The Reliability of Programming Systems

H. Gerstmann, H. Diel, and W. Witzel,
{BM Germany, Boeblingen

1. ABSTRACT

S e

The reliability of a programming system is not only
determined by the number of errors to be expected, but also
by its behaviour in error situations. An error must be kept
local to identify its origin and annul its effects at an
tolerable expense. This paper discusses a uniforam approach
to the limitation of error propagation, the identification
of the process in error, and the provision for error
recovery.

2. IHE MODEL

The concepts of reliability are described for a model of a
prograaming system which consists of three basic types of
objects:

(1) procedures, which may be nested as in higher level
languages

{2) a state space, represented by the variables declared
within the procedures

{3) processes, which are the units of asynchronous
operations.

The notions used are taken from reference [ 1]. The resources
of the system, also called objects, are represented by
variables. A11 variables constitute the variables state set

B = {x1, x2 ..., xn}a.

An assignment of values to all the variables in the state
variable set defines a state of the system. The set of
possible states is the state space. With esach variable xi a
type is associated which defines the set Vi of values it may
assuyme. In these terms the state space can be written as

§$ = V1l x V2 X seaX Vn.



88

The set of processes
{P1, P2, .u., Pn}

is partially ordered by a precedence relation
Pi < Pk ,

which can be illustrated in the form of a diagram {figure
1).

411 processes Pi, such that Pi <« Pk must have conpleted
before Pk can be initiated.

Each process P uses a subset Bp of the set R of resources.
These objects define the subspace of the systenm state space
in which the actions of the process take place. Resourcas
utilized by more than one process are shared resources.
Input resources Rip to P are shared resources set by other
processes which are referenced by P, output resources Rop
those set by P and refereaced by other processes.

The input state Si  of process P is defined by the state of
each input resource at process initiation. Correspondingly
the state of the output resources at process termination
describes its output state So.

¥ith each process a set of input states {si} 1is associated
for which a mappiny Fp to ouput states ({So} is defined
{figure 2}

From a functional point of view Fp 1is a partial function.
No action is defined in case P is initiated in a state 5
{Si}. The next section is devoted to this exceptional
situation.

3. EXCEPTION HANDLING

It has lony been recognized by engineers that iastructioas
perfora partial functions., To cope with them, exceptioas
have been inpntroduced. The ZERODIVIDE and JVERFLOW
conditions are typical examples.

Higher level languages either ignore this property or just
support exceptions on the instruction level as in the case
of PL/I. There is, however, no coasistent treatment of
exceptions at the level of procedures. The arguseat that
such a feature is not needed goes as follows: Exceptions at



89

the procedure level either can be programmed or reduced to
hardware exceptions.

Although this 1is a true statemeat, it expresses a narrow
attitude with respect to the purpose of a language. The
semantic distinction between functional and exceptional
actions should also be reflected in the syntax of the
language.

As indicated in figure 3 the functional action Fp expresses
the function of the procedure as long as 1its arguments are
in {Si}. If this is not the case the -exceptional action Ep
maps the imnvalid state into an exception description.

To support this property in a programming language such as
PL/I, extensions of the following kind are required:

{1) The values a scalar variable may assume can be
constrained by appending a range to its data attribute.

{2) The values of structured variables (including arrays)
can be constrained by imposing relations between its
subcomponents.

{3) A built-in-function RANGE which returns *|'B or *0'B
depending on wheter the argument 1lies in its range or
not.

(4) A built-in-function ON_ERROR_DESCR which returns an
grror description in the form of a structure:

1 ERROR_DESCR
2 EREOR_TYPE
3 ERROR_MAIN _TYPE
3 ERROR_SUB_TYPE
2 STATEMENT_NO
2 STATEMENT_LABEL
2 AFFECTED_VARIABLES

VARIABLE]1

3
L d
-
-

Figure 4 shows the use of these language constracts to
define exceptional actions. The language elements introduced



90

should not be considered as a proposal to extend PL/I. Its
purpose is to indicate the direction in which sxtensions are
needed to separate the functional part of a procedure from
its exceptional part. A consistent solution cannot neglect
type attributes as provided in PASCAL [2,3].



o

4. ERROR ISO0LATION

The capability to isolate errors in a system does however
not only depend on the realization of the partial function
concept. Additional system properties are regquired to
attribute an error useguivocally to a certain process: At
each point of time only one process may update a shared
LeS0uUrce.

To this end the use of shared resources nust be restricted.
Two different cases are to be conslidered:
Case 1

The resource 1is shared by processes which lie on a path
through the system (figure 5). Since P11 < P2 it is always
possible to allocate the resource R in such a way that

deallocate ({gB,P1) < allocate (k,P2).

buring the execution of processes at any point of time R is
allocated to at mosSt one process.

Case 2

The resource 1is shared by processes which do not lie om a
path through the system {Figure 6}.

In this situation the direct access to the resource is
prevented by establishing an interface between the processes
and the resource. Assuming that the processes either want to
read or to update {read and write) the resource, they have
to initiate separate atomic processes READ (R, Pi) or UPD
(R, Pj)y which are associated with R and obey the
constraints indicated in figure 7.

An empty circle represents any other process including read
and update. Dependent on the intended wuse of the resource R
the processes Pi are decomposed into subprocesses. According
to above constraints, disregarding symmetry, this results in
one of the three types of diagrams shown in figure 8.

By means of this device case 2 is reduced to case 1. The
process administering the resource BE and the associated set
of processes [READ({R, Pi)} U (UPD(R, Pj}} in accordance with
above constraints is called a resource manager.

There is an interesting parallel to the concept of monitors
introduced by Brinch Hamsen [4].



92

Due to the use of resource managars a unique path of serial
processes can pe associated with the state changes of each
shared resource (fiyure 9).

For the purpose of error isolation each process including
those controiled by rescurce managers 1is requested to check
its ipput states.

Whenever an error is detected by a process Pk it must have
been caused by some process Pi € Pk on the path for the
resource concerned. In any case, Pk will accuse its
immediate predecessor Pk—1 of having made an error based on
the following consideration:

Rither Pk~1 caused the error during its execution or made an
error in accepting an erroneocus input state.

As indicated in figure 10, going the path backwards in this
way, the process originating the error can be identified.
The process Pk may wrongly accuse Pk~1 to have supplied
faulty input. To settle this case, it 1s necessary that
obligatory specifications detailing the interfaces between
processes have been established before the implementation.

The language features described for input checking were
introduced in the previous section. Their wuse 1is now
described. Constraints imposed on the state space are either
process or systea specific. Process specific constraints
define the admissible 1input states of a process. Formal
parameters are to be specified with ranges. Dependencies
between global variables and/or formal parameters are
checked as indicated.

System specific constraints are properties of shared
resvurces represented by global variables. To maintain their
inteyrity ranges are appended. Since the sequence in which
a shared resource will be used by the processes 1is
undetermined, the ranges must express invariant properties,
i.e., the conditions imposed on its state before and after
process execution must be the same (figure 11).

The embedding of on-units in process hierarchies is the
subject of the next section.



93

5. ERRGB RECOVERY

The concepts developed for error isolation are not
sufficient for the purpose of recovery. This can be shown by
the following exasmple:

Process P1 uses resource R to provide input to process P2.
Case 1

The resource R is used by the serial processes P1 and P2
{figure 12). After providing input to P2 the process P1
terminates. P2 detects an input error. Recovery nmust
comprise process P1 which is no longer in existence.

Case 2

The resource R 1is used by the parallel processes P1 and P2
{figqure 13). After providing input to P2, process P1
continunes to exist and discovers an error affacting R.
Process P1 has to return to a previous state and recall the
data supplied to P2. Therefore recovery must also include
process PZ.

Although in this situation the resource manager 1is
responsible for the input check and errors violating the
constraints imposed on R are detected before P2 is
initiated, the subprocess P12 may consider the values
supplied to R as isnconsistent according to the internal
semantics of the program.

Thus the concept of input validation as described for the
purpose of error isolation must be extended for the purpose
of recovery. Two strategies which supplement eachother are
discussed

- a discipline with vrespect to data communications
{commmitment discipline)

- a hierarchical structure of processes with respect to
LecovVerya

The intent of the commitment discipline is to enforce
that no data 1s committed outside a process unless
either it is ensured that there will never be a need to
recall the data or there is a mechanism available to do
it.

As described in section 2, a process makes use of input
and output resources. For the purpose of commitment
values submitted to output resources are classified as:



94

uncommitted - Data the recelving process cannot rely on.
It will not be recalled in case the
sending process fails.

committed - Data the sending process conmmits as
consistent to the recelving process.
Consequently it will not be recalled by
the sending Process.

precommitted - Data that can exist din one of three
states: 'OPENY, *RECALLED' or 'YCIOMMITTED'.
The initial state is 'OPEN'. At recall or
commitment the state is «changed to
*RECALLED' or *COMMITTED?.

This distinction is introduced 1in refereace (5], however,
applying different terminology and semantics.

Qutput 1s committed by the supplying process whea it 1is

considered consistent. The term 'consistent? remains
undefined. It is up to the individual process to establish
appropriate criteria. They should, however, at least

guarantee valid output.

The comnmitment implies for copmitted data the release to
other processes and for precommitted data a state transition
from *OUPEN® to YCOMMITTED'. The data must be committed
before the highest level process terminates to which the
output variables are non-local.

rommitted and uncommitted data do not introduce dependencies
between processes which have to be cousidered for recovery.
The situation is different for precommitted data. This
notion allows to extend the scope of in-process recovery,
which is based on the fact that the process to be recovered
1s still in existence.

Figure 14 shows the state diagram for precommitted data. The
sending process sets the data in the initial state 'TOPEN'.
The associated resource manager guarantees that the data are
not changed by any receliving process as long as they are in
the state ‘YOPEN®. Only the sending process is entitled to
chaunge the state to 'COMMITED® or 'RECALLED'. The receiving
processes are not perpitted to terminate before the state
*COMMITTED* is entered. In addition they must not commit
output which depends on input not yet committed.

This mechanisas ensures that all dependent parallel processes
are still in existence in case data have to be recalled. It
therefore allows to apply in-process recovery to several
processes. For Dback out each of them <can be reset to the



95

initial state which was kept at process initiation. Figure
15 1illustrates the comnitment discipline. Process P1
precomnits data to the resource R and sets 1its state to
*OPEN*. The data can be read but not updated until the end
of P21. Before P2 is permitted to update R and/or terminate
its execution it must walt for the commitment of R by Pl.

The conmitment discipline cannot be applied to serial
processes. To yuarantee the existence of a process that can
perform the recovery, the system should be designed as a
hierarchy of processes. In cases where this hierarchy cannot
be predefined measures for post-process recovery have to be
introduced in the direction as described in reference [ 6].
Figure 16 shows an idealized system meeting above design
constraints. The system is structured in three processes P1,
P2 and P3. Each process Pi consists of subprocesses Pij.
Recovery situations affecting only parallel processes such
as P22 and P23 or P32 and P33 can be handled by means of the
commlitment discipliune. in any other situation the process
detecting the error has to escalate it to the next level in
the process hierarchy. To achieve this on=-units providing
for recovery nmust also be ordered hierarchically. Figure 17
indicates a way how errors can be escalated to higher level
on~units for recovery.

6. DISCUSSION

The concepts of reliability described in the preceding
sections reqguire a systenm partitioned into modules.
Following Parnas (7] a systeam 1is considered well structured
in case the interfaces between wmodules contain little
information, where interfaces are the assumptions modules
make about each other. To minimize the information being
transferred, interfaces must be raised to a higher level of
abstraction.

In this context the features discussed in the paper offer
tools to enforce abstractions. As abstractions represent
design decisions independent from the program flow, the
featares can only partially be provided autouwatically by a
compiler. & compiler handles one external procedure at a
time, whereas module interfaces comprise more than one
external procedure. Also, not every external procedure
declaration constitutes an abstract interface and an
abstract interface may contain assumptions which cannot be
expressed in terms of parameters.

The entorcement of interfaces rejuires additional effort at
execution time. Sometimes performance reasons are pretended
to reject an approach of this kind. There are at least two



96

reasons which shovy that the argument is not stringeat.
PASCAL {8] has demonstrated that dynamic range checking can
be inplemented efficiently. Ranges, as proposed here, are
more complex since they can be defined by any:relation. On
the other hand, they need not be checked at any reference
but just at the interface. This leads to the second reason:
It is the desiguers responsibility to minimize the
information passed across interfaces.

7. SUHMARY

o o -

The preceding sections presented an attempt toc handle errors
systematically. Error isolation and tecovery were treated
under one aspect. BErcror isolation led to the realization of
the partial fusnction concept and the provisiom of resource
matagers. LEIror recovery im addition necessitated the
introduction ¢f a commitment discipline in conjunction with
a hierarchical structure of processes.

REFERENCES

1. J.J. Horminy and B. Randell: Process Structuring,
Computing Surveys, Vol. 5, ¥o 1, March 1973

2. HN. Wirth: The Programming Language Pascal, Acta
Informatica i, 35-63 (1971)

3. N. Habermann: Critical Comments on the Programaing
Language Pascal, Acta Informatica 3, 47-57 {1973)

4, P. Briach Haasen: Concurrent Programming <Concepts,
Computing Surveys, Vol. 5, Bo 4, December 1973

5. Ch. T. Davies, Jr.: BRecovery Semantics for a DB/DC
System, 1973 Proceedings of the ACH

6. L.A. Bjork: Recovery Scenario for a DB/DC System, 1973
Proceedings of the ACH

7. D. L. Parnas: Software Engineering or HMethods for the
Multi~Person Construction of Multi-Version Progranms,
published in these proceedings

8. N. Wirth: The Design of a PASCAL Compiler, Software, Vol
1, 309-333 {1971)



97

Precedence Relation between Processes

Fig, 1



28

Mapping of Input States to Output States
defined by a Process

Re = {Xi, X} Ror ={¥1, Y2}

X \{

Pig. 2



o9

Distinction between
Functional and Exceptional Actions
of a Process

X1 Yi

Plg. 3



Use of Ranges and Error Descriptions

Example 1:
T X0 X <i10% X210

2 Xy INTEGER (10 ... 99 ))
2 X2 INTEGER (10 ... 10 1))

BLOCK ARRAY (10) CHAR (4) (I 'READ’, 'WRTFE’, 'WAIT’ )

Example 2:

P: PROC;
DCL (X,Y) INTEGER (10 ... 10 I) EXTERNAL, 1 E ... ;

ON CONDITION (INPUT) BEGIN; ... ; E=
ON_ERROR_.DESCR END;

IF_I(RANGE(X) A RANGE (Y) A X<Y) THEN
SIGNAL CONDITION (INPUT);

END;

Pig. 4



101

Shared Resource used by Sequential Processes

Pig. 5



102

Shared Resource used by Parallel Processes

H.
Cg
e
[o)Y



103

Processes generated by Resource Manager

@

uPD
(R, P)

Decomposition of Processes into Subprocesses
to access Shared Resource through
Resource Manager

g BENS  WEN  NMNE  SEE R . Sy

Fige 7



104

Sequentialization of Accesses to Shared
Resource by means of Resource Manager




105

Unique Correspondence between State Changes
of Resources and Sequential Processes

Fig, 9



106

Backtracking to locate Error

@ envor origin

® ervor in input check

@ enror detected by input check

Fig., 10



107

INVARIANT RESOURCE CONSTRAINTS

cond(s)

cond(s’)

Pig. 11



108

Scope of Recovery for Sequential Processes

Fig. 12



109

Scope of Recovery for Parallel Processes

Fig. 13



110

State Diagram for Precommitted Data

Pig.

/ MITTED:
\ —
CALLED

14



m

Use of Precommitted Data




112

Hierarchy of Processes

16

A
li:).

¥



113

Escalation to Higher Level On-Units

P:: PROC;

Pi1: PROC; ... END Pyy;
Pi2: PROC;

ON CONDITION (INPUT 12) BEGIN;

E = ON_ERROR_DESCR;

SIGNAL CONDITION (ESCALATE);

END;

IF input-error THEN SIGNAL CONDITION (INPUT 12);
END Pi2;

ON CONDITION (ESCALATE) BEGIN; ... ; END;

CALL Py;

CALL Py;

-

END Py;

Pig. 17



