
A NEW APPROACH TO PROGRAM TESTING

James C. King, IBM T. J. Watson Research Center, Yorktown Heights, New York, USA

ABSTRACT: The current approach for testing a program is, in principle, quite primitive. Some small

sample of the data that a program is expected to handle is presented to the program. If the program

produces correct results for the sample, it is assumed to be correct. Much current work focuses on the

question of how to choose this sample. We propose that a program can be more effectively tested by

executing it "symbolically". Instead of supplying specific constants as input values to a program being

tested, one supplies symbols. The normal computational definitions for the basic operations performed

by a program can be expanded to accept symbolic inputs and produce symbolic formulae as output.

If the flow of control in the program is completely independent of its input parameters, then all output

values can be symbolically computed as formulae over the symbolic inputs and examined for correct-

ness. When the control flow of the program is input dependent, a case analysis can be performed

producing output formulae for each class of inputs determined by the control flow dependencies. Using

these ideas, we have designed and implemented an interactive debugging/testing system called

EFFIGY.

INTRODUCTION

As tools for realizing correct programs, program testing and program proving are the ends of a

spectrum whose range is the number of times the program must be executed. To establish its correct-

ness through testing, one must execute the program at least once for all possible unique inputs; usually

an infinite number of times. To establish its correctness through a rigorous correctness proof, one need

not execute the program at all; but he may be faced With a tedious, if not difficult, formal analysis.

These two extreme points of the spectrum offer other contrasts as well. Correctness proofs usually

ignore certain realities encountered in actual test runs, for example, machine dependent details like

overflow and precision. (One notable effort to bring machine dependent issues into correctness proofs

is the recent thesis by Sites [7]). On the other hand one may finish a proof of correctness, but seldom

do we ever finish testing a program, Normal testing and correctness proofs also differ in the degree to

which the user is required to supply a formal specification of "correct" program behavior. While a

careful statement of correctness may be recommended for program testing, it is not required. A user

279

may choose an interesting input case and then decide a posteriori, in this specific case, if the output

appears to be correct. In a formal proof of correctness one must have a careful program specification.

A testing tool is described in this paper which allows one to choose intermediate points on the spectrum

between individual test runs and general correctness proofs. One can perform a single "symbolic

execution" of the program that is equivalent to a large (usually infinite) number of normal test runs.

Test run results can not only be checked by careful manual inspection but if a machine interpretable

program specification is supplied with the program it can be used to automatically check the results.

Furthermore, by varying the degree to which symbolic information is introduced into the symbolic

execution one can move from normal execution (no symbolic data) to a symbolic execution which, in

some cases, provides a proof of correctness.

SYMBOLIC EXECUTION

The notion of symbolically executing a program follows quite naturally from normal program execution.

First assume that there is a given programming language and a normal definition of program execution

for that language. This execution definition must be used for production executions but an alternative

symbolic execution semantics for the language can be defined to great advantage for debugging and

testing. The individual programs themselves are not to be altered for testing. The definition of the

symbolic execution must be such that trivial cases involving no symbols should be equivalent to normal

executions and any information learned in a symbolic execution should apply to the corresponding

normal executions as well.

An execution of a procedure becomes symbolic by introducing symbols as input values in place of real

data objects (e.g., in place of integers and floating point numbers). Here "inputs" is to be taken

generally meaning any data external to the procedure, including that obtained through parameters,

global variables, explicit READ statements, etc. Choosing symbols to represent procedure inputs

should not be confused with the similar notion of using symbolic program variable names. A program

variable may have many different specific values associated with it during a particular execution

whereas a symbolic input symbol is used in the static mathematical sense to represent some unknown

yet fixed value. Values of program variables may be symbols representing the non-specific procedure

inputs.

Once a procedure has been initiated and given symbolic inputs, execution can proceed as in a normal

execution except when the symbolic inputs are encountered. This occurs in two basic ways: computa-

tion of an expression involving procedure inputs, and conditional branching dependent on procedure

inputs.

Computation of Expressions

The programming language has a set of basic computational operators such as addition (+), multiplica-

tion (*), etc. which are defined over data objects such as integers. Each operator must be extended to

280

deal with symbolic data. For arithmetic data this can be done by making use of the usual relationship

between arithmetic and algebra. The arithmetic computations specified by these operators can be

"delayed" or generalized by the appropriate algebraic formula manipulations. For example, suppose

the symbolic inputs a and /3 are supplied as argument values to a procedure with formal parameter

variables A and B. Denote the value of a program variable X by v(X). Then initially, v(A) = a and

v(B) =/1. If the assignment statement C := A + 2*B were symbolically executed in this context C

would be assigned the symbolic formula (a + 2*/3). The statement D := C - A , if executed next, would

result in v(D) = 2"/I.

Similar symbolic generalization can be done, at least in theory, for all computational operations in the

programming language. In the most difficult case, one could at least record in some compact notation

the sequence of computations which would have taken place had the arguments been non-symbolic.

The success in doing this in practice depends upon how easily these recordings can be read and

understood and how easily they can be subsequently manipulated and analyzed mechanically.

Conditional Branching

Consider the typical decision-making program statement, the IF statement, taking the form:

IF B THEN $I ELSE Sz,

where B is some Boolean valued expression in the language and $1 and $2 are other statements.

Normally, either v(B) = true and statement S~ is executed or v(B) = false and statement Sz is

executed. However, during a symbolic execution v(B) could be true, false or some symbolic formula

over the input symbols. Consider the latter case. The predicates v(B) and ,v(B) represent complemen-

tary constraints on the input symbols that determine alternative control flow paths through the

procedure. For now, this case is called an "unresolved" execution of a conditional statement. The

notion will be refined as the presentation develops. Since both alternatives paths are possible the only

complete approach is to explore both: the execution forks into two "parallel" executions, one assuming

v(B), the other assuming ~ v(B),

Assume the execution has forked at an unresolved conditional statement and consider the further

execution for the case where v(B), The execution may arrive at another unresolved conditional

statement execution with associated boolean, say C. Expressions v(B) and v(C) are both over the

procedure input symbols and it is possible that either v(B) = v(C) or v(B) ~ ~v(C). Either implication

being true would show that the assumption made at the first unresolved execution, namely v(B), is

strong enough to resolve the subsequent test, namely to show that either v(C) or ,v(C).

Because the assumptions made in the case analysis of one unresolved conditional statement execution

may be effective in resolving subsequent unresolved statement executions they are preserved as part of

the execution state, along with the variable values and the statement counter, and are called the "path

condition*' (denoted pc). At the beginning of a program execution the pc is set to true. The revised

281

rule for symbolically executing a condition s ta tement with associated Boolean expression B is to first

form v(B) as before and then form the expressions:

~ v(B)

~ ~v(B).

If pc is not identically false then at most one of the above expressions is true. If the first is true the

assumptions already made about the procedure inputs are sufficient to eompletely resolve this test and

the exe, cution follows only the v(B) case. Similarly if the second expression is true it follows the ~v(B)

case. Both of these cases are considered "resolved" or non-forking execut ions of the condi t ional

s tatement.

The remaining case when neither expression is true is truly an unresolved (forking) execution of the

condit ional statement. Even given the earlier constraints on the procedure inputs (PC), v(B) and ~v(B)

are both satisfiable by some non-symbolic procedure inputs. As discussed above, unresolved condition-

al s ta tement executions fork into two parallel executions. One when v(B) is assumed, in which case the

pc is revised to pc ^ v(B), the other when ~v(B) is assumed and then oe becomes pc ^ ~v(B). Note

that the forking is a property of a condi t ional s ta tement execution not the s ta tement itself. One

execution of a particular s tatement may be resolved yet a later execution of the same s ta tement may

not.

The pc is the accumulator of condit ions on the original procedure inputs which determine a unique

control pa th through the program. Each path, as forks are made, has its own pc. No pe is ever

identically fa l se since the original pc is true and the only changes are of the form pc := pc ^ q and

those only in the case when pc ^ q is satisfiable ((pc ^ q) = , (PC = ~q) which is satisfiable if pc ~ - q is

not a theorem). Each path caused by forking also has a unique pc since none are identically false and

they all differ in some term, one containing a q the other a ~ q.

SYMBOLIC EXECUTION TREE

One can characterize the symbolic execution of a procedure by an "execution tree". Associate with

each program statement execution a node and with each transit ion between statements a directed arc

connect ing the associated s ta tement nodes. For each forking (unresolved) condit ional s ta tement the

associated execution node has more than one arc leaving it labeled by and corresponding to the path

choices made in the statement. In the previous discussion of IF s tatements there were two choices

corresponding to v(B) and , v (B) . The node associated with the first s ta tement of the procedure would

have no incoming arcs and the terminal s ta tement of the procedure (RETURN or END statement) is

represented by a node with no outgoing arcs.

Also associate the complete current execution state, i.e., variable values, s ta tement counter, and pc with

each node. In particular, each terminal node will have a set of program variable values given as

formulae over the procedure input symbols, and a pc which is a set of constra ints over the input

282

symbols characterizing the conditions under which those variable values would be computed, A user

can examine these symbolic results for correctness as he would normal test output or substitute them

into a formal output specification which should then simplify to true.

The execution tree for a program will be infinite whenever the program contains a loop for which the

number of interations is dependent, even indirectly, on some procedure inputs. It is this fact that

prevents symbolic execution from directly providing a proof of correctness technique. Symbolic

execution is indeed an execution and at least in this simplest form described here provides an advanced

testing methodology. BurstaU [1] has independently developed the notion of symbolic execution and

added the required induction step needed to have a complete proof of correctness method. Deutsch [2],

also independently, developed the notion of symbolic execution as an implementation technique for an

interactive program prover based on Floyd's method [3]. In fact, one can see the basic elements of the

notion of using symbolic execution as the basis for a correctness method in the earlier work of Good

[4]. The author and his colleagues have been pursuing the idea of symbolic execution in its own right as

a debugging/testing technique. A particular system we have built called EFFIGY is described briefly in

the next section.

EFFIGY - - AN INTERACTIVE SYMBOLIC EXECUTOR

The author and his colleagues at IBM Research have been developing an interactive symbolic execution

system for testing and debugging programs written in a simple PL/I style programming language. The

language is restricted to integer valued variables and vectors (one dimensional arrays). It has many

interactive debugging features including: execution tracing, break-points, and state saving/restoring.

Of course, it provides symbolic execution and uses a formula manipulation package and theorem prover

developed previously by the author [5, 6].

The generat facilities and capabilities available are all that is of real interest and these are perhaps

simplest and most economically explained by a system demonstration. An APPENDIX is included

which shows an actual script (annotated in italics) from such a demonstration. A method for exploring

execution trees with their multitude of forks and parallel executions is up to the user. He is provided

the ability to choose particular forks at unresolved conditional statement executions (via go true,

g o f a l s e , and a s s u m e) and also has the state save/restore ability so that he may return to

unexplored alternatives later. We are currently experimenting with various "test path-managers" which

would embody some heuristics for automating this process, exhaustively exploring all the "interesting"

paths, As with previous testing methods the crucial .issue is: if one cannot execute all cases, which ones

should he do; which are the interesting ones.

We are also working on practical methods for dealing with more odvanced programming language

283

features such as pointer variables. While, as mentioned above, most such enhancements are straightfor-

ward "in theory" many offer fundamental problems in practice.

CONCLUSION

Interactive debugging/testing systems have shown themselves to be powerful, useful tools for program

development. A symbolic execution capability added to such a system is a major improvement. The

normal facilities are always available as a special case, In addition, the basic system components of a

symbolic executor provide a convenient toolbox for other forms of program analysis, including program

proving, test case generation, and program optimization. Since such a system does offer a natural

growth from today's systems, an evolutionary approach for achieving the systems of tommorrow is

available. Valuable user experience and support is also provided. While practical use of the EFFIGY

system is still quite limited, considerable insight into and understanding of the general notion of

symbolic execution has been gained during its construction.

ACKNOWLEDGMENTS

The colleagues at IBM Research collaborating with me in this work are: S. M. Chase, A. C. Chibib, J.

A. Darringer, and S. L. Hantler. They have all contributed significantly to the ideas presented here and

to the design and implementation of our EFFIGY system. We also appreciate the support and

encouragement received from D. P. Rozenberg, P. C. Goldberg, and P. S. Dauber. The manuscript was

typed by J. M. Hanisch.

REFERENCES

[1] Burstall, R. M. Program proving as hand simulation with a little induction, IFIP Congress 74

Proc., Aug. 1974, pp. 308-312.

[2] Deutsch, L.P. An interactive program verifier, Ph.D. dissertation, Dept. Comp. Sci., Univ. of

Calif., Berkeley CA., May 1973.

[3] Floyd, R.W. Assigning meanings to programs, Proc. Symp. Appl. Math., Amer. Math. Soc.,

vol. 19, pp. 19-32, 1967.

[4] Good, D.I. Toward a man-machine system for proving program correctness, Ph.D. disserta-

tion, Comp. Sci. Dept., Univ. of Wisc., Madison, Wisc., June 1970.

[5] King, J.C. and Floyd, R.W. An interpretation oriented theorem prover over integers, Journal
of Comp. and Sys. Sci., vol. 6, no. 4, August 1972, pp. 305-323.

[6] King, J.C. A program verifier, IFIP Congress 71 Proc., Aug. 1971, pp. 235-249.

[7] Sites, R.L. Proving that computer programs terminate cleanly, Ph.D. dissertation, Comp. Sei.

Dept., Stanford Univ., Stanford, CA., May 1974.

284

APPENDIX

A script from an actual EFFIGY session is shown below. The user's inputs are in lowercase letters and

the system responses are in uppercase letters. To prevent any possible confusion the symbol " ~ " is

shown here to ~he left of the user inputs. Explanatory comments, in italic letters, have been added as a

right hand column.

When EFFIGY is initially invoked it is in an "immediate" mode and will execute statements as they are

typed. Any statement executed in this context is considered part of a main initial procedure called

MAIN. The concept of the MAIN procedure and the concept of immediate execution are distinct since

statements can also be executed in an immediate mode in the context of other procedures. MAIN is

unique in that it has an immediate mode only and it is the onty procedure privileged to execute the

managerial system commands. Programs are made available to EFFIGY for stored program execution

by declaring them, in MAIN, with the PROC statement similar to the way that internal procedures are

declared in PL/I . However, EFFIGY does consider all procedures as EXTERNAL and they must be

declared in MAIN.

Procedures are tested by a CALL from MAIN. SymboIic inputs can be supplied by enclosing a symbol

string in double quotes, e.g., "a", "Dog". These symbolic constants can be used in most places instead

of integer constants. The system responses drop the quotes since the context always makes the

distinctions between different uses of identifiers quite clear. Values always involve the input symbols

and never program variable names. Formulae are stored internal to EFFIGY in a "normalized" form

and some of the expressions may appear quite different from what one might expect (e.g., A < @ will be

typed out as A - n > - q). The formulae are also kept in a simplified form (e.g,, 2*B = 4 is stored as

B-2=0).

EFFIGY runs on CMS under VM/370 on an IBM/370 model 168. The CMS filing system and context

editor are used as an integral part of EFFIGY for creating, changing, and storing procedures and

command files. The INPUT command directs EFFIGY to read its input from the designated file (files

have two part names in CMS) instead of directly from the user's terminal. As procedures are entered

into EFFIGY (by a PROC ,.. END declaration) the statements are sequentially numbered. These

statement numbers are used to reference particular points in the procedure for inserting breakpoints,

turning tracing on and off, etc.

~effigy
EFFIGY READY

~edit absolute effigy;
NEW FZLE:

~input
~absolute: proc(i,o);

dcl (i,o) integer;
if i<0 then o =

else o =
end;

~file

-i
i ;

Invoke the EFF1G¥ system.

Invoke ,the CMS file editor and

type-in a new file called
'absolute effigy'.

(end o f input signified by null line.)
Save file permanently &

285

~input absolute effigy;
I: ABSOLUTE: PROC(I,O);
2: DCL (I,O) INTEGER;
3: IF I<0 THEN O = -I
4: ELSE O = I;
5: END;

~dcl z integer;
~call absolute(55,z); display z;
55

~call absolute(-66,z); display z;
66

~in absolute; turn all on all;
~in main;
~call absolute("a",z);

I: ABSOLUTE: PROC(I,O);
2: DCL (I,O) INTEGER;
3: IF I < 0 THEN O = - I

((A m > - 1))

TYPE GO TRUE OR GO FALSE
~before 5;
~savestate;

STATE q SAVED
~go true;

((Am>-1))
TRUE BRANCH
O=-A
STOPPED BETWEEN 3 AND 5

~display variables, assumption;
IN ABSOLUTE
I:A
O:-A
((A ~ > - I))

~restore I;
STATE I RESTORED. IN ABSOLUTE

~go false;
((A ~ > - I)) '
FALSE BRANCH

4: ELSE O = I;
O=A
STOPPED BETWEEN 4 AND 5

~display variables, assumption;
IN ABSOLUTE
I=A
O=A
((Am<0))

~xgo;
BACK FROM ABSOLUTE TO MAIN

~display z;
A

~in absolute; turn all off all;
~in main;

go back to EFFIGY,
Have EFFIGY read input from that file.

Statements are numbered by EFFIGY.

Last line of file -- back to
terminal input.

Declare a variable in MAIN.
Try a numeric execution.
Result of display statement.

All tracing on in proc. "absolute'.
Set back m MAIN.
Try a symbolic input "a".
Each statement execution is traced

by printing it.

Evaluated result of I<O--v(B).
(A<_-I or A<O)

Unresolved (forking) IF--User option.
Stop before executing statement 5.
Save the current execution state.
EFFIGY calls this state t.
Follow case where A<O.
v(l< O)--evaluated test.

Result of assignment to O.
Stopped "before 5"
All local values and the pc.

Current pc (assumption).
Return to execution state 1,

and try else path.
v(I<O).

New value of O.
Before 5.

Resume execution and delete breakpoint.

Turn all tracing off.

~erase assumption; Reset pc to true.
~call absolute ("a" - "b",z);go true; display z;
TYPE GO TRUE OR GO FALSE Go true above anticipates question.
-A+B

l , . e d i t absolute effigy ; Invoke editor to change absolute.
~next Edit command to look at line t of file.
change /absolute/newabs/ Change proc name.

~bottom go to end of file.
It, up I Well not quite.

286

~input assert(o eq abs(i));
~file newabs

~input newabs effigy;
I: NEWABS: PROC(I,O) ;
2 : DCL (I,O) INTEGER;
3: IF I<0 THEN O = -I
4: ELSE O = I;
5: ASSERT(O EQ ABS(1)) ; New sm~ment.
6: END;

)erase assumption;
~call newabs("a",z); go true; display zr assumption;
TYPE GO TRUE OR GO FALSE
((abs(A)+A :0) :: TRUE

- A
((A~>-I))

~erase assumptlon;

Insert a correctness specification.
File away as newabs effigy.
Go back to EFFIGY.
Enter into EFFIGY.

~call newabs("a",z); go false; display z, assumption;
TYPE GO TRUE OR GO FALSE
((abs(A)-A =0)) :: TRUE

A
((A~<0))

~erase assumption;
~input times effigy;

I: TIMES:PROC(XrY,Z);
2: DCL (X,Y,Z) INTEGER;
3: Z=0;
4: IF X<0 THEN
4 : DO;
5: CALL ABSOLUTE(X,X) ;
6: Y=-Y;
7: END;
8: L:
8: IF X>0 THEN
8: DO;
9: X:X-I;

10: Z=Z+Y;
11: GO TO L;
12: END;
13: END;

~call times(3,5,z); display z;
15
call times(-3,5,z); display z;
-15
call times(-34,"b",z) ; display z;

A mixed case--determinate control f low.

- 3 4 " B
~n times; turn all on 4 5 6 8 9 10; before 13; in main;

c a l l t i m e s (" a " , " b " , z) ; The completely symbolic case.
4: IF X < 0 THEN DO;

((Am>-1))
TYPE GO TRUE OR GO FALSE
savestate ;
STATE 2 SAVED

go true ;
((i~>-I))
TRUE BRANCH

5 : CALL ABSOLUTE (X, X) ; Executed a resolved I F in absolute.

Try only other case.
That also gets proved.
Have correctness proof--both paths correct.

Now read in procedure times.

Times calls absolute.

i t multiplies by looping add.

(Try some numbers.

Response was anticipated on previous line.
Result o f executing assert (statement 5).

o f form l :: r where...
l is evaluated assertion and
r is result o f pc = l.

Result o f display z
and assumption for line typed earlier.

287

6: Y = - Y;
Y=-B

8: L: IF X > 0 THEN DO;
((i~>-1))
TRUE BRANCH

9: X = X - I;
X=-A- I
10: Z = Z + Y;

Z=-B
8: L: IF X > 0 THEN DO;

((i~>-2))
TYPE GO TRUE OR GO FALSE

~go true;
((A~>-2))
TRUE BRANCH

9: X = X- I;
X=-A-2
10: Z = Z + Y;

Z:-2*B
8: L: IF X > 0 THEN DO;

((A~>-3))
TYPE GO TRUE OR GO FALSE

}go false;
((i~>-3))
FALSE BRANCH
STOPPED BETWEEN 8 AND 13

~display variables, assumption;
IN TIMES
X=-A-2
Y=-B
Z=-2*B
((i =-2))

~ restore 2;
STATE 2 RESTORED. IN TIMES

~go false;
((A~>- I))
FALSE BRANCH

8: L: IF X > 0 THEN DO;
((A~<I))
TYPE GO TRUE OR GO FALSE

~assume ("a">4) ;
~go;

((A~<I))
TRUE BRANCH

9: X = X - I;
X=A- 1
I0: Z = Z + Y;

Z=B
8: L: IF X > 0 THEN DO;

((A-~<2))
TRUE BRANCH

9: X = X - I;
X:A-2
10: Z = Z + Y;

Z=2*B
8; L: IF X > 0 THEN DO;

((A~<3))
TRUE BRANCH

9: X : X - I;
X=A-3
10: Z = Z + Y;

Knows A < - I .

Another resolved IF.
A < - I so - / i > 0 .

Loop around.

Now go out to end o f proc.

Breakpoint at end o f proc.

Path choices determine A = - 2 .

Try another case.

Add this assumption to the pc,
Now retry the I F with new pc.

New pc resolves it.

Assume carries us through this one too.

288

Z:3*B
8: L: IF X > 0 THEN DO;

((A~<4))
TRUE BRANCH

9: X = X- I;
X=A-4
10: Z : Z + Y;

Z=4*B
8: L: IF X > 0 THEN DO;

((A~<5))
TRUE BRANCH

9: X = X - I;
X=A- 5
10: Z : Z + Y;

Z=5*B
8: L: IF X > 0 THEN DO;

((A~<6))
TYPE GO TRUE OR GO FALSE

~go false;
((i~<10))
FALSE BRANCH
STOPPED BETWEEN 8 AND 1 3

~display variables, assumption;
IN TIMES
X=A- 5
Y=B
Z=5*B
((A :5))
restore 2 ;
STATE 2 RESTORED. IN TIMES

Unresolved when X gets to A -5 .
Leave loop

Go back and try another case.

Yes it does.

This one resolved too.

Result still in symbolic terms.

Does it know Z is really 4.
Yes.
Go on out o f times.

Response m previous null line.

((Am>- I))
FALSE BRANCH

8: L: IF X > 0 THEN DO;
((A~<I))
TRUE BRANCH

9: X = X - I;
X:A-I
10: Z = Z + Y;

Z=B
8" L: IF X > 0 THEN DO;

((i~<2))
TRUE BRANCH

9: X : X - I;
X =A - 2
10: Z = Z + Y;

Z=2*B
8: L: IF X > 0 THEN DO;

((A~<3))
FALSE BRANCH
STOPPED BETWEEN 8 AND 13

~disp!ay variables, assumption;
IN TIMES
X:A-2
Y=B
Z:2*B
((A-B =0&B =2))

~assert(z eq 4) ;
((B =2)) : : TRUE

~go;

IN MAIN

~assume ("a" eq "b" g "b" eq 2) ; Indirectly assume A is 2.
go ; Does that assume resolve the if?

289

~edit 'times' effigy;
~next
~input assume(x eq "x0"

Edit times procedure,
In editor.

& y eq "y0") ;
Insert correctness specifications.

~bottom
~up I
~input assert(z eq "x0" * "y0");
~file

~erase times;
~erase assumption;
~input times effigy;

1: TIMES:PROC(X,Y,Z);
2:

Replace original procedure
and go back m EFFIGY,
Can't have two times routines.

Input from "times" file.

ASSUME(X EQ "X0" & Y EQ "Y0") ;
Used to name input values,

3: DCL (X,Y,Z) INTEGER;
4: Z=0;
5: IF X<0 THEN
5: DO;
6: CALL ABSOLUTE(X,X);
7: Y=-Y;
8: END;
9: L:
9: IF X>0 THEN
9: DO;

10: X=X-I;
11: Z=Z+Y;
12: GO TO L;
13: END;
14: ASSERT(Z EQ "X0" * "Y0");

15: END;
~in times; turn all on 5 9 14;
~in main;
~assume("a">4 & "a"<5); No integer between 4 and 5.
CONTRADICTING ASSUMPTION. IGNORED.

~assume("a">4 & "a"<7) ; t tow about A ~ 5 or 6,

Relate input values m output.

Selectively trace.

~call times("a","b",z);
5: IF X < 0 THEN DO;

(A~>- I))
FALSE BRANCH

9: L: IF X > 0 THEN DO;
(i~<1))

TRUE BRANCH
9: L: IF X > 0 THEN DO;
(i~<2))

TRUE BRANCH
9: L: IF X > 0 THEN DO;
(A~<3))

TRUE BRANCH
9: L: IF X > 0 THEN DO;

(A~<4))
TRUE BRANCH

9: L: IF X > 0 THEN DO;
(A~<5))

TRUE BRANCH
9: L" IF X > 0 THEN DO;
(A~<6))

TYPE GO TRUE OR GO FALSE
~go true;

(A~<6))
TRUE BRANCH

9: L: IF X > 0 THEN DO;

Now must decide 5 or 6.
Pick 6,

For 5 and 6 X > O.

For 5 and 6 loop some too.

290

((A~<7))
FALSE BRANCH
14: ASSERT(Z EQ X0 * Y0);

((6*B-X0*Y0 =0)) :: TRUE
~display assumption;
((h =6$A-X0 =0&B-Y0 =0))

~display variables;
IN MAIN
ABZOLUTE=PROC
Z=6*B
NEWABS=PROC
TIMES=PROC

~quit

Known not > 6.

Results check by assert--O.K.
What is the pc?
Relates the symbolic inputs to the

names given to inputs by assume in proc.
M A I N has variables and values too.

Value "PROC" means it is a procedure.

Leave E F F I G Y system.

