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ABSTRACT Nonprocedural programming involves the suppression 

of unnnecessary detail from the statement of an algorithm. 

The conventional representation of an algorithm as a step by 

step sequential procedure often obscures the essential 

nature of the procedure. In many cases, algorithms are more 

transparent when stated recursively, combinatorially or 

nondeterministically. The paper discusses these three styles 

of progr~ing and gives examples of their use. The 

elimination of certain low level features of traditional 

programming and their replacement by these and other 

techniques (associative referencing, aggregate operators and 

pattern matching) is advocated in order to raise the level 

of algorithm description. 

Introduction 

Nonprocedural programming has many of the goals of 

structured programming: constructing programs that are 

easier to understandf modify and debug. In addition, it 

involves the suppression of unnecessary detail from the 

statement of an algorithm. The conventional representation 

of an algorithm as a step by step sequential procedure often 

obscures the essential nature of the procedure. In many 
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cases, algorithms are more transparent when 

recursively, combinatorially or nondeterministically. 

stated 

We see the problem solving process as composed of three 

components: 

(I) statement of the problem 

(2) statement of the solution 

(3) efficient implementation of the solution 

We are mainly interested from a programming point of view in 

the second step. Step (3) can in principle be carried out by 

an optimizing compiler, whereas the the transformation from 

step (1) to step (2) is a problem in Artificial 

Intelligence. 

In any case, the end user must always satisfy himself 

either that his statement of the problem (I) or solution (2) 

is correct. This paper is concerned with techniques of 

programming which, by removing certain low level details, 

make this task of verification easier. 

What is nonprocedural programming? There is no commonly 

accepted definition, but for purposes of this paper we will 

say that it involves specifying the outcome desired as a 

function of the inputs. A nonprocedural program is 

functional in the sense that it always produces the same 

output when presented with the same input; a nonprocedural 

program has no side effects. This condition can be 
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guaranteed by eliminating assignment. For a survey of 

nonprocedural languages, see (Leavenworth and Sammet 1974). 

Recursive Proqramming 

There are many algorithms that are easier to state 

recursively than iteratively. Examples abound in areas such 

as sorting, tree walking, parsing, etc. 

Knuth's Chapter 2 on Information Structures (Knuth 1968) 

presents algorithms in a style which is suitable for 

efficient implementation~ 

As an example, we choose one of his algorithms for 

traversing binary trees. A binary tree is a finite set of 

nodes that either is empty, or consists of a root together 

with two binary trees. Knuth represents the tree 
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by the data structure: 

i - A 
./ 
IDI^I 

IBI 

l^I o I ̂ I ~ l^l~J ̂ I 



366 

The algorithm for '~postorder" traversal can be 

simply: 

stated 

Traverse the left subtree 

Visit the root 

Traverse the right subtree 

The detailed version of this algorithm is given below in his 

iterative style° 

Algorithm T. Let T be a pointer to a binary tree and A be an 

auxiliary stack. 

TI. [Initialize~]Set stack A emptyt and set the link variable 

P <- T. 

T2. [P = A?] If P = A, go to step T4. 

T3. [Stack <= P.] (Now P points to a nonempty binary tree 

which is to be traversed.) Set A <= P~ i.e., push the value 

of P onto stack Ao Then set P <- LEFT (P) and return to step 

T2. 

T4. [P <= Stack.] If stack A is empty, the algorithm 

terminates; otherwise set P <= A. 

T5. [Visit P.] "Visit" NODE (P). Then set P <- RIGHT (P) and 

return to step T2. 

In this case~ visit means accumulate the "value" of the root 

in a buffer which is printed when the algorithm terminates. 
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The above algorithm is reasonably close to a corresponding 

program in some high level language except that the stacking 

operations would be less clear in the program. It is 

representative of iterative algorithms with sequential 

updating of memory and transfer of control. 

Since the treewalk is essentially a recursive procedure, we 

can describe the algorithm more naturally in a LISP-like 

functional language: 

postorder x = if null (left x) then () 

else postorder (left x) 

~I root x II 

if null (right x) then () 

else postorder (right x) 

where 'II' denotes an infix concatenation operator and 

'left', 'root', and 'right' represent selectors of the three 

components of a node of the tree. The binary tree in this 

case can be constructed using either programmer-defined data 

types if such a facility exists (for example, SNOBOL4) or 

defining them by functional composition. 

Recursive programming is supported by LISP and by the so 

called higher order languages (see next section). 
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Some further examples of recursive programming will be given 

in the next section. 

Combinatory Programming 

The idea of this type of programming is to manipulate and 

combine functions with the purpose of eliminating for the 

most part loops, conditionals and recursive calls (Burge 

1972). By suppressing these "lower level" constructs, the 

programmer is freed from unnecessary detail and can exploit 

a powerful and concise style of programming. 

In order to set the stage for examples of combinatory 

programming, consider the problem of adding up the elements 

of a list. The recursive algorithm is stated in English as 

follows: 

To sum the elements of a list x, add the first element of x 

to the result of summing the remainder of x. This is 

translated into a recursive program as follows: 

sum x = if null x then 0 

else h x + sum (t x) 

The boundary condition "if null x then 0" defines the 

identity element for addition and is always required for a 

recursive formulation. The above example is characteristic 
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of recursive programming, but is "low level" in the sense 

that the recursive operation of the program involves data 

sequencing of the list. 

The function just given is representative of a class of 

functions which can be defined using combinatory 

specification. Before explaining this technique, let us 

consider the slightly more complicated example of applying a 

given function f to each element of a list x. The recursive 

algorithm is: 

To map a function f to each element of a list x, apply f to 

the first element of x and prefix this result to the result 

of mapping f to each element of the remainder of x. 

The functional program is: 

map f = I x. if null x then () 

else f (h x) : map f (t x) 

The interpretation is that the application of map to f 

produces a new function which when applied to a list x 

produces the desired result. This new function might be 

called an "f mapper". That is, it encapsulates (binds) the 

characteristics of f into the new function. Syntactically, 

however, it is more convenient to write the map function as 

follows: 
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map f x = if null x then () 

else f (h x) : map f (t x) 

even though map (and every other function) is always applied 

to a single argument. 

Now, the two preceeding dissimilar functions can be obtained 

as special cases of the following general list processing 

function: 

list a g f x = if null x then a 

else g ( f (h x)) (list a g f (t x)) 

Functions of this type which produce other functions as 

special cases will be called generators. 

If the infix operators ~+' and ':' are given the prefix 

formulations 

plus x y = x + y 

prefix x y = x : y 

the previous functions can be defined in terms of 'list': 

sum = list 0 plus i 

map f = list () prefix f 
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where 'i' represents the identity function 

ix=x 

The standard set operations have been defined by Burge 

(Burge 1968) using combinatory functions. We will give them 

here, since they demonstrate the flavor of combinatory 

programming. In what follows, sets will be represented by 

lists with no duplicate elements. 

exists p = list false or p 

where 'or' is the logical function 

or x y = if x then true else y 

The 'exists' function applies the predicate p to each 

element of a list and returns true if at least one of the 

resulting values is true, and false otherwise. 

filter p = list () i X x. if p x then prefix x else i 

The 'filter' function returns a subset of the argument set 

selected by the predicate p. Mathematically, the result is 

{xeS Ip(x) } 



372 

where S is the argument set. 

belongs 1 x = exists (equal x) 1 

where equal is the prefix formulation: 

equal x y = x = y 

The 'belongs ~ function is a predicate which returns true if 

x is an element of l, and false otherwise, 

intsn = filter o belongs 

where ~ is an infix representation of the prefix composition 

function 

b f g x = f (g x) 

Thus, f g = b f g , 

The 'intsn' function defines set intersection 

diff x y = filter ( not . (belongs y)) x 

where ~not ~ is the logical function 
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not x = if x then false else true 

The 'diff' function defines set difference. 

union x y = concat (diff x y) y 

where 'concat' is defined by 

concat x y = list y prefix i x 

The 'union' function defines set union. 

The type of combinatory functions described here are 

supported by and can be programmed in any of the "higher 

order" languages (Reynolds 1972) inspired by Landin (Landin 

1966) such as PAL (Evans 1968), McG (Burge 1968), GEDANKEN 

(Reynolds 1970) and QUEST (Fenner et al 1972). 

Nondeterministic Programming 

The programming of a wide class of combinatorial problems is 

made easier by using certain operators introduced by Floyd 

(Floyd 1967). These consist of: 

(I) a multiple valued choice function called choice (n) 

whose values are the integers from I to n 
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(2) a success function, and 

(3) a failure function 

The choice function allows a program to be conceptually 

executed in parallel with each path using one of the values 

of the argument. The success and failure functions label 

termination points of the computation. However, only those 

termination points labelled as success are considered to be 

computations of the algorithm. 

Since context-free languages are recognized by 

nondeterministic pushdown automata, we will use these 

nondeterministic primitives in specifying a context-free 

parser. 

We will modify the choice function slightly and allow the 

argument to be a list instead of an integer. Then each path 

will use one of the elements of the list. 

The parsing algorithm to be programmed uses a top down 

method which will parse strings generated by any 

context-free grammar without left recursive rules. There is 

an input string and a prediction string which initially 

consists of the distinguished symbol S of the grammar. The 

leftmost symbol of the prediction string is tested for the 

following cases: 
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(I) If a Terminal symbol, it is compared with the input 

symbol under scan. If there is a match, both symbols are 

deleted, otherwise the failure function is invoked. 

(2) If a Non-terminal symbol, it is replaced (using the 

choice function) by all the right hand rules defining it. 

(3) If a Rule number, it is deleted from the prediction and 

added to the buffer. 

A simple program to realize this algorithm will now be 

shown. 

parse (input,pred,bufr) = 

if and (null pred,null input) then 

(print bufr; success) else 

i_ff or (null pred,null input) then failure else 

if rule no (h pred) then 

parse (input,t pred,h pred:bufr) else 

i_ff term (h pred) then if h input = (h pred) 

then parse (t input,t pred,bufr) 

else failure 

else let x = choice (gmap (h pred)); 

parse (input,x II (t pred),bufr) 

If both the prediction string and input string are empty, 
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the buffer is printed (side effect [) and the parse is 

successful. After this test, if either the prediction string 

or input string is empty, the parse fails. If the top of the 

prediction is a rule number, it is added to the buffer. If 

the top of the prediction is a nonterminal, the choice 

function is called with a list of right hand rules as 

argument°'gmap' is a function (relation) that maps a left 

part (nonterminal) of a grammar to a list of alternatives 

(right hand rules)° When the computation terminates, the 

buffer contains in reverse order the rules that were applied 

during the parser 

The above programt when defined in the environment of the 

grammar 

gmap = {<S~ ([IaAS], [2a]) >,<A, ( [3SbA]r [4ba], [5SS])>}, 

representing the context-free grammar 

S -> aAS I a 

A -> SbA I ba i SS 

and applied to the arguments input =[aabbaa] ,pred = S:() 

and buff = () , produces the string 13242. 'gmap' is 

expressed as a binary relation where the range values are 

given as lists of character strings (nonterminals in upper 

case, terminals in lower case, and rule numbers denoted by 

integers)° 
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Nondeterministic functions such as those described here have 

been added to FORTRAN (Cohen and Carton 1974). The approach 

followed is to transform programs written in the extended 

FORTRAN into standard (deterministic) FORTRAN following 

Floyd's work. Similar techniques can be applied to other 

high level languages. 

Elimination of Low Level Detail 

The programming techniques already introduced (recursive, 

combinatory, nondeterministic) do much to eliminate 

inessential detail in the programming process. Now we will 

briefly outline those low level features that can be 

eliminated and roughly their nonprocedural equivalents in 

the following form: low level feature => nonprocedural 

substitute. Some of the nonprocedural techniques have 

already been discussed. The others will appear in subsequent 

sections. 

Explicit referencing and search => associative referencing 

We would like to eliminate explicit access paths and 

referencing dependent on array subscripts, pointers and 

explicit searching. 

Loops => associative referencing, aggregate operators, and 

combinatory programming 
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Elimination of loops raises the level of programming 

because it decreases the number of decisions the 

programmer has to make. We also include in this 

category most iterative and recursive constructions. 

Explicit sequencing => recursive and combinatory programming 

Explicit sequencing is intimately connected with 

procedural programming, side effects and the updating 

of memory. The presence of side effects increases 

greatly the opaqueness of programs and difficulty of 

verification. 

Explicit control and pattern matching => nondeterministic 

programming and pattern matching 

Pattern matching and nondeterministic control are 

treated together since they are related in many ways. 

The suppression of control flow is a step in the 

direction of nonprocedurality and serves to hide 

details which are not relevant to the problem solution. 

Associative Referencing 

We use the term associative referencing to refer to the 

accessing of data based on some intrinsic property of the 

data. This method of referencing allows the programmer to 

suppress implementation oriented details so that the 

decision of how to represents objects in the machine is left 
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to the compiler. 

The relation 'gmap' in the previous example represented a 

mapping from nonterminals to right hand rules in a grammar 

which did not commit the compiler to any particular 

representation or access paths. Earley (Earley 1974) has 

described higher level data structures (tuples, sequences, 

sets, relations) and operations on these structures which 

provide this type of freedom from access path dependence. 

Associative referencing is usually described syntactically 

using the standard set notation: 

{xeS Ip (x) } 

That is, all the members of set S satisfying the property 

p(x). Underlying this syntax, however, is the application of 

a function such as 'filter' previously defined: 

filter p S 

Aggregate qperators 

The set operators previously defined by combinatory 

functions are examples of aggregate operators. We will 

briefly discuss four types of aggregate operators which 

perform the following kinds of mappings: 
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(I) aggregate -> scalar 

(2) aggregate -> aggregate 

(3) aggregate X aggregate -> scalar 

(4) aggregate X aggregate -> aggregate 

An example of the first type is the reduction operator of 

APL which is exemplified by the ~sum' function defined 

earlier. The 'map' function is an example of type (2). 

We will now define a function analogous to the 'list' 

function but which operates on two lists of equal length. It 

will then accommlodate the two remaining types as special 

cases. 

lists a g f x y = if null x then () 

else g (f (h x) (h y)) (lists a g f (t x) (t y)) 

An example of the third type is an inner product function 

defined as follows: 

inner = lists 0 plus mult 

where 'mult' is given by the prefix formulation 
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mult x y = x * y 

Finally, a distribution function which applies the same 

operator on pairwise elements of two lists to produce a 

result list, a la APL, can be defined 

dist f = lists () prefix f 

It is well known that APL has excellent facilities for 

aggregate operations. However, the present approach is more 

powerful because any function can be the argument of a 

generator whereas the arguments allowed by APL are 

restricted to the built-in functions. 

Pattern Matching 

The string pattern matching facilities provided by SNOBOL4 

(Griswold et al 1968) are representative of the type of 

operations we want in order to suppress low level detail. 

However, we would like pattern matching to be applicable to 

arbitrary data structures, not just strings. 

The following highly recursive SNOBOL program which uses 

patterns and uneva!uated expressions to recognize strings 

generated by the context-free grammar previously introduced, 

demonstrates the power of a generalized pattern matcher. 
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&ANCHOR = I 

A = *S ~B ~ *A I 'BA ~ I *S *S 

S = 'A' A *S i ~A~ 

INPUT S RPOS(0) 

END 

In the above programr the grammar is represented by the 

pattern variable S, the infix symbol 'I ' represents the 

operation of alternation, and the unary operator '*' 

postpones evaluation of its operando The first statement 

specifies "anchored mode", which means that the pattern must 

match the input string starting at the first character. 

Finally, the function call 'RPOS(0) ~ is a pattern that 

succeeds only if the entire input string has been scanned. 

Unfortunately~ the programmer can't use this mechanism to 

produce a parse because there is no way to distinguish 

between successes or failures of alternative paths. In 

addition to the information that the pattern matched or did 

not match the input string, it would be useful if SNOBOL 

produced a derivation tree as the value of the match which 

would indicate exactly which rules were used to match the 

given string. 

An approach which incorporates a SNOBOL-Iike pattern 

matching facility into a higher order programming language 

called QUEST has been described by Tennant (Tennant 1973). 
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This approach allows the type of translation discussed above 

and hence is more powerful than SNOBOL. 

Since space precludes an adequate discussion of pattern 

matching techniques, a discussion of their application in 

various artificial intelligence languages can be found in 

(Bobrow and Raphael 1973). 

Summary 

We have discussed in some detail three styles of 

programming subsumed by the notion of nonprocedural 

programming. These techniques have been applicable to 

raising the level of algorithm description. We have also 

advocated the elimination of certain low level features 

conventionally used and their replacement by these and other 

techniques such as associative referencing, aggregate 

operators and pattern matching. Finally, we have suggested 

some programming languages and extensions which support this 

type of programming. 
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