programmers

in structured programming and DSL techniques. Lasting twenty-

five hours, these courses provided instruction and, more im-

portantly, practice problems which forced the programmers to

begin the transition process. Once all programmers had been

retrained, these courses were discontinued, and structured pro-

gramming is now included as part of the basic programmer train-

ing courses given to newly hired personnel.

The same situation held true for managers as well as program-

mers. Because FSD wished to apply the methodology as rapidly as

possiblea it was desirable to acquaint managers with it and its

potential immediately. Thus, one of the first actions taken

was to give a half-day orientation course to all FSD managers.

This permitted them to evaluate the depth to which they could

begin to use it on current projects, and to begin to plan for

its use on proposed projects. This was then followed up by a

twelve-hour course for experienced programming managers, ac-

quainting them with management and control techniques peculiar

to top-down development and structured programming. (It was ex-

55

pected that most of these managers would also attend one of

the structured programming courses described above to acquire

the fundamentals.) Again, now that most programming managers

have received this form of update, the material has now been

included in the normal programming management co~rse given to

all new programming managers.

MEASUREMENT

One of the problems of the production programming world is that

it has not developed good measures of its activities. Various

past efforts, most notably the System Development Corporation

studies [15] have attempted to develop measurement and pre-

diction techniques for production programming projects. The

general results have been that a number of variables must be

accurately estimated to yield even rough cost and schedule pre-

dictions, and that the biggest factors are the experience and

abilities of the programmers involved. Nevertheless, it was

felt in FSD that some measures of activity were needed, not so

much for prediction as for evaluation of the degree to which

the methodology was being applied and the problems which were

experienced in its use. To these ends, two types of measure-

ments were put into effect.

The first type of measurement, implemented immediately, was a

monthly report required from each programming project. Each

programming manager was required to state:

I. The total number of programmers on the project.

2. The number currently programming.

3. The number using structured programming.

4.

5.

6.

7.

56

The number of programming groups on the project.

The number of CPT~s.

Whether a DSL was in use.

Whether top-down development was in use.

These figures were s-~marized monthly for various levels of

FSD management and were a valuable tool in ensuring that the

methodology was indeed being introduced.

The second type of measurement was a much more comprehensive

one. It required a great deal of research in its preparation,

and eventually took the form of a questionnaire from which data

was extracted to build a measurement data base. The question-

naire contains 105 questions organized into the following eight

sections:

1. Identification of the project.

2. Description of the contractual environment.

3. Description of the personnel environment.

4. Description of the personnel themselves.

5. Description of the technical environment.

6. Definition of the size, type and quality of the programs

produced.

7. Itemization of the financial~ computer and manpower re-

sources used in their development.

57

8. Definition of the schedule.

The questionnaire is administered at four points during the

lifetime of every project. The first point is at the be-

ginning, in which all questions are answered with estimates.

The next administration is at the end of the design phase,

when the initial estimates are updated as necessary. It is

again filled out halfway through development, when actual

figures begin to be known. And it is completed for the last

time after the system has been tested and delivered, and all

results are in. The four points provide for meaningful com-

parisons of estimates to actuals, and allow subsequent projects

to draw useful guidance for their own planning. The data base

permits reports to be prepared automatically and statistical

comparisons to be made.

IMPLEMENTATION EXPERIENCE

Each of the four components of the methodology which FSD has

introduced has resulted in substantial benefits. However,

experience has also revealed that their application is neither

trivial nor trouble-free. This section presents a qualitative

analysis of the experience to date, describing both the ad-

vantages and the problems.

i. Development Support Libraries

Most projects of any size have historically gravitated toward

use of a program library system of some type. This was cer-

58

tainly true in FSD~ which had some highly developed systems al-

ready in place when the methodology was introduced. These were

primarily used as mechanisms to control the code, so that dif-

fering versions of complex systems could be segregated. In

some cases they provided program development services such as

compilation, testing and so forth. However, none were being

used primarily to achieve the goals of improved communications

or work functionalization which are the primary benefits of a

DSL. In fact, the general attitude toward the services they

provided was that they were there to be used when and if the

programmers wished. Most code in them was presumed private, with

the usual exceptions of macro and subroutine libraries.

One of the most difficult problems in the introduction of the

DSL approach was to convince ongoing projects that their present

library systems fulfilled neither the requirements nor the in-

tents of a DSL. A DSL is as much a management tool as a pro-

grammer convenience. A Programming Librarian's primary respon-

sibility is to management, in the sense of supporting control

of the project's assets of code and data -- analogous to a con-

troller's responsibility to management of supporting control of

financial assets. The project as a whole should be entirely

dependent on the DSL for its operation, and this, more than any

other criterion, is the determining factor in whether a library

system meets the guidelines as a DSL.

When all functions are provided, and a project implements a DSL,

then a high degree of visibility is available. Programmers use

the source code as a basic means of communication and rely on

it to answer questions on interfaces or suggest approaches to

their problemso Managers use the code itself (or the summary

59

features of more sophisticated DSL's) to determine the

progress of the work. Users also benefit, even at an early

stage of implementation, from the ready availability of the

test data and the feasibility of beginning to use the de-

veloping system on an experimental basis.

The visibility in itself is valuable, even on a laissez-faire

basis. But when it is coupled with well-managed code-reading

procedures, it also provides quality improvements. The walk-

throughs described above, or equivalent procedures, ensure

that someone in addition to the developer reviews the code,

verifying that the specifications have been addressed, checking

the planned test coverage, assisting in standards compliance

and last but not least, constructively criticizing the content.

While the review procedure is obviously greatly facilitated by

concomitant use of structured programming, it is possible with-

out it and was included with the DSL guidelines to encourage

its adoption.

The archives which are an integral part of a DSL provide an

ability to refer to earlier versions of a routine - sometimes

useful in tracing intent when a program is passed from hand to

hand. More importantly, they give a project the ability to re-

cover from a disaster in which part of its resources are de-

stroyed. (It is perhaps obvious but worth mentioning that this

will not be complete insurance unless project management sees

to it that the backup data sets are stored physically separate

from the working versions.) There was an initial tendency in

FSD to over-collect and to over-formalize the archiving process.

It appears unnecessary to retain more than a few generations of

object code, run results and so forth. The source code and test

60

data generally warrant longer retentionl but even here it

rapidly becomes impractical to save all versions. In general,

sufficient archives should be retained to provide complete

recovery capability when used in conjunction with the backup

data sets, plus enough additional to provide back references.

The separation of function introduced by the DSL office pro-

cedures has two main benefits. The obvious one is of lowered

cost through the use of clerical personnel instead of program-

mers for program maintenance, run setup and filing activities.

A significant additional benefit comes about through the re-

sulting more concentrated use of programmers. By reducing in-

terruptions~ librarians afford the programmers a work environ-

ment in which errors are less likely to occur. Furthermore,

they permit programmers to work on more routines in parallel

than typically is the case.

The last major benefit derived from a DSL rests in its support

of a programming measurement activity. By automatically col-

lecting statistics of the types described above, they can en-

hance our ability to manage and improve the programming process.

The early DSL's in FSD did not include measurement features,

and the next generation is only beginning to come into use, so

a full assessment of this support is not yet possible.

It was difficult to convince FSD projects in some cases that a

well-qualified Programming Librarian could benefit a project as

much as another programmer. In fact, there was an initial

tendency to use junior programmers or programmer technicians to

provide librarian support. This had two disadvantages and hence

is not recommended. First, the use of programming-qualified

61

personnel is not necessary because of the well-defined pro-

cedures inherent in the DSL's. Use of overqualified in-

dividuals in some cases led to boredom and sloppy work with

a resulting loss of quality. Second, such personnel cannot

perform other necessary functions when needed. One of the

advantages of using secretaries as librarians is that they

can use both skills effectively over the lifetime of a typical

project. During design and documentation phases, they can

provide typing and transcription services; while during coding

and testing phases, they can perform the needed librarian

work.

Two problems remain in defining completely the role of

librarians. First, the increasing use of interactive systems

for program development is forcing an evolution of librarian

skills toward terminal operation and test support rather than

coding of changes and extensive filing. The most effective

division of labor between programmer and librarian in such

an environment remains to be determined. It also appears

possible to use librarians to assist in documentation, such

as in preparation of HIPO diagrams. Second, FSD has a number

of small projects in locations remote from the major office

complexes and support facilities - frequently on customer

premises. Here it is not always possible to use a librarian

cost-effectively. In this situation, better definition of

the programmer/librarian relationship in the interactive system

development environment may permit development and librarian

support to some extent from the central facility instead of

requiring all personnel to be on-site.

62

2. Structured Pro~rammin@

Recall that the FSD use of the term "structured programming"

is a narrow one, adopted to permit ongoing projects to use

some of the methodology. In this usage, it is more like what

might be called "structured coding" and is limited to those

techniques used in developing a single compilable unit (module).

Combined with usage of a DSL, it provides enhanced readability

of code, enforces modularity and thus encourages changeability

and maintainability, simplifies testing, and permits improved

manageability and accountability. These are all well-known

properties of structured programming and need not be elaborated

on here. An additional, unplanned for, benefit of structured

programming is that it tends to encourage the property of

~11ocality of reference", which improves performance in a virtual

systems environment.

Reflecting on the advantages attributed to structured program-

ming and the use of DSL's, one is struck by the fact that the

techniques fundamentally are directed toward encouraging pro-

gramming discipline. Historically, programming has been a very

individualistic, undisciplined activity. Thus, introducing dis-

cipline in the form of practices which most programmers recog-

nize as beneficial, yields double rewards -- the advantages in-

herent in the methodology itself, plus those due to better

standardization and control.

The introduction of structured programming was not easily

achieved in FSD. The broad variety of projects, languages and

support has already been mentioned, and the development of

DSL's, the Guides [7'9] and the education program were necessary

before widespread application of the methodology could take

63

place. Furthermore, the ongoing nature of many of the systems

meant that structured programming could take place only as

modules were rewritten or replaced.

This gradual introduction created a problem of educational

timing. Practically, it was most expedient to have programmers

attend the education courses between assignments. The nature

of the courses was such that they introduced the techniques

and provided some initial practice. Yet they required sub-

stantial work experience using the techniques to be fully ef-

fective. Structured programming requires the development of a

whole new set of personal patterns in programming. Until old

habits are unlearned and replaced by new ones, it is difficult

for programmers to fully appreciate the advantages of struc-

tured programming. For best results, this work experience and

the overcoming of the natural reluctance to change habits should

follow the training immediately. This was not always feasible

and resulted in some loss of educational effectiveness.

A second problem arose because of the real-time nature of a

significant fraction of FSD's programming business. Here the

difficulty was one of demonstrating that structured programming

was not detrimental to either execution speed or core utiliza-

tion. While it is difficult to verify the advantages quantita-

tively, a working consensus has arisen. Simply stated, it is

that the added time and thought required to structure a program

pay off in better core utilization and improved efficiency which

generally are comparable to the effects achieved in unstructured

programs by closer attention to detail. It is also useful to

note that even in "critical" programs, a relatively small frac-

tion of the code is really time- or core-sensitive, and this

64

fraction may not in fact be predictable a priori. Hence it is

probably a better strategy to use structured programming through-

out to begin with. Then, if performance bottlenecks do appear

and cannot be resolved otherwise, at most small units of

code must be hand-tailored to remedy the problems. In this

way the visibility, manageability and maintainability ad-

vantages of structured programming are largely retained.

Perhaps the most difficult problem to overcome in applying

structured programming is the purist syndrome, in which the

goal is to write perfectly structured code in every situation.

it must be emphasized that structured programming is not an end

in itself, but is a means to achieving better, more reliable,

more maintainable programs. In some cases (e.g., exiting from

a loop when a search is complete, handling interrupt conditions),

religious application of the figures allowed by the Guide may

produce code which is less readable than that which might con-

tain a GO TO (e.g., to the end of the loop block, or to return

from the interrupt handler to a point other than the point of

interrupt). Clearly the exceptions must be limited if discipline

is to be maintained, but they must be permitted when desirable.

Our approach in FSD has been to require management approval and

documentation for each such deviation. This ensures that only

cases which are clearly justified will be nominated as ex-

ceptionsr since otherwise the requirements are prohibitive.

3. Top-Down_Developme~

As defined above~ top-down development is the sequencing of pro-

gram system development to eliminate or avoid interface problems.

65

This permits development and integration to be carried out

in parallel and provides additional advantages such as early

availability discussed under GUIDELINES.

Top-down development is the most difficult of the four

components to introduce, probably because it requires the

heaviest involvement and changes of approach on the part of

programming managers. Top-down development has profound

effects on traditional programming management methodology.

While the guidelines sound simple, they require a great deal

of careful planning and supervision to carry out thoroughly

in practice, even on a small project. The implementation of

top-down development, unlike structured programming and DSL's,

thus is fundamentally a management and not a programming problem.

Let us distinguish at this point between what might be called

"top-down programming" and true top-down development. While

they were originally used interchangeably and the guidelines

do not distinguish between them, the two terms are valuable in

delineating levels of scope and complexity as use of the meth-

odology increases.

Top-down programming is primarily a single-program-oriented

concept. It applies to the development of a "program", typical-

ly consisting of one or a few load modules and a number of inde-

pendently compilable units, which is developed by one or a few

programmers. At this level of complexity the problems are pri-

marily ones of program design, and the approaches used are those

of classical structured programming (here not the narrower FSD

definition) such as "levels of abstraction "[16] and the use of

Mills' Expansion Theorem [3] . Within this scope of development

66

external problems and constraints are not as critical, and

while management involvement is needed, it need not be so

pervasive as in top-down development. Many of FSD's suc-

cessful projects have been of this nature, and the experience

gained on them has been most valuable.

Top-down development, on the other hand, is a multiple-

program oriented idea. It applies to the development of a

"program system ~' , typically consisting of many load modules

and perhaps a hundred or more independently compilable units,

which is developed by one or more programming departments with

five or more people in each. Now the problems expand to those

of system architecture~ and external problems and constraints

become the major ones. The programs in the system are usually

interdependent and have a large number of interfaces, perhaps

directly but also frequently through shared data sets or com-

munications lines. They may operate in more than one processor

concurrently - for example, in a System/7 "front end" and a

System/370 "host".

The complexity of such a system makes management involvement in

its planning and development essential even when external con-

straints are minimal. It involves all aspects of the project

from its inception to its termination. For example, a proposal

for a project to be implemented top-down should differ from one

for a conventional implementation in the proposed manning levels

and usage of computer time. Functions must be carefully analyzed

during the system design phase to ensure that the requirements

of minimum code and data dependency are met, and a detailed im-

plementation sequence must be planned in accordance with the

overall proposed plan and schedule. The design of the system

67

very probably should differ significantly from what it would

have been if a bottom-up approach were to be used. During

implementation, progress must be monitored via the DSL to en-

sure that this sequence is being followed, and that schedules

are being met. The early availability of parts of the system

must be coordinated with the user if he intends to use these

parts for experimentation or production. An entirely dif-

ferent type of test plan must be prepared, for incremental

testing over the entire period. Rather than tracking individual

components, the manager is more concerned with the progress of

the system as a whole, which is a more complicated matter to as-

sess. This is normally not determinable until the integration

phase in a bottom-up development, when it suddenly become a

critical item; in top-down work it is a continuing requirement,

but one which enables the manager to identify problems earlier

and to correct them while there is still time to do so.

In a typical system development environment such as those in

FSD, however, external constraints are the rule rather than the

exception. A user will have schedule requirements which must

be met. A particular data set must be designed to interface

with an existing system. Special hardware may arrive late in

a development cycle and may vary from that desired. These are

typical of situations not directly under the developers' control

which have profound effects on the sequence in which the system

is produced. Now the manager's job becomes still more complex

in planning and controlling development. Each of these external

constraints may force a deviation from what would otherwise be

a classical, no-dependency development sequence. Provision may

have to be made for testing, documentation and delivery of

88

products at intermediate points in the overall cycle. This

will typically change the schedule from the ideal one, and

will probably increase the complexity of the management job.

This is especially true on a very large project (several

hundred thousand lines of source code or more), since any

realistic schedule may well require that major subsystems be

developed in parallel and integrated in a nearly conventional

fashion (hopefully at an earlier point in time than the end of

the project). This was carried out successfully on a project

of 400,000 lines of source code, the largest known to the

author to date.

When carried to its fullest extent~ top-down development of a

large system probably has greater effects on quality (and thus,

indirectly, on productivity) than any other component of the

methodology. Even when competent management is fully devoted to

its implementation, there are two other problems which potential-

ly can arise and must be planned for. These both relate to the

overlapping nature of design, development and integration in a

top-down environment.

The first of these concerns the nature of materials documenting

the system to be delivered to and reviewed by the user. Typical-

ly, a user receives a program design document at the end of the

design phase and must express his concurrence before development

proceeds. This is impractical in top-down development because

development must proceed in some areas before design is complete

in others. To give a user a comparable opportunity, a detailed

functional specification is desirable instead. This describes

all external aspects of a system, as well as any processing al-

gorithms of concern to a user, but does not address its internal

69

design. This type of specification is probably more readily

assimilated by typical users, is more meaningful than a de-

sign document and should pose no problems in most situations.

Where standardized procurement regulations (such as U.S.

Government Armed Services Procurement Regulations) are in

effect, then efforts must be made to seek exceptions. (As

top-down development becomes more prevalent, then it is hoped

that changes to such procedures will directly permit submission

of this type of specification.)

The second problem is one of the most severe to be encountered

in any of the components and is one of the most difficult to

deal with. It has to do with the depth to which a design should

be carried before implementation is begun. If a complete, de-

tailed design of an entire system is done, and implementation of

key code in all areas is carried out by the programmers who be-

gin the project, then the work remaining for programmers added

later is relatively trivial. In some environments this may be

perfectly appropriate and perhaps even desirable; in others it

may lead to dissatisfaction and poor morale on the part of the

latecomers. It can be avoided by recognizing that design to

the same depth in all areas of most systems is totally unneces-

sary. The initial system design work (the overworked term

"architecture" still seems to be appropriate here) should con-

centrate on specifying all modules to be developed and all

inter-module interfaces. Those modules which pose significant

schedule, development or performance problems should be identi-

fied, and detailed design work and key code writing done only

on these. This leaves scope for creativity and originality on

the part of the newer programmers, subject obviously to review

and concurrence through normal project design control pro-

cedures. On some projects, the design of entire support sub-

70

systems with interfaces to a main subsystem only through

standard, straightforward data sets has been left to late in the

project. Note that while this may solve the problems of chal-

lenge and morale, it also poses a risk that the difficulty has

been underestimated. Thus, here again management is confronted

with a difficult decision where an incorrect assessment may be

nearly impossible to recover from.

4o Chief Programmer Teams

The introduction of CPT~s should be a natural outgrowth of

top-down development. The use of a smaller group based on a

nucleus of experienced people tends to reduce the communications

and control problems encountered on a typical project. Use of

the other three components of the methodology enhances these

advantages through standardization and visibility.

In order for a CPT to function effectively, the Chief Programmer

must be given the time, responsibility and authority to perform

the technical direction of the project. In some environments

this poses no problems; in FSD it is sometimes difficult to

achieve because of other demands which may be levied upon the

chief. In a contract programming environment he may be called

upon to perform three distinct types of activities: technical

management - the supervision of the development process itself,

personnel management - the supervision of the people reporting

to him, and contract management - the supervision of the rela-

tionships with the customer. This latter in particular can be a

very time-consuming function and also is the simplest to secure

assistance on. Hence many FSD CPT's have a program manager who

has the primary customer interface responsibility in all non-

71

technical matters. The Chief remains responsible for technical

customer interface as well as the other two types of manage-

ment; in most cases this makes the situation manageable, and

if not then additional support can be provided where needed.

The Backup Programmer role is one that seems to cause people

a great deal of difficulty in accepting, probably because there

are overtones of "second-best" in the name. Perhaps the name

could be improved, but the functions the Backup performs are

essential and cannot be dispensed with. One of the primary

rules of management is that every manager should identify and

train his successor. This is no less true on a CPT and is a

major reason for the existence of the Backup position. It is

also highly desirable for the Chief to have a peer with whom

he can freely and openly interact, especially in the critical

stages of system design. The Backup is thus an essential check

and balance on the Chief. Because of this, it is important that

the Chief have the right of refusal on a proposed Backup; if

he feels that an open relationship of mutual trust and respect

cannot be achieved, then it is useless to proceed. The require-

ment that the Backup be a peer of the Chief also should not be

waived, since it is always possible that a Backup will be

called on to take over the project and must be fully qualified

to do so.

One of the limits on a CPT is the scope of a project it can

reasonably undertake. It is difficult for a single CPT to get

much larger than eight people and still permit the Chief and

Backup to exercise the essential amount of control and super-

vision. Thus, even at the higher-than-normal productivity rates

achievable by CPT's it is difficult for a single Team to produce

72

much more than perhaps 20,000 lines of code in its first year

and 30-~0q000 lines thereafter. Larger projects must there-

fore look to multiple CPT'sr which can be implemented in two

ways. First, as mentioned above under Top-Down Development,

interfaces may be established and independent subsystems may

be developed concurrently by several CPT's and then integrated.

Second, a single CPT may be established to do architecture

and nucleus development for the entire system. It then can

spin off subordinate CPT's to complete the development of these

subsystems. The latter approach is inherently more appealing,

since it carries the precepts of top-down development through

intact. It is also more difficult to implement; the experiment

under way by the author ran into problems because equipment

being developed concurrently ran into definition problems and

prevented true top-down development.

It is difficult to identify problems unique to CPT~s which differ

from those of top-down development discussed above. Perhaps the

most significant one is the claim frequently heard that, "We've

had Chief Programmer Teams in place for years - there's nothing

new there for us. ~' While it is certainly true that many of the

elements of CPT~s are not new, the identification of the CPT

as a particular form of functional organization using a dis-

ciplined, precise methodology suffices to make it unique. In

particular, the emphasis on visibility and control through

management code-reading, formal structured programming tech-

niques and DSL's differentiate true CPT's from other forms of

programming teams [17] And it is this same set of features

which make the CPT approach so valuable in a production pro-

gramming environment where close control is essential if cost

and schedule targets are to be met.

73

MEASUREMENT RESULTS

It is not possible, because it would reveal valuable business

information, to present significant amounts of quantitative

information in this paper. At this time, the results of the

measurement program do show substantial improvements in pro-

gram~ing productivity where the new technology has been used.

A graph has been prepared where each point represents an FSD

project. The horizontal axis records the percentage of struc-

tured code in the delivered product, and the vertical axis

records the productivity. (The latter includes all effort on

the project, including analysis, design, testing, management,

support and documentation as well as coding and debugging. It

also is based only on delivered code, so that effort used to

produce drivers, code written but replaced, etc., tends to

reduce the measured productivity.) A weighted least squares

fit to the points on the graph shows a better than 1.5 to 1 im-

provement in the coding rate from projects which use no struc-

tured programming to those employing it fully.

It is also possible, because the data has already been re-

leased elsewhere, to make one quantitative comparison between

productivity rates experienced using various components of

the technology on some of the programming support work which

FSD has performed for the National Aeronautics and Space

Administration's Apollo and Skylab projects. This comparison

is especially significant because the only major change in ap-

proach was the degree to which the new methodology was used;

the people, experience level, management and support were all

substantially the same in each area.

Figure 6 shows the productivity rates and the components

of the technology used. In the Apollo project, a rate of 1161

74

bytes of new code per man-month was experienced on the Ground

Support Simulation work. (Again, all numbers are based on over-

all project effort.) This work used none of the components

described in this paper. In the directly comparable effort on

the Skylab project, a DSL, structured programming and top-down

development were all employed, and a rate of 3756 bytes of

new code per man-month was achieved -- almost twice as much

new code was produced with slightly more than half the effort.

It is interesting also to remark that this was achieved on the

planned schedule in spite of over Ii00 formal changes made

during the development of that product, along with cuts in both

manpower and computer time. Finally, while the improvement

may rest to some extent on the similar work done previously,

this was not demonstrated in the parallel Mission Operations

Control work. There productivity dropped from 15~7 to 841 bytes

per man-month on comparable work which in neither case used any-

thing other than a DSL.

In addition to making quality measurements and determining

productivity rates, the measurement activity has served a number

of other useful purposes. First, it has built up a substantial

data base of information about FSD projects. As new data is

added, checks are made to ensure its validity, and questionable

data is reviewed before being added. The result is an in-

creasingly consistent and useful set of data. Second, it has

enabled FSD to begin studies on the value of the components of

the methodology. Third, and related, it also permits the study

of other factors (e.g.~ environment, personnel) affecting

project activity. Fourth, it is used to assist in reviewing

ongoing projects~ where the objective data it contains has

proved quite valuable. And fifth, it is used in estimating

for proposed projects, where it affords an opportunity to com-

pare the new work against similar work done in the past, and

to identify risks which may exist.

75

CONCLUSIONS

It should be clear at this point that FSD's experience has

been a very positive one. Work remains to be done, particularly

in the management of top-down development and the formalization

and application of CPT's. Nevertheless, FSD is fully committed

to application of the methodology and is continuing to require

its use.

In retrospect, the plan appears to have been a success and

could serve as a model for other organizations interested in

applying the ideas. The FSD experience shows that this is

neither easy nor rapid. It takes substantial time and effort

and, most important, commitments and support from management,

to equip an organization to apply the methodology.

To summarize, it appears that once a base of tools, standards

and education exists, it is most appropriate to begin with use

of structured and top-down programming and DSL's. Where the

people, knowhow and opportunity exist, then top-down develop-

ment should be applied on a few large, complex projects to

yield an experienced group of people and the required manage-

ment techniques. It is likely that one or more of these may

also present the opportunity to introduce a CPT. This is es-

sentially the approach that FSD has taken, and it appears to

be an excellent way to organize for structured programming.

REFERENCES

76

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Datamation, Vol~ 19, No. 12~ December, 1973, pp. 50-63

B. W. Boehm, "Software and its Impact: A Quantitative

Assessment", Datamation, Vol. 19, No. 5, May, 1973, p. 52

H. Do Mills, Mathematical Foundations for Structured

Programming, Report No. FSC 72-6012, IBM Corporation,

Gaithersburg, Maryland, USA, February, 1972

H. D. Mills, Chief Programmer Teams: Principles and

Procedures, Report No. FSC 71-5108, IBM Corporation,

Gaithersburg, Maryland, USA, June, 1971

F° T. Baker, ~'Chief Programmer Team Management of

Production Programming", IBM Systems Journal, Vol. ii.~

Noo I, 1972, pp. 56-73

Fo T. Baker; ~'System Quality Through Structured Program-

ming ~', AFIPS Conference Proceedings, Vol. 41, Part I,

1972r pp~ 339-343

Federal Systems Center Structured Programming Guide,

Report No. FSC 72-5075, IBM Corporation, Gaithersburg,

Maryland, USA, July, 1973 (revised)

Improved Technology for Application Development: Manage-

ment Overview, IBM Corporation, Bethesda, Maryland, USA,

August, 1973

Federal Systems Center Programm.ing Librarian's Guide,

Report No~ FSC 72-5074, IBM Corporation, Gaithersburg,

Maryland, USA, April, 1972

[io]

[ii]

[12]

[13]

[14]

[15]

77

F. M. Luppino and R. L. Smith, Programming Support Library

(PSL) Functional Requirements: Final Report, IBM Cor-

poration, Gaithersburg, Maryland, USA, prepared under

Contract #F30602-74-C-0186 with the U. S. Air Force

HQ Rome Air Development Center, Griffiss Air Force Base,

New York, USA, July, 197~ (Release subject to approval of

Contracting officer, Mr. Paul DeLorenzo)

P. W. Metzger, Managing a Programming Project,

Prentice-Hall, Englewood Cliffs, New Jersey, USA,

1973

R. C. McHenry, Management Concepts for Top Down

Structured Programming, IBM Corporation, Gaithersburg,

Maryland, USA, November, 1972

HIPO - Hierarchical Input - Process - Output Docu-

mentation Technique: Audio Education Package, IBM

Corporation, Form No. SR20-9~13 (Available through

any IBM Branch Office)

M. M° Kessler, Assembly Language Structured Program-

ming Macros, IBM Corporation, Gaithersburg, Maryland,

USA, September, 1972

G. F. Weinwurm et al, Research into the Management of

Computer Programming: A Transitional Analysis of Cost

Estimation Techniques, System Development Corporation,

Santa Monica, California, USA, November, 1965 (available

from the Clearinghouse for Federal Scientific and Tech-

nical Information as AD 631 259)

78

[16] E. W. Dijkstra~ ~'The Structure of the THE Multiprogram-

ming System", Communications of the ACM, Vol. ii.,

No~ 5, May, 1968, pp. 341-346

[17] G. M. Weinbergr The Psychology of Computer Program-

ming, Van Nostrand Reinhold, New York, New York, USA,

1971

79

J ro~t<er\
Teams ~

J222272 ' ,

Structured Programmlng <

Development Support Li,lraries ~

Hierarchy of Techniques

Figure !

80

BASIC FIGURES

--~> ~

I,,:

ADDITIONAL FIGURES

SEQUENCE

tFTHENELSE

DOWHI LE

DOUNTIL

CASE

Control Structures

Figure 2

81

JCL

LEL

SOURCE

TEST

OBJECT

LOAD

SYSIN

Job control language

Linkage editor language

Source (PL/I, Fortran, BAL,

COBOL) language

Project test data

Compiler output

Linkage editor output

PPL control data

PPL Internal Library Data Sets

Figure 3

82

A set of current status notebooks:

o JCL

o LEL

o SOURCE

o TEST

o OBJECT

o LOAD

o RUN

Job control language

Linkage editor language

Source (PL/I, FORTRAN, BAL,

COBOL) language

Project test data

Compiler output

Linkage editor output

Execution output

A set of archive notebooks:

For each of the above, plus

General - PPL housekeeping output

PPL External Library

Figure 4

83

Coding Sheets
Marked-up Notebooks
Run Requests

I

~/ Computer
Input

Programmers

~'-I 1 Programming F _..
L~ Librarian L J~

i
I , ,

"Cook Book" Control I
i

Cards, PPL Office l
Procedures J

I Computer]

I Machine I
[.~ced u re.~

Project Notebooks:
Status, Archives,
Run

l Computer I

PPL Operations

Figure 5

84

Apollo

Technologies
Used

Bytes of
New Code
(Millions)

Total Effort
to Delivery
Man-Months

Productivity
(Bytes per
Man-Month)

[ControO lPerationM ~ssi°n

t Gr OUns dimulatiS onUppo r t

DSL

None

5.8

2.1

3748

1809

1547

1161

Skylab

Mission
Operations
Control

O r Oul3d

Support
Simulation

DSL

DSL
SP
TDD

1.4

4.0

1665

1065

841

3756

Productivity Comparlson

Figure 6

85

Operation Procedures Functions

Initiating

Updating

Processing

PPLSTART ~

PPLSETUP ~

PPLENTER

PPLEDIT

PPLDELET

PPLINDEX

PPLJCL

PPLJCLD

PPLMOVE

PPLCOPY

PPLPRINT

PPLBALSN

PPLBAL

PPLBALLE

PPLCBLSN

Catalogs the project name and generates
the SYSIN data set

Sets up space for a single PPL section on a
specified disk pac k

Changes or adds members to any specified
section other than OBJECT and LOAD

Performs the same functions as PPLENTER and,
in addition, provides for changing portions of
statements and for shifting of statements
either right or left

Removes one member from any section

Provides a directory and VTOC listing for
any specified section

Copies specified member from a project's JCL
section to the installation common procedure
library PPL.PROCLIB

Deletes specified member from the project mem-
bers in the installation common procedure
library PPL.PROCLIB

Transfers one or more members from any section,
except LOAD, to a corresponding section of
another project

Creates a second copy of a member of any section,
except LOAD, and gives the copy a new member
name

Prints out all members of a section

Invokes Assembler F to perform a syntax check
on members of SOURCE written in System/360
Assembler Language (does not produce object
code)

Invokes Assembler F to assembler members of
SOURCE written in System/360 Assembler Language
into members of OBJECT

Linkage edits members of OBJECT derived from
System/360 Assembler Language into members of
LOAD

Invokes the ANSI COBOL compiler to perform a
syntax check on members of SOURCE written in
COBOL (does not produce object code)

These procedures are normally used only by programmers.

PPL Machine Procedures

Table 1

86

Operation Procedures Functions

PPLCBL

PPLCBLLE

PPLFTNSN

Invokes the ANSI COBOL compiler to compile
members of SOURCE written in COBOL into
members of OBJECT

Linkage edits members of OBJECT derived
from COBOL into members of LOAD

Invokes the FORTRAN H compiler to perform a
syntax check on raembers of SOURCE written in
FORTRAN (does not produce object code)

PPLFTN

PPLFTNLE

Invokes
members
members

Linkage
FORTRAN

the FORTRAN H compiler to compile
of SOURCE written in FORTRAN into
of OBJECT

edits members of OBJECT derived from
into members of LOAD

PPLPLISN

PPLPLI

PPLPLILE

Housekeeping

Terminating

PPLCHKPT

PPLALLCT •

PPLSPACE

PPLRESTR ~

PPLCLEAN ~

PPLENDUP •

Invokes the PL/I F compiler to perform a syn-
tax check on members of SOURCE written in
PL/I (does not produce object code)

Invokes the PL/I F compiler to compile members
of SOURCE written in PL/I into members of
OBJECT

Linkage edits members of OBJECT derived from
PL/I into members of LOAD

Dumps all PPL sections of one project onto a
specified tape

Closes up gaps between remaining members of any
section to make room for additional members, or
may be used to increase the space allocated to
a section

Closes up gaps between remaining members of any
section to make room for additional members

Restores sections of a project from a checkpoint
tape created bY PPLCHKPT ,

Deletes and uncatalogs any specified section
of a project

Deletes a project's name from the system index

These procedures are normally used only by programmers.

PPL Machine Procedures

Table 1 (continued)

