
The Reliability of Programming Systems

H. Gerstmann, H. Diel, and W. Witzel,
IBM Germany, Boeblingen

1. ABSTRACT

The reliability of a programming system is not only
determined b y the number of errors to be expected, but also
by its behavioar in error situations. An error must be kept
local to identify its origin and annul its effects at a n
tolerable expense. This paper discusses a uniform approach
to the limitation of error propagation, the identification
of the process in error, and the provision for error
rezovery.

2 . THE MODEL

The concepts of reliability are described for a model of a
programming system which consists of three basic types 3f
objects:

(I) procedures, which may be nested as in higher level
languages

(2) a state space, represented b y the variables declared
within the procedQres

(3) processes, which are the units of
operations.

asynchronous

~he notions used are taken from reference [1]. The resources
of the system, also called objects, ~re represented by
variables. All variables constitute the variables state set

R = {xl, x2 ..., xn}.

An assignment of values to all the variables in the state
variable set defines a state of the system. The set of
possible states is the state space. With each variable xi a
type is associated which defines the set Vi of values it may
assume. In these terms the state space can be written as

S = Vl x V2 x . . . x Vn .

88

The set of p~ocesses

{Plg P2, ...~ Pn}

is partially ordered by a precedence relation

P1 < Pk ,

which can be illustrated in the form of a diagram (figure
I).

All processes Pi~ sach that Pi < Pk must have completed
before Pk can be initiated.

Each process P uses a subset Rp of the set R of resources.
These objects define the subspace of the system state space
in ~hich the actions of the prozess take place. Resources
utilized by mdre than one process are shared resources.
Input resources Rip to P are shared resources set by other
processes which are referenced by P, output resources Nop
those set by P and referenced by other processes.

The input state Si of process P is defined by the state of
each input resource at process initiation, correspondingly
the state of the output resources at process termination
describes its output state So.

With each process a set of input states
for which a mappin~ Fp to ouput states
(figure 2).

{si} is associated
[So} is defined

From a functional point of view Fp is a partial function.
No action is defined in case P is initiated in a state S
{Si}. The next section is devoted to this exceptional
situation.

3. EXCEPTION HANDLING

It has long been recognized by engineers that instructions
perform partial functions. To cope with them, exceptions
have been introduced, the ZERODI~IDE and 9VERFLOW
conditions are typical examples.

Higher level languages either ignore this property or just
support exceptions on the instruction level as in the case
of PL/I. There is, however, no consistent treatment of
exceptions at the level of procedures. The argument that
such a feature is not needed goes as follows: Exceptions at

89

the procedure level either can be programmed or reduced to
hardware exceptions.

Although this is a true statement, it expresses a narrow
attitude with respect to the purpose of a language. The
semantic distinction between functional and exceptional
actions should als3 be reflected in the syntax of the
language.

As indicated in figure 3 the functional action Fp expresses
the function of the procedure as long as its arguments are
in [Si}. If this is not the c~se the exzeptional action Ep
maps the invalid state into an exception description.

ro support this property in a programming language such as
PL/I, extensions of the following kind are required:

(I) The values a scalar variable may assume can be
constrained by appending a range to its data attribute.

(2) The values of structured variables (including arrays)
can be constrained by imposing relations between its
subcomponents.

(3) A built-in-function RANGE which returns '|'B 3r *0'B
depending on wheter the argument lies in its range 3r
n o t .

(~) A built-in-function ON_ERROR DESCR which returns as
error description in the form ~fJa structure:

I ERRDR_DESCR

2 E~ROR_TYPE

3 E~ROR_MAIN_TYPE

3 ERROR_SUB_TYPE

2 SrATEeENT_NO

2 STATEMENT_LABEL

2 AFFECTED_VARIABLES

3 VARIABLE|
O

@

O

Figure ~ shows the use of these language constructs to
define exceptional actions. The language elements introduced

90

should {lot be considered a s a proposal to extend PL/Io Its
puEpose is to indicate the direction in which exte,sions a~e
needed to separate the functional part of a procedure from
its exceptional part. A consistent solution casnot neglect
type attributes as provided in PASCAL [2,3].

81

~. EBROR ISOLATION

The capability to isolate errors in a system does however
not only depend on the realization of the partial function
concept. Additional system properties are required to
attribute an error unequivocally to a certain process: At
each point of time only one process may update a shared
resource.

To this end the use of shared resources must be restricted.

Two different cases are to be considered:

Case I

The resource is shared by processes which lie on a path
through the system (figure 5). Since PI < P2 it is always
possible to allocate the resource R in such a way that

deallocate (R,PI) < allocate (B,P2).

During the execution of processes at any point of time R is
allocated to at most one process.

Case 2

The resource is shared by processes which do not lie on a
path through the system {Figure 6|.

In this situation the direct access to the resource is
prevented by establishing an interface between the processes
and the resource. Assuming that the processes either want to
read or to update (read and write) the resource, they have
to initiate separate atomic processes READ (R, Pi) or UPD
(E, Pj) which are associated with R and obey the
constraints indicated in figure 7.

An empty circle represents any other process including read
and update. Dependent on the intended use of the resource R
the processes Pi are decomposed into subprocesses. According
to above constraints, disregarding symmetry, this results in
one of the three types of diagrams shown in figure 8.

By means of this device case 2 is reduced to case 1. The
process administering the resource H and the associated set
of processes {READ(R, Pi)} U [UPD(R, Pj}} in accordance with
above constraints is called a resource manager.

There is an interesting parallel to the concept of monitors
introduced by Brinch Sansen [4].

92

Due to the use of resource managers a unique path of serial
processes can De associated with the state changes of each
shared resource (figure 9).

For the purpose of e~ror isolation each process including
those controlled by resource managers is requested to check
its input states.

Whenever an error is detected by a process Pk it must have
been caused by some process Pi < Pk on the path for the
resource concerned. In any case, Pk will accuse its
immediate predecessor Pk-1 of hawing made an error based on
the following consideration:

Either Pk-1 caused the error during its execution or made an
error in accepting an erroneous input state.

As indicated in figure 10, going the path backwards in this
way, the process originating the error can be identified.
lhe process Pk may wrongly accuse Pk-1 to have supplied
faulty input. To settle this case, it is necessary that
obligatory specifications detailing the interfaces between
processes have been established before the implementation.

The language features described for input checking were
introduced in the previous section. Their use is ngw
described. Constraints imposed on the state space are either
process or system specific. Process specific constraints
define the admissible input states of a process. Formal
parameters are to be specified with ranges. Dependencies
between global variables and/or formal parameters are
checked as indicated.

System specific constraints are properties of shared
Eesuurces represented by global variables. To maintain their
integrity ranges are appended. Since the sequence in which
a shared resource will be use~ by the processes is
undetermined, the ranges must express invariant properties,
i.e., the conditions imposed on its state before and after
process execution must be the same (figure 11).

The embedding of on-units in process hierarchies is the
subject of the next section.

93

5. EERO~ ~ECOVER¥

The concepts developed for error isolation are not
sufficient for the purpose of recovery. This can be shown by
the following example:

Process PI uses resource R to provide input to process P2.

Case 1

The resource R is used by the serial processes PI and P2
(figure 12). After providing input to P2 the process PI
terminates. P2 detects an input error. Recovery must
comprise process PI which is no longer in existence.

Case 2

The resource R is used by the parallel processes Pl and P2
(figure 13). After providing input to P2, process PI
continues to exist and discovers an error affecting R.
Process PI has to return to a previous state and recall the
data supplied to P2. Therefore recovery must also include
process P2.

Although in this situation the resource manager is
responsible for the input check and errors violating the
constraints imposed on R are detected before P2 is
initiated, the subprocess P12 may consider the values
supplied to R as inconsistent according to the internal
semantics of the program.

Thss the concept of input validation as described for the
purpose of error isolation must be extended for the purpose
of recovery. Two strategies which supplement eachother are
discussed

- a discipline with respect
(commmitmeat discipline)

to data communications

- a hierarchical structure of processes with respect to
recovery.

The intent of the commitment discipline is to enforce
that no data is committed outside a process uoless
either it is ensured that there will never be a need to
recall the data or there is a mechanism available to do
it,

As described in section 2, a process makes use of input
and output resources. For the purpose of commitment
values submitted to output resources are classified as:

94

uncommitted - Data the receiving process cannot rely on.
It will not be rezalled in case the
sending p~ocess fails.

committed - Data t~e sending process commits as
consistent to the receiving process.
Consequently it will not be rezalled by
the sending process.

precommitt~d- Data that can exist in one of three
states: 'OPEN', 'RECALLED' or 'CDMMITTED'.
The initial state is 'OPEN'. At recall ~r
commitment the state is changed to
IECALLED' or 'COM~ITTED'.

This distinction is introduced in reference [5], however,
applyi~;g different terminology and semantics.

Output is committed by the supplying process when it is
considered consistent. The term 'zonsistent' remains
undefined. It is up to the individual process to establish
appropriate criteria. They should, however, at least
guarantee valid output.

The commitment implies for committed data the release to
other processes and for precommitted data a state transition
from 'OPEN' to 'COmMiTTED'. The data must be committed
beiore the highest level ~rocess terminates to ~hich the
output variables are non-local.

Committed and uncommitted data do not i~troduce dependencies
between processes which have to be ~onsidered for recovery.
The sitsatioll is different for precommitted data. This
notion allows to extend the szope of in-process recovery,
which is based on the tact that the process to be recovered
is still in existence.

Figure 14 shows the state diagram for precommitted data. The
sending process sets the data in the initial state 'OPEN'.
The associated resource manager guarantees that the data are
not changed by any receiving process as long as they are in
the state 'OPEN'. Only the sending process is entitled to
change the state to 'COMMITED' or 'RECALLED'. The receiving
processes are not permitted to terminate before the state
'COMMITTED' is entered. In addition they must not commit
output which depends on input not yet committed.

This mechanism ensures that ~ii dependel~t parallel processes
are still in existence in case data have to be recalled. It
therefore allows to apply in-process recovery to several
processes. For back out each of them :an be reset to the

95

initial state which w~s kept ~t process initiation. Figure
15 illustrates the commitment discipline. Process PI
precommits data to the resource R and sets its state to
'OPEN'. The data can be read but not updated until the end
of P21. Before P2 is permitted to update R and/or terminate
its execution it must wait for the commitment of R by PI.

The commitment discipline cannot be applied to serial
processes. To guarantee the existence of a process that can
perform the ~ecovery, the system should be designed as a
hierarchy of processes. In cases where this hierarchy canngt
be predefined measures for post-process recovery have to be
introduced in the direction as described in reference [6].
Figure 16 shows an idealized system meeting above design
constraints. The system is structured in three processes Pl,
P2 and P3. Each process Pi =onsists of subprocesses Pij.
Recovery situations affecting only parallel processes such
as P22 and P23 or P32 and P33 can be handled by means of the
commitment discipline. In any other situation the process
detecting the error has to escalate it to the next level in
the process hierarchy. To achieve this on-units providing
for recovery must also be ordered hierar:hically. Figure 17
indicates a way how e~rors can be escalated to higher level
on-units for recovery.

6. DISCUSSION

The concepts of reliability described in the preceding
sections require a system partitioned into modules.
Following Parnas £7] a system is considered well structured
in case the interfaces between modules contain little
information, where interfaces are the assumptions modules
make about each other. To minimize the information being
transferred, interfaces must be raised to a higher level of
abstraction.

In this context the features discussed in the paper offer
tools to enforce abstractions. As abstractions represent
design decisions independent from the program £1ow, the
features can only partially be provided automatically by a
compiler. A compiler handles one external procedure at a
time, whereas module interfaces comprise more than one
external procedure. Also, not every external procedure
declaration constitutes an abstract interface and an
abstract interface may contain assumptions which cannot be
expressed in terms of parameters.

The en[orcement of interfaces requires additional effort at
execution time. Sometimes performance reasons are pretended
to reject an approach of this kind. There are at least two

96

reasons which show that the argament is not stringent.
PASCAL [8] has demonstrated that dynamic range checking can
be implemented efficiently. Ranges, as proposed here, are
sore complex since they can be defined by any>relation. On
the other hand, they need not be checked at any reference
but just at the interface. This leads to the second reason:
It is the designers responsibility to minimize the
information passed across interfaces.

7. SUMMARY

The preceding sections presented an attempt to handle errors
systematically. Error isolation and ~ecovery were treated
under one aspect~ Error isolation led to the realization of
the partial fanction concept and the provision of resource
manager~. Error recovery in addition necessitated the
introduction Of a commitment discipline in conjunction with
a hierarchical structure of processes.

REFERENCES

I. J.J. Ho~ning and B. Eandell: Process Structuring,
Computing Surveyse Vol. 5, No I, March 1973

2. N. Wirth: The Programmin 9 Language Pascal, Acta
Informatica I, 35-63 (1971)

.

5~

N. Habermann: 3ritical Zomments on the Programming
Language Pascai, Acta Informatica 3, ~7-57 (1973)

P. Brinch Hansell: Concurrent Programming Conceptsr
Computing Surveys, Vol. 5, No 4, December 1973

Ch. T. Dawies, Jr.: Recovery Semantics for a DB/DC
System, 1973 Proceedings of the ACM

6. L.A. Bjork: recovery Scenario for a DB/DC System, 1973
Proceedings of the ACM

7. D. L. Parnas: Software Engineering or Methods for the
Multi-Person Construction of Multi-Version Programs,
published in these proceedings

8. N. Wirth: The Design of a PASCAL Compiler~ Software, Vol
1, 309-333 (1971)

97

Precedence Relation between Processes

Fig. I

98

Mapping of Input States to Output States
defined by a Process

l~p = {X+, X2}

d

X2

Xl

~ig. 2

99

Distinction between
Functional and Exceptional Actions

of a Process
I I I I I I II I

~ig. 3

100

Use of Ranges and Error Descriptions

Example 1:

1 X (I X l < 1 0 , X 2 I)
2 Xl INTEGER (I 0 . . . 99 I)
2)(2 INTEGER (I 0 .o. 10 I)

BLOCK ARRAY (10) CHAR (4) (I 'READ', 'WRTE', 'WAIT' I)

Example 2:

P: PROC;
DCL (X, Y) INTEGER (I 0 . . . 10 I) EXTERNAL, 1 E . . . ;

o

o

ON CONDITION (INPUT) BEGIN; . . , ; E =
° ON_ERROR_DESCR; . . . ; END;
o

@

IF 7 (RANGE (X) A RANGE (Y) /~ X '~ Y) THEN
• SIGNAL CONDITION (INPUT);
o

o

END;

Fig. 4

101

Shared Resource used by Sequential Processes

Fig. 5

102

Shared Resource used by Parallel Processes

~iG. 6

~
m

m

m

m

m

m

,~

-'

~

11
11

1m
m

a

re
a

a

m

.a
m

m

m

a
to

m

r/
~

,~
~

l

m

i~

m

m

m

m

m

~

"ID
 i g [<=
"

ID

D)

rs

lip

,m
 I

2O

C
0

C iC*

I i'J m
~

105

Unique Correspondence between State Changes
of Resources and Sequential Processes

~ig. 9

Backtracking to locate Error

I
I

I

%

& ,
I

I
s

• error origin

• error in input check

• error detected by input check

Pig. I 0

t07

INVARIANT RESOURCE CONSTRAINTS

R
¢o,~I~

R
~.d(s')

Fig. 11

108

Scope of Recovery for Sequential Processes

R

Fig, 12

~
J

~
m

uu

nm

im
m

m
m

m

m

m

m

~

--
~

/
I

l

.J
 ! II

m
um

nm
m

m
 f

110

State Diagram for Precommitted Data

, 7 ~

~ig. 14-

111

Use of Precommitted Data

(

Fig. 15

112

Hierarchy of Processes
ii i i

i m m m m m m 1

I)1 P 2 S " %%
/

l i ~ I / ~
! ! | / / %%

I i | %
I | ! % /

! ! 3 I ~) /

Ps | ,- -. /
I I

, / \ ,
l / ~ 1

I / /
~ J / / /

~ m a m m m ~

%%

I |
/ /

/ I
I

/

~ i 7 1 6

113

Escalation to Higher Level On-Units

PI: PROC;

1 : PROC; . . . END Pll;
P12: PROC;

ON CONDITION (INPUT12) BEGIN;

E = O~_ERROR_DESCR;

SlGNAi~ CONDITION (ESCALATE);

END;

IF input-error THEN SIGNAL CONDITION (INPUT12);

e

END Pro;

ON CONDITION (ESCALATE) BEGIN; . . . ; END;

CALL Pll;
O

CALL 1:)12;

END P1;

~ig. 17

