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1. ABSTRACT 

The reliability of a programming system is not only 
determined b y  the number of errors to be expected, but also 
by its behavioar in error situations. An error must be kept 
local to identify its origin and annul its effects at a n  
tolerable expense. This paper discusses a uniform approach 
to the limitation of error propagation, the identification 
of the process in error, and the provision for error 
rezovery. 

2 .  THE MODEL 

The concepts of reliability are described for a model of a 
programming system which consists of three basic types 3f 
objects: 

(I) procedures, which may be nested as in higher level 
languages 

(2) a state space, represented b y  the variables declared 
within the procedQres 

(3) processes, which are the units of 
operations. 

asynchronous 

~he notions used are taken from reference [1]. The resources 
of the system, also called objects, ~re represented by 
variables. All variables constitute the variables state set 

R = {xl, x2 ..., xn}. 

An assignment of values to all the variables in the state 
variable set defines a state of the system. The set of 
possible states is the state space. With each variable xi a 
type is associated which defines the set Vi of values it may 
assume. In these terms the state space can be written as 

S = Vl x V2 x . . . x  Vn .  
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The set of p~ocesses 

{Plg P2, ...~ Pn} 

is partially ordered by a precedence relation 

P1 < Pk , 

which can be illustrated in the form of a diagram (figure 
I). 

All processes Pi~ sach that Pi < Pk must have completed 
before Pk can be initiated. 

Each process P uses a subset Rp of the set R of resources. 
These objects define the subspace of the system state space 
in ~hich the actions of the prozess take place. Resources 
utilized by mdre than one process are shared resources. 
Input resources Rip to P are shared resources set by other 
processes which are referenced by P, output resources Nop 
those set by P and referenced by other processes. 

The input state Si of process P is defined by the state of 
each input resource at process initiation, correspondingly 
the state of the output resources at process termination 
describes its output state So. 

With each process a set of input states 
for which a mappin~ Fp to ouput states 
(figure 2). 

{si} is associated 
[So} is defined 

From a functional point of view Fp is a partial function. 
No action is defined in case P is initiated in a state S 
{Si}. The next section is devoted to this exceptional 
situation. 

3. EXCEPTION HANDLING 

It has long been recognized by engineers that instructions 
perform partial functions. To cope with them, exceptions 
have been introduced, the ZERODI~IDE and 9VERFLOW 
conditions are typical examples. 

Higher level languages either ignore this property or just 
support exceptions on the instruction level as in the case 
of PL/I. There is, however, no consistent treatment of 
exceptions at the level of procedures. The argument that 
such a feature is not needed goes as follows: Exceptions at 
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the procedure level either can be programmed or reduced to 
hardware exceptions. 

Although this is a true statement, it expresses a narrow 
attitude with respect to the purpose of a language. The 
semantic distinction between functional and exceptional 
actions should als3 be reflected in the syntax of the 
language. 

As indicated in figure 3 the functional action Fp expresses 
the function of the procedure as long as its arguments are 
in [Si}. If this is not the c~se the exzeptional action Ep 
maps the invalid state into an exception description. 

ro support this property in a programming language such as 
PL/I, extensions of the following kind are required: 

(I) The values a scalar variable may assume can be 
constrained by appending a range to its data attribute. 

(2) The values of structured variables (including arrays) 
can be constrained by imposing relations between its 
subcomponents. 

(3) A built-in-function RANGE which returns '|'B 3r *0'B 
depending on wheter the argument lies in its range 3r 
n o t .  

(~) A built-in-function ON_ERROR DESCR which returns as 
error description in the form ~fJa structure: 

I ERRDR_DESCR 

2 E~ROR_TYPE 

3 E~ROR_MAIN_TYPE 

3 ERROR_SUB_TYPE 

2 SrATEeENT_NO 

2 STATEMENT_LABEL 

2 AFFECTED_VARIABLES 

3 VARIABLE| 
O 

@ 

O 

Figure ~ shows the use of these language constructs to 
define exceptional actions. The language elements introduced 
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should {lot be considered a s  a proposal to extend PL/Io Its 
puEpose is to indicate the direction in which exte,sions a~e 
needed to separate the functional part of a procedure from 
its exceptional part. A consistent solution casnot neglect 
type attributes as provided in PASCAL [2,3]. 
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~. EBROR ISOLATION 

The capability to isolate errors in a system does however 
not only depend on the realization of the partial function 
concept. Additional system properties are required to 
attribute an error unequivocally to a certain process: At 
each point of time only one process may update a shared 
resource. 

To this end the use of shared resources must be restricted. 

Two different cases are to be considered: 

Case I 

The resource is shared by processes which lie on a path 
through the system (figure 5). Since PI < P2 it is always 
possible to allocate the resource R in such a way that 

deallocate (R,PI) < allocate (B,P2). 

During the execution of processes at any point of time R is 
allocated to at most one process. 

Case 2 

The resource is shared by processes which do not lie on a 
path through the system {Figure 6|. 

In this situation the direct access to the resource is 
prevented by establishing an interface between the processes 
and the resource. Assuming that the processes either want to 
read or to update (read and write) the resource, they have 
to initiate separate atomic processes READ (R, Pi) or UPD 
(E, Pj) which are associated with R and obey the 
constraints indicated in figure 7. 

An empty circle represents any other process including read 
and update. Dependent on the intended use of the resource R 
the processes Pi are decomposed into subprocesses. According 
to above constraints, disregarding symmetry, this results in 
one of the three types of diagrams shown in figure 8. 

By means of this device case 2 is reduced to case 1. The 
process administering the resource H and the associated set 
of processes {READ(R, Pi)} U [UPD(R, Pj}} in accordance with 
above constraints is called a resource manager. 

There is an interesting parallel to the concept of monitors 
introduced by Brinch Sansen [4]. 
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Due to the use of resource managers a unique path of serial 
processes can De associated with the state changes of each 
shared resource (figure 9). 

For the purpose of e~ror isolation each process including 
those controlled by resource managers is requested to check 
its input states. 

Whenever an error is detected by a process Pk it must have 
been caused by some process Pi < Pk on the path for the 
resource concerned. In any case, Pk will accuse its 
immediate predecessor Pk-1 of hawing made an error based on 
the following consideration: 

Either Pk-1 caused the error during its execution or made an 
error in accepting an erroneous input state. 

As indicated in figure 10, going the path backwards in this 
way, the process originating the error can be identified. 
lhe process Pk may wrongly accuse Pk-1 to have supplied 
faulty input. To settle this case, it is necessary that 
obligatory specifications detailing the interfaces between 
processes have been established before the implementation. 

The language features described for input checking were 
introduced in the previous section. Their use is ngw 
described. Constraints imposed on the state space are either 
process or system specific. Process specific constraints 
define the admissible input states of a process. Formal 
parameters are to be specified with ranges. Dependencies 
between global variables and/or formal parameters are 
checked as indicated. 

System specific constraints are properties of shared 
Eesuurces represented by global variables. To maintain their 
integrity ranges are appended. Since the sequence in which 
a shared resource will be use~ by the processes is 
undetermined, the ranges must express invariant properties, 
i.e., the conditions imposed on its state before and after 
process execution must be the same (figure 11). 

The embedding of on-units in process hierarchies is the 
subject of the next section. 
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5. EERO~ ~ECOVER¥ 

The concepts developed for error isolation are not 
sufficient for the purpose of recovery. This can be shown by 
the following example: 

Process PI uses resource R to provide input to process P2. 

Case 1 

The resource R is used by the serial processes PI and P2 
(figure 12). After providing input to P2 the process PI 
terminates. P2 detects an input error. Recovery must 
comprise process PI which is no longer in existence. 

Case 2 

The resource R is used by the parallel processes Pl and P2 
(figure 13). After providing input to P2, process PI 
continues to exist and discovers an error affecting R. 
Process PI has to return to a previous state and recall the 
data supplied to P2. Therefore recovery must also include 
process P2. 

Although in this situation the resource manager is 
responsible for the input check and errors violating the 
constraints imposed on R are detected before P2 is 
initiated, the subprocess P12 may consider the values 
supplied to R as inconsistent according to the internal 
semantics of the program. 

Thss the concept of input validation as described for the 
purpose of error isolation must be extended for the purpose 
of recovery. Two strategies which supplement eachother are 
discussed 

- a discipline with respect 
(commmitmeat discipline) 

to data communications 

- a hierarchical structure of processes with respect to 
recovery. 

The intent of the commitment discipline is to enforce 
that no data is committed outside a process uoless 
either it is ensured that there will never be a need to 
recall the data or there is a mechanism available to do 
it, 

As described in section 2, a process makes use of input 
and output resources. For the purpose of commitment 
values submitted to output resources are classified as: 
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uncommitted - Data the receiving process cannot rely on. 
It will not be rezalled in case the 
sending p~ocess fails. 

committed - Data t~e sending process commits as 
consistent to the receiving process. 
Consequently it will not be rezalled by 
the sending process. 

precommitt~d- Data that can exist in one of three 
states: 'OPEN', 'RECALLED' or 'CDMMITTED'. 
The initial state is 'OPEN'. At recall ~r 
commitment the state is changed to 
IECALLED' or 'COM~ITTED'. 

This distinction is introduced in reference [5], however, 
applyi~;g different terminology and semantics. 

Output is committed by the supplying process when it is 
considered consistent. The term 'zonsistent' remains 
undefined. It is up to the individual process to establish 
appropriate criteria. They should, however, at least 
guarantee valid output. 

The commitment implies for committed data the release to 
other processes and for precommitted data a state transition 
from 'OPEN' to 'COmMiTTED'. The data must be committed 
beiore the highest level ~rocess terminates to ~hich the 
output variables are non-local. 

Committed and uncommitted data do not i~troduce dependencies 
between processes which have to be ~onsidered for recovery. 
The sitsatioll is different for precommitted data. This 
notion allows to extend the szope of in-process recovery, 
which is based on the tact that the process to be recovered 
is still in existence. 

Figure 14 shows the state diagram for precommitted data. The 
sending process sets the data in the initial state 'OPEN'. 
The associated resource manager guarantees that the data are 
not changed by any receiving process as long as they are in 
the state 'OPEN'. Only the sending process is entitled to 
change the state to 'COMMITED' or 'RECALLED'. The receiving 
processes are not permitted to terminate before the state 
'COMMITTED' is entered. In addition they must not commit 
output which depends on input not yet committed. 

This mechanism ensures that ~ii dependel~t parallel processes 
are still in existence in case data have to be recalled. It 
therefore allows to apply in-process recovery to several 
processes. For back out each of them :an be reset to the 



95 

initial state which w~s kept ~t process initiation. Figure 
15 illustrates the commitment discipline. Process PI 
precommits data to the resource R and sets its state to 
'OPEN'. The data can be read but not updated until the end 
of P21. Before P2 is permitted to update R and/or terminate 
its execution it must wait for the commitment of R by PI. 

The commitment discipline cannot be applied to serial 
processes. To guarantee the existence of a process that can 
perform the ~ecovery, the system should be designed as a 
hierarchy of processes. In cases where this hierarchy canngt 
be predefined measures for post-process recovery have to be 
introduced in the direction as described in reference [6]. 
Figure 16 shows an idealized system meeting above design 
constraints. The system is structured in three processes Pl, 
P2 and P3. Each process Pi =onsists of subprocesses Pij. 
Recovery situations affecting only parallel processes such 
as P22 and P23 or P32 and P33 can be handled by means of the 
commitment discipline. In any other situation the process 
detecting the error has to escalate it to the next level in 
the process hierarchy. To achieve this on-units providing 
for recovery must also be ordered hierar:hically. Figure 17 
indicates a way how e~rors can be escalated to higher level 
on-units for recovery. 

6. DISCUSSION 

The concepts of reliability described in the preceding 
sections require a system partitioned into modules. 
Following Parnas £7] a system is considered well structured 
in case the interfaces between modules contain little 
information, where interfaces are the assumptions modules 
make about each other. To minimize the information being 
transferred, interfaces must be raised to a higher level of 
abstraction. 

In this context the features discussed in the paper offer 
tools to enforce abstractions. As abstractions represent 
design decisions independent from the program £1ow, the 
features can only partially be provided automatically by a 
compiler. A compiler handles one external procedure at a 
time, whereas module interfaces comprise more than one 
external procedure. Also, not every external procedure 
declaration constitutes an abstract interface and an 
abstract interface may contain assumptions which cannot be 
expressed in terms of parameters. 

The en[orcement of interfaces requires additional effort at 
execution time. Sometimes performance reasons are pretended 
to reject an approach of this kind. There are at least two 
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reasons which show that the argament is not  stringent. 
PASCAL [8] has demonstrated that dynamic range checking can 
be implemented efficiently. Ranges, as proposed here, are 
sore complex since they can be defined by any>relation. On 
the other hand, they need not be checked at any reference 
but just at the interface. This leads to the second reason: 
It is the designers responsibility to minimize the 
information passed across interfaces. 

7. SUMMARY 

The preceding sections presented an attempt to handle errors 
systematically. Error isolation and ~ecovery were treated 
under one aspect~ Error isolation led to the realization of 
the partial fanction concept and the provision of resource 
manager~. Error recovery in addition necessitated the 
introduction Of a commitment discipline in conjunction with 
a hierarchical structure of processes. 
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Precedence Relation between Processes 

Fig. I 



98 

Mapping of Input States to Output States 
defined by a Process 

l~p = {X+, X2} 

d 

X2 

Xl 

~ig. 2 
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Distinction between 
Functional and Exceptional Actions 

of a Process 
I I I I I  I II I 

~ig. 3 
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Use of Ranges and Error Descriptions 

Example 1: 

1 X ( I X l  < 1 0 , X 2  I) 
2 Xl INTEGER (I 0 . . .  99 I) 
2 )(2 INTEGER (I 0 .o. 10 I) 

BLOCK ARRAY (10) CHAR (4) (I 'READ', 'WRTE', 'WAIT' I) 

Example 2: 

P: PROC; 
DCL (X, Y) INTEGER (I 0 . . .  10 I) EXTERNAL, 1 E . . .  ; 

o 

o 

ON CONDITION (INPUT) BEGIN; . . ,  ; E = 
° ON_ERROR_DESCR; . . .  ; END; 
o 

@ 

IF 7 (RANGE (X) A RANGE (Y) /~ X '~ Y) THEN 
• SIGNAL CONDITION (INPUT); 
o 

o 

END; 

Fig. 4 
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Shared Resource used by Sequential Processes 

Fig. 5 
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Shared Resource used by Parallel Processes 

~iG. 6 
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Unique Correspondence between State Changes 
of Resources and Sequential Processes 

~ig. 9 



Backtracking to locate Error 

I 
I 

I 

% 

& ,  
I 

I 
s 

• error origin 

• error in input check 

• error detected by input check 

Pig. I 0 
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INVARIANT RESOURCE CONSTRAINTS 

R 
¢o,~I~ 

R 
~.d(s') 

Fig. 11 
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Scope of Recovery for Sequential Processes 

R 

Fig, 12 
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State Diagram for Precommitted Data 

, 7  ~ 

~ig. 14- 
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Use of Precommitted Data 

( 

Fig. 15 
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Hierarchy of Processes 
ii  i i 

i m m m m m  m 1 

I)1 P 2 S "  %% 
/ 

l i ~  I / ~ 
! !  | / /  %% 

I i  | % 
I |  ! % / 

! ! 3 I ~ ) /  

Ps | ,- -. / 
I I 

, /  \ ,  
l / ~ 1 

I / / 
~ J / / /  

~ m a m m m ~ 

%% 

I |  
/ /  

/ I 
I 

/ 

~ i 7  1 6 
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Escalation to Higher Level On-Units 

PI: PROC; 

1 : PROC; . . .  END Pll; 
P12: PROC; 

ON CONDITION (INPUT12) BEGIN; 

E = O~_ERROR_DESCR; 

SlGNAi~ CONDITION (ESCALATE); 

END; 

IF input-error THEN SIGNAL CONDITION (INPUT12); 

e 

END Pro; 

ON CONDITION (ESCALATE) BEGIN; . . .  ; END; 

CALL Pll; 
O 

CALL 1:)12; 

END P1; 

~ig. 17 


