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ABSTRACT: The current approach for testing a program is, in principle, quite primitive. Some small 

sample of the data that a program is expected to handle is presented to the program. If the program 

produces correct results for the sample, it is assumed to be correct. Much current work focuses on the 

question of how to choose this sample. We propose that a program can be more effectively tested by 

executing it "symbolically". Instead of supplying specific constants as input values to a program being 

tested, one supplies symbols. The normal computational definitions for the basic operations performed 

by a program can be expanded to accept symbolic inputs and produce symbolic formulae as output. 

If the flow of control in the program is completely independent of its input parameters, then all output 

values can be symbolically computed as formulae over the symbolic inputs and examined for correct- 

ness. When the control flow of the program is input dependent, a case analysis can be performed 

producing output formulae for each class of inputs determined by the control flow dependencies. Using 

these ideas, we have designed and implemented an interactive debugging/testing system called 

EFFIGY. 

INTRODUCTION 

As tools for realizing correct programs, program testing and program proving are the ends of a 

spectrum whose range is the number of times the program must be executed. To establish its correct- 

ness through testing, one must execute the program at least once for all possible unique inputs; usually 

an infinite number of times. To establish its correctness through a rigorous correctness proof, one need 

not execute the program at all; but he may be faced With a tedious, if not difficult, formal analysis. 

These two extreme points of the spectrum offer other contrasts as well. Correctness proofs usually 

ignore certain realities encountered in actual test runs, for example, machine dependent details like 

overflow and precision. (One notable effort to bring machine dependent issues into correctness proofs 

is the recent thesis by Sites [7]). On the other hand one may finish a proof of correctness, but seldom 

do we ever finish testing a program, Normal testing and correctness proofs also differ in the degree to 

which the user is required to supply a formal specification of "correct" program behavior. While a 

careful statement of correctness may be recommended for program testing, it is not required. A user 
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may choose an interesting input case and then decide a posteriori, in this specific case, if the output 

appears to be correct. In a formal proof of correctness one must have a careful program specification. 

A testing tool is described in this paper which allows one to choose intermediate points on the spectrum 

between individual test runs and general correctness proofs. One can perform a single "symbolic 

execution" of the program that is equivalent to a large (usually infinite) number of normal test runs. 

Test run results can not only be checked by careful manual inspection but if a machine interpretable 

program specification is supplied with the program it can be used to automatically check the results. 

Furthermore, by varying the degree to which symbolic information is introduced into the symbolic 

execution one can move from normal execution (no symbolic data) to a symbolic execution which, in 

some cases, provides a proof of correctness. 

SYMBOLIC EXECUTION 

The notion of symbolically executing a program follows quite naturally from normal program execution. 

First assume that there is a given programming language and a normal definition of program execution 

for that language. This execution definition must be used for production executions but an alternative 

symbolic execution semantics for the language can be defined to great advantage for debugging and 

testing. The individual programs themselves are not to be altered for testing. The definition of the 

symbolic execution must be such that trivial cases involving no symbols should be equivalent to normal 

executions and any information learned in a symbolic execution should apply to the corresponding 

normal executions as well. 

An execution of a procedure becomes symbolic by introducing symbols as input values in place of real 

data objects (e.g., in place of integers and floating point numbers). Here "inputs" is to be taken 

generally meaning any data external to the procedure, including that obtained through parameters, 

global variables, explicit READ statements, etc. Choosing symbols to represent procedure inputs 

should not be confused with the similar notion of using symbolic program variable names. A program 

variable may have many different specific values associated with it during a particular execution 

whereas a symbolic input symbol is used in the static mathematical sense to represent some unknown 

yet fixed value. Values of program variables may be symbols representing the non-specific procedure 

inputs. 

Once a procedure has been initiated and given symbolic inputs, execution can proceed as in a normal 

execution except when the symbolic inputs are encountered. This occurs in two basic ways: computa- 

tion of an expression involving procedure inputs, and conditional branching dependent on procedure 

inputs. 

Computation of Expressions 

The programming language has a set of basic computational operators such as addition (+), multiplica- 

tion (*), etc. which are defined over data objects such as integers. Each operator must be extended to 
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deal with symbolic data. For arithmetic data this can be done by making use of the usual relationship 

between arithmetic and algebra. The arithmetic computations specified by these operators can be 

"delayed" or generalized by the appropriate algebraic formula manipulations. For example, suppose 

the symbolic inputs a and /3 are supplied as argument values to a procedure with formal parameter 

variables A and B. Denote the value of a program variable X by v(X). Then initially, v(A) = a and 

v(B) =/1. If the assignment statement C := A + 2*B were symbolically executed in this context C 

would be assigned the symbolic formula (a + 2*/3). The statement D := C - A ,  if executed next, would 

result in v(D) = 2"/I. 

Similar symbolic generalization can be done, at least in theory, for all computational operations in the 

programming language. In the most difficult case, one could at least record in some compact notation 

the sequence of computations which would have taken place had the arguments been non-symbolic. 

The success in doing this in practice depends upon how easily these recordings can be read and 

understood and how easily they can be subsequently manipulated and analyzed mechanically. 

Conditional Branching 

Consider the typical decision-making program statement, the IF statement, taking the form: 

IF B THEN $I ELSE Sz, 

where B is some Boolean valued expression in the language and $1 and $2 are other statements. 

Normally, either v(B) = true and statement S~ is executed or v(B) = false and statement Sz is 

executed. However, during a symbolic execution v(B) could be true, false or some symbolic formula 

over the input symbols. Consider the latter case. The predicates v(B) and ,v(B)  represent complemen- 

tary constraints on the input symbols that determine alternative control flow paths through the 

procedure. For now, this case is called an "unresolved" execution of a conditional statement. The 

notion will be refined as the presentation develops. Since both alternatives paths are possible the only 

complete approach is to explore both: the execution forks into two "parallel" executions, one assuming 

v(B), the other assuming ~ v(B), 

Assume the execution has forked at an unresolved conditional statement and consider the further 

execution for the case where v(B), The execution may arrive at another unresolved conditional 

statement execution with associated boolean, say C. Expressions v(B) and v(C) are both over the 

procedure input symbols and it is possible that either v(B) = v(C) or v(B) ~ ~v(C). Either implication 

being true would show that the assumption made at the first unresolved execution, namely v(B), is 

strong enough to resolve the subsequent test, namely to show that either v(C) or ,v(C).  

Because the assumptions made in the case analysis of one unresolved conditional statement execution 

may be effective in resolving subsequent unresolved statement executions they are preserved as part of 

the execution state, along with the variable values and the statement counter, and are called the "path 

condition*' (denoted pc). At the beginning of a program execution the pc is set to true. The revised 
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rule for symbolically executing a condition s ta tement  with associated Boolean expression B is to first 

form v(B ) as before and then form the expressions: 

~ v(B) 

~ ~v(B).  

If pc is not  identically false then at  most  one of the above expressions is true. If  the first is true the 

assumptions already made about the procedure inputs are sufficient to eompletely resolve this test and 

the exe, cution follows only the v(B) case. Similarly if the second expression is true it follows the ~v(B)  

case. Both of these cases are considered "resolved" or non-forking execut ions of the condi t ional  

s tatement.  

The remaining case when neither expression is true is truly an unresolved (forking) execution of the 

condit ional statement.  Even given the earlier constraints  on the procedure inputs (PC), v(B) and ~v(B)  

are both satisfiable by some non-symbolic procedure inputs. As discussed above, unresolved condition- 

al s ta tement  executions fork into two parallel executions. One when v(B) is assumed, in which case the 

pc is revised to pc ^ v(B),  the other when  ~v(B)  is assumed and then oe becomes pc ^ ~v(B).  Note  

that  the forking is a property of a condi t ional  s ta tement  execution not  the s ta tement  itself. One 

execution of a particular s tatement  may be resolved yet  a later execution of the same s ta tement  may 

not. 

The pc is the accumulator  of condit ions on the original  procedure inputs which determine  a unique 

control  pa th  through the program. Each path,  as forks are made, has  its own pc. No pe is ever 

identically fa l se  since the original pc is true and the only changes are of the form pc := pc ^ q and 

those only in the case when pc ^ q is satisfiable ((pc ^ q) = , (PC = ~q)  which is satisfiable if pc ~ - q  is 

not a theorem). Each path caused by forking also has a unique pc since none are identically false and 

they all differ in some term, one containing a q the other a ~ q. 

SYMBOLIC EXECUTION TREE 

One can characterize the symbolic execution of a procedure by an "execution tree".  Associate with 

each program statement  execution a node and with each transit ion between statements  a directed arc 

connect ing the associated s ta tement  nodes. For each forking (unresolved) condit ional  s ta tement  the 

associated execution node has more  than one arc leaving it labeled by and corresponding to the path 

choices made in the statement.  In the previous discussion of IF  s tatements  there were two choices 

corresponding to v(B) and , v ( B ) .  The node associated with the first s ta tement  of the procedure would 

have no incoming arcs and the terminal  s ta tement  of the procedure (RETURN or END statement)  is 

represented by a node with no outgoing arcs. 

Also associate the complete current execution state, i.e., variable values, s ta tement  counter,  and pc with 

each node. In particular,  each terminal  node will have a set of program variable  values given as 

formulae over  the procedure input symbols,  and a pc which is a set of constra ints  over the input 
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symbols characterizing the conditions under which those variable values would be computed, A user 

can examine these symbolic results for correctness as he would normal test output or substitute them 

into a formal output specification which should then simplify to true. 

The execution tree for a program will be infinite whenever the program contains a loop for which the 

number of interations is dependent, even indirectly, on some procedure inputs. It is this fact that 

prevents symbolic execution from directly providing a proof of correctness technique. Symbolic 

execution is indeed an execution and at least in this simplest form described here provides an advanced 

testing methodology. BurstaU [1] has independently developed the notion of symbolic execution and 

added the required induction step needed to have a complete proof of correctness method. Deutsch [2], 

also independently, developed the notion of symbolic execution as an implementation technique for an 

interactive program prover based on Floyd's method [3]. In fact, one can see the basic elements of the 

notion of using symbolic execution as the basis for a correctness method in the earlier work of Good 

[4]. The author and his colleagues have been pursuing the idea of symbolic execution in its own right as 

a debugging/testing technique. A particular system we have built called EFFIGY is described briefly in 

the next section. 

EFFIGY - -  AN INTERACTIVE SYMBOLIC EXECUTOR 

The author and his colleagues at IBM Research have been developing an interactive symbolic execution 

system for testing and debugging programs written in a simple PL/I  style programming language. The 

language is restricted to integer valued variables and vectors (one dimensional arrays). It has many 

interactive debugging features including: execution tracing, break-points, and state saving/restoring. 

Of course, it provides symbolic execution and uses a formula manipulation package and theorem prover 

developed previously by the author [5, 6]. 

The generat facilities and capabilities available are all that is of real interest and these are perhaps 

simplest and most economically explained by a system demonstration. An APPENDIX is included 

which shows an actual script (annotated in italics) from such a demonstration. A method for exploring 

execution trees with their multitude of forks and parallel executions is up to the user. He is provided 

the ability to choose particular forks at unresolved conditional statement executions (via go true, 

g o  f a l s e ,  and a s s u m e )  and also has the state save/restore ability so that he may return to 

unexplored alternatives later. We are currently experimenting with various "test path-managers" which 

would embody some heuristics for automating this process, exhaustively exploring all the "interesting" 

paths, As with previous testing methods the crucial .issue is: if one cannot execute all cases, which ones 

should he do; which are the interesting ones. 

We are also working on practical methods for dealing with more odvanced programming language 
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features such as pointer variables. While, as mentioned above, most such enhancements are straightfor- 

ward "in theory" many offer fundamental problems in practice. 

CONCLUSION 

Interactive debugging/testing systems have shown themselves to be powerful, useful tools for program 

development. A symbolic execution capability added to such a system is a major improvement. The 

normal facilities are always available as a special case, In addition, the basic system components of a 

symbolic executor provide a convenient toolbox for other forms of program analysis, including program 

proving, test case generation, and program optimization. Since such a system does offer a natural 

growth from today's systems, an evolutionary approach for achieving the systems of tommorrow is 

available. Valuable user experience and support is also provided. While practical use of the EFFIGY 

system is still quite limited, considerable insight into and understanding of the general notion of 

symbolic execution has been gained during its construction. 
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APPENDIX 

A script from an actual EFFIGY session is shown below. The user's inputs are in lowercase letters and 

the system responses are in uppercase letters. To prevent any possible confusion the symbol " ~ "  is 

shown here to ~he left of the user inputs. Explanatory comments, in italic letters, have been added as a 

right hand column. 

When EFFIGY is initially invoked it is in an "immediate" mode and will execute statements as they are 

typed. Any statement executed in this context is considered part of a main initial procedure called 

MAIN. The concept of the MAIN procedure and the concept of immediate execution are distinct since 

statements can also be executed in an immediate mode in the context of other procedures. MAIN is 

unique in that it has an immediate mode only and it is the onty procedure privileged to execute the 

managerial system commands. Programs are made available to EFFIGY for stored program execution 

by declaring them, in MAIN, with the PROC statement similar to the way that internal procedures are 

declared in PL/I .  However, EFFIGY does consider all procedures as EXTERNAL and they must be 

declared in MAIN. 

Procedures are tested by a CALL from MAIN. SymboIic inputs can be supplied by enclosing a symbol 

string in double quotes, e.g., "a", "Dog". These symbolic constants can be used in most places instead 

of integer constants. The system responses drop the quotes since the context always makes the 

distinctions between different uses of identifiers quite clear. Values always involve the input symbols 

and never program variable names. Formulae are stored internal to EFFIGY in a "normalized" form 

and some of the expressions may appear quite different from what one might expect (e.g., A < @ will be 

typed out as A - n > -  q ). The formulae are also kept in a simplified form (e.g,, 2*B  = 4 is stored as 

B-2=0). 

EFFIGY runs on CMS under VM/370 on an IBM/370 model 168. The CMS filing system and context 

editor are used as an integral part of EFFIGY for creating, changing, and storing procedures and 

command files. The INPUT command directs EFFIGY to read its input from the designated file (files 

have two part names in CMS) instead of directly from the user's terminal. As procedures are entered 

into EFFIGY (by a PROC ,.. END declaration) the statements are sequentially numbered. These 

statement numbers are used to reference particular points in the procedure for inserting breakpoints, 

turning tracing on and off, etc. 

~effigy 
EFFIGY READY 

~edit absolute effigy; 
NEW FZLE: 

~input 
~absolute: proc(i,o); 

dcl (i,o) integer; 
if i<0 then o = 

else o = 
end; 

~file 

-i 
i ;  

Invoke the EFF1G¥ system. 

Invoke ,the CMS file editor and 

type-in a new file called 
'absolute effigy'. 

(end o f  input signified by null line.) 
Save file permanently & 
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~input absolute effigy; 
I: ABSOLUTE: PROC(I,O); 
2: DCL (I,O) INTEGER; 
3: IF I<0 THEN O = -I 
4: ELSE O = I; 
5: END; 

~dcl z integer; 
~call absolute(55,z); display z; 
55 

~call absolute(-66,z); display z; 
66 

~in absolute; turn all on all; 
~in main; 
~call absolute("a",z); 

I: ABSOLUTE: PROC(I,O); 
2: DCL (I,O) INTEGER; 
3: IF I < 0 THEN O = - I 

( ( A m > - 1 ) )  

TYPE GO TRUE OR GO FALSE 
~before 5; 
~savestate; 

STATE q SAVED 
~go true; 

((Am>-1)) 
TRUE BRANCH 
O=-A 
STOPPED BETWEEN 3 AND 5 

~display variables, assumption; 
IN ABSOLUTE 
I:A 
O:-A 
( ( A ~ > - I ) )  

~restore I; 
STATE I RESTORED. IN ABSOLUTE 

~go false; 
( ( A ~ > - I ) )  ' 
FALSE BRANCH 

4: ELSE O = I; 
O=A 
STOPPED BETWEEN 4 AND 5 

~display variables, assumption; 
IN ABSOLUTE 
I=A 
O=A 
((Am<0)) 

~xgo; 
BACK FROM ABSOLUTE TO MAIN 

~display z; 
A 

~in absolute; turn all off all; 
~in main; 

go back to EFFIGY, 
Have EFFIGY read input from that file. 

Statements are numbered by EFFIGY. 

Last line of file -- back to 
terminal input. 

Declare a variable in MAIN. 
Try a numeric execution. 
Result of display statement. 

All tracing on in proc. "absolute'. 
Set back m MAIN. 
Try a symbolic input "a". 
Each statement execution is traced 

by printing it. 

Evaluated result of I<O--v(B). 
(A<_-I or A<O) 

Unresolved (forking) IF--User option. 
Stop before executing statement 5. 
Save the current execution state. 
EFFIGY calls this state t. 
Follow case where A<O. 
v(l< O)--evaluated test. 

Result of assignment to O. 
Stopped "before 5" 
All local values and the pc. 

Current pc (assumption). 
Return to execution state 1, 

and try else path. 
v(I<O). 

New value of O. 
Before 5. 

Resume execution and delete breakpoint. 

Turn all tracing off. 

~erase assumption; Reset pc to true. 
~call absolute ( "a" - "b",z);go true; display z; 
TYPE GO TRUE OR GO FALSE Go true above anticipates question. 
-A+B 

l , . e d i t  absolute effigy ; Invoke editor to change absolute. 
~next Edit command to look at line t of  file. 
change /absolute/newabs/ Change proc name. 

~bottom go to end of file. 
It, up I Well not quite. 
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~input assert(o eq abs(i)); 
~file newabs 

~input newabs effigy; 
I: NEWABS: PROC(I,O) ; 
2 :  DCL (I,O) INTEGER; 
3: IF I<0 THEN O = -I 
4: ELSE O = I; 
5: ASSERT(O EQ ABS(1)) ; New sm~ment.  
6: END; 

)erase assumption; 
~call newabs("a",z); go true; display zr assumption; 
TYPE GO TRUE OR GO FALSE 
((abs(A)+A :0 ) :: TRUE 

- A  
((A~>-I)) 

~erase assumptlon; 

Insert a correctness specification. 
File away as newabs effigy. 
Go back to EFFIGY.  
Enter into EFFIGY.  

~call newabs("a",z); go false; display z, assumption; 
TYPE GO TRUE OR GO FALSE 
((abs(A)-A =0)) :: TRUE 

A 
((A~<0)) 

~erase assumption; 
~input times effigy; 

I: TIMES:PROC(XrY,Z); 
2: DCL (X,Y,Z) INTEGER; 
3:  Z=0; 
4: IF X<0 THEN 
4 :  DO; 
5: CALL ABSOLUTE(X,X) ; 
6: Y=-Y; 
7: END; 
8: L: 
8: IF X>0 THEN 
8: DO; 
9: X:X-I; 

10: Z=Z+Y; 
11: GO TO L; 
12: END; 
13: END; 

~call times(3,5,z); display z; 
15 
call times(-3,5,z); display z; 
-15 
call times(-34,"b",z) ; display z; 

A mixed case--determinate control f low. 

- 3 4 " B  
~n times; turn all on 4 5 6 8 9 10; before 13; in main; 

c a l l  t i m e s  ( " a " ,  " b " ,  z )  ; The completely symbolic case. 
4: IF X < 0 THEN DO; 

((Am>-1) ) 
TYPE GO TRUE OR GO FALSE 
savestate ; 
STATE 2 SAVED 

go true ; 
( (i~>-I ) ) 
TRUE BRANCH 

5 : CALL ABSOLUTE (X,  X) ; Executed a resolved I F  in absolute. 

Try only other case. 
That also gets proved. 
Have correctness proof--both paths correct. 

Now read in procedure times. 

Times calls absolute. 

i t  multiplies by looping add. 

(Try some numbers. 

Response was anticipated on previous line. 
Result  o f  executing assert (statement 5). 

o f  form l :: r where... 
l is evaluated assertion and 
r is  result o f  pc = l. 

Result o f  display z 
and assumption for  line typed earlier. 
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6: Y = - Y; 
Y=-B 

8: L: IF X > 0 THEN DO; 
((i~>-1)) 
TRUE BRANCH 

9: X = X - I; 
X=-A- I 
10: Z = Z + Y; 

Z=-B 
8: L: IF X > 0 THEN DO; 

((i~>-2)) 
TYPE GO TRUE OR GO FALSE 

~go true; 
((A~>-2)) 
TRUE BRANCH 

9: X = X- I; 
X=-A-2 
10: Z = Z + Y; 

Z:-2*B 
8: L: IF X > 0 THEN DO; 

((A~>-3)) 
TYPE GO TRUE OR GO FALSE 

}go false; 
((i~>-3)) 
FALSE BRANCH 
STOPPED BETWEEN 8 AND 13 

~display variables, assumption; 
IN TIMES 
X=-A-2 
Y=-B 
Z=-2*B 
( (i =-2) ) 

~ restore 2; 
STATE 2 RESTORED. IN TIMES 

~go false; 
( (A~>- I ) ) 
FALSE BRANCH 

8: L: IF X > 0 THEN DO; 
((A~<I) ) 
TYPE GO TRUE OR GO FALSE 

~assume ("a">4) ; 
~go; 

((A~<I) ) 
TRUE BRANCH 

9: X = X - I; 
X=A- 1 
I0: Z = Z + Y; 

Z=B 
8: L: IF X > 0 THEN DO; 

((A-~<2)) 
TRUE BRANCH 

9: X = X - I; 
X:A-2 
10: Z = Z + Y; 

Z=2*B 
8; L: IF X > 0 THEN DO; 

((A~<3)) 
TRUE BRANCH 

9: X : X - I; 
X=A-3 
10: Z = Z + Y; 

Knows A < - I .  

Another resolved IF. 
A < - I  so - / i > 0 .  

Loop around. 

Now go out to end o f  proc. 

Breakpoint at end o f  proc. 

Path choices determine A = - 2 .  

Try another case. 

Add  this assumption to the pc, 
Now retry the I F  with new pc. 

New pc resolves it. 

Assume carries us through this one too. 
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Z:3*B 
8: L: IF X > 0 THEN DO; 

((A~<4)) 
TRUE BRANCH 

9: X = X- I; 
X=A-4 
10: Z : Z + Y; 

Z=4*B 
8: L: IF X > 0 THEN DO; 

((A~<5)) 
TRUE BRANCH 

9: X = X - I; 
X=A- 5 
10: Z : Z + Y; 

Z=5*B 
8: L: IF X > 0 THEN DO; 

((A~<6)) 
TYPE GO TRUE OR GO FALSE 

~go false; 
((i~<10)) 
FALSE BRANCH 
STOPPED BETWEEN 8 AND 1 3 

~display variables, assumption; 
IN TIMES 
X=A- 5 
Y=B 
Z=5*B 
( (A :5) ) 
restore 2 ; 
STATE 2 RESTORED. IN TIMES 

Unresolved when X gets to A -5 .  
Leave loop 

Go back and try another case. 

Yes it does. 

This one resolved too. 

Result still in symbolic terms. 

Does it know Z is really 4. 
Yes. 
Go on out o f  times. 

Response m previous null line. 

( (Am>- I ) ) 
FALSE BRANCH 

8: L: IF X > 0 THEN DO; 
((A~<I) ) 
TRUE BRANCH 

9: X = X - I; 
X:A-I 
10: Z = Z + Y; 

Z=B 
8" L: IF X > 0 THEN DO; 

((i~<2)) 
TRUE BRANCH 

9: X : X - I; 
X =A - 2 
10: Z = Z + Y; 

Z=2*B 
8: L: IF X > 0 THEN DO; 

((A~<3)) 
FALSE BRANCH 
STOPPED BETWEEN 8 AND 13 

~disp!ay variables, assumption; 
IN TIMES 
X:A-2 
Y=B 
Z:2*B 
((A-B =0&B =2)) 

~assert(z eq 4) ; 
( (B =2)) : : TRUE 

~go; 

IN MAIN 

~assume ( "a" eq "b" g "b" eq 2) ; Indirectly assume A is 2. 
go ; Does that assume resolve the if? 
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~edit 'times' effigy; 
~next 
~input assume(x eq "x0" 

Edit times procedure, 
In editor. 

& y eq "y0") ; 
Insert correctness specifications. 

~bottom 
~up I 
~input assert(z eq "x0" * "y0"); 
~file 

~erase times; 
~erase assumption; 
~input times effigy; 

1: TIMES:PROC(X,Y,Z); 
2: 

Replace original procedure 
and go back m EFFIGY, 
Can't have two times routines. 

Input from "times" file. 

ASSUME(X EQ "X0" & Y EQ "Y0") ; 
Used to name input values, 

3: DCL (X,Y,Z) INTEGER; 
4: Z=0; 
5: IF X<0 THEN 
5: DO; 
6: CALL ABSOLUTE(X,X); 
7: Y=-Y; 
8: END; 
9: L: 
9: IF X>0 THEN 
9: DO; 

10: X=X-I; 
11: Z=Z+Y; 
12: GO TO L; 
13: END; 
14: ASSERT(Z EQ "X0" * "Y0"); 

15: END; 
~in times; turn all on 5 9 14; 
~in main; 
~assume("a">4 & "a"<5); No integer between 4 and 5. 
CONTRADICTING ASSUMPTION. IGNORED. 

~assume("a">4 & "a"<7) ; t tow about A ~ 5 or 6, 

Relate input values m output. 

Selectively trace. 

~call times("a","b",z); 
5: IF X < 0 THEN DO; 

(A~>- I ) ) 
FALSE BRANCH 

9: L: IF X > 0 THEN DO; 
(i~<1) ) 

TRUE BRANCH 
9: L: IF X > 0 THEN DO; 
(i~<2) ) 

TRUE BRANCH 
9: L: IF X > 0 THEN DO; 
(A~<3)) 

TRUE BRANCH 
9: L: IF X > 0 THEN DO; 

(A~<4)) 
TRUE BRANCH 

9: L: IF X > 0 THEN DO; 
(A~<5) ) 

TRUE BRANCH 
9: L" IF X > 0 THEN DO; 
(A~<6) ) 

TYPE GO TRUE OR GO FALSE 
~go true; 

(A~<6) ) 
TRUE BRANCH 

9: L: IF X > 0 THEN DO; 

Now must decide 5 or 6. 
Pick 6, 

For 5 and 6 X > O. 

For 5 and 6 loop some too. 
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((A~<7)) 
FALSE BRANCH 
14: ASSERT(Z EQ X0 * Y0); 

((6*B-X0*Y0 =0)) :: TRUE 
~display assumption; 
((h =6$A-X0 =0&B-Y0 =0)) 

~display variables; 
IN MAIN 
ABZOLUTE=PROC 
Z=6*B 
NEWABS=PROC 
TIMES=PROC 

~quit 

Known not > 6. 

Results check by assert--O.K. 
What is the pc? 
Relates the symbolic inputs to the 

names given to inputs by assume in proc. 
M A I N  has variables and values too. 

Value "PROC" means it is a procedure. 

Leave E F F I G Y  system. 


