
NONPROCEDURAL PROGRAMMING

B. M. Leavenworth

Computer Sciences Department

IBM Thomas J. Watson Research Center

Yorktown Heights, New York

ABSTRACT Nonprocedural programming involves the suppression

of unnnecessary detail from the statement of an algorithm.

The conventional representation of an algorithm as a step by

step sequential procedure often obscures the essential

nature of the procedure. In many cases, algorithms are more

transparent when stated recursively, combinatorially or

nondeterministically. The paper discusses these three styles

of progr~ing and gives examples of their use. The

elimination of certain low level features of traditional

programming and their replacement by these and other

techniques (associative referencing, aggregate operators and

pattern matching) is advocated in order to raise the level

of algorithm description.

Introduction

Nonprocedural programming has many of the goals of

structured programming: constructing programs that are

easier to understandf modify and debug. In addition, it

involves the suppression of unnecessary detail from the

statement of an algorithm. The conventional representation

of an algorithm as a step by step sequential procedure often

obscures the essential nature of the procedure. In many

363

cases, algorithms are more transparent when

recursively, combinatorially or nondeterministically.

stated

We see the problem solving process as composed of three

components:

(I) statement of the problem

(2) statement of the solution

(3) efficient implementation of the solution

We are mainly interested from a programming point of view in

the second step. Step (3) can in principle be carried out by

an optimizing compiler, whereas the the transformation from

step (1) to step (2) is a problem in Artificial

Intelligence.

In any case, the end user must always satisfy himself

either that his statement of the problem (I) or solution (2)

is correct. This paper is concerned with techniques of

programming which, by removing certain low level details,

make this task of verification easier.

What is nonprocedural programming? There is no commonly

accepted definition, but for purposes of this paper we will

say that it involves specifying the outcome desired as a

function of the inputs. A nonprocedural program is

functional in the sense that it always produces the same

output when presented with the same input; a nonprocedural

program has no side effects. This condition can be

364

guaranteed by eliminating assignment. For a survey of

nonprocedural languages, see (Leavenworth and Sammet 1974).

Recursive Proqramming

There are many algorithms that are easier to state

recursively than iteratively. Examples abound in areas such

as sorting, tree walking, parsing, etc.

Knuth's Chapter 2 on Information Structures (Knuth 1968)

presents algorithms in a style which is suitable for

efficient implementation~

As an example, we choose one of his algorithms for

traversing binary trees. A binary tree is a finite set of

nodes that either is empty, or consists of a root together

with two binary trees. Knuth represents the tree

365

by the data structure:

i - A
./
IDI^I

IBI

l^I o I ̂ I ~ l^l~J ̂ I

366

The algorithm for '~postorder" traversal can be

simply:

stated

Traverse the left subtree

Visit the root

Traverse the right subtree

The detailed version of this algorithm is given below in his

iterative style°

Algorithm T. Let T be a pointer to a binary tree and A be an

auxiliary stack.

TI. [Initialize~]Set stack A emptyt and set the link variable

P <- T.

T2. [P = A?] If P = A, go to step T4.

T3. [Stack <= P.] (Now P points to a nonempty binary tree

which is to be traversed.) Set A <= P~ i.e., push the value

of P onto stack Ao Then set P <- LEFT (P) and return to step

T2.

T4. [P <= Stack.] If stack A is empty, the algorithm

terminates; otherwise set P <= A.

T5. [Visit P.] "Visit" NODE (P). Then set P <- RIGHT (P) and

return to step T2.

In this case~ visit means accumulate the "value" of the root

in a buffer which is printed when the algorithm terminates.

367

The above algorithm is reasonably close to a corresponding

program in some high level language except that the stacking

operations would be less clear in the program. It is

representative of iterative algorithms with sequential

updating of memory and transfer of control.

Since the treewalk is essentially a recursive procedure, we

can describe the algorithm more naturally in a LISP-like

functional language:

postorder x = if null (left x) then ()

else postorder (left x)

~I root x II

if null (right x) then ()

else postorder (right x)

where 'II' denotes an infix concatenation operator and

'left', 'root', and 'right' represent selectors of the three

components of a node of the tree. The binary tree in this

case can be constructed using either programmer-defined data

types if such a facility exists (for example, SNOBOL4) or

defining them by functional composition.

Recursive programming is supported by LISP and by the so

called higher order languages (see next section).

368

Some further examples of recursive programming will be given

in the next section.

Combinatory Programming

The idea of this type of programming is to manipulate and

combine functions with the purpose of eliminating for the

most part loops, conditionals and recursive calls (Burge

1972). By suppressing these "lower level" constructs, the

programmer is freed from unnecessary detail and can exploit

a powerful and concise style of programming.

In order to set the stage for examples of combinatory

programming, consider the problem of adding up the elements

of a list. The recursive algorithm is stated in English as

follows:

To sum the elements of a list x, add the first element of x

to the result of summing the remainder of x. This is

translated into a recursive program as follows:

sum x = if null x then 0

else h x + sum (t x)

The boundary condition "if null x then 0" defines the

identity element for addition and is always required for a

recursive formulation. The above example is characteristic

369

of recursive programming, but is "low level" in the sense

that the recursive operation of the program involves data

sequencing of the list.

The function just given is representative of a class of

functions which can be defined using combinatory

specification. Before explaining this technique, let us

consider the slightly more complicated example of applying a

given function f to each element of a list x. The recursive

algorithm is:

To map a function f to each element of a list x, apply f to

the first element of x and prefix this result to the result

of mapping f to each element of the remainder of x.

The functional program is:

map f = I x. if null x then ()

else f (h x) : map f (t x)

The interpretation is that the application of map to f

produces a new function which when applied to a list x

produces the desired result. This new function might be

called an "f mapper". That is, it encapsulates (binds) the

characteristics of f into the new function. Syntactically,

however, it is more convenient to write the map function as

follows:

370

map f x = if null x then ()

else f (h x) : map f (t x)

even though map (and every other function) is always applied

to a single argument.

Now, the two preceeding dissimilar functions can be obtained

as special cases of the following general list processing

function:

list a g f x = if null x then a

else g (f (h x)) (list a g f (t x))

Functions of this type which produce other functions as

special cases will be called generators.

If the infix operators ~+' and ':' are given the prefix

formulations

plus x y = x + y

prefix x y = x : y

the previous functions can be defined in terms of 'list':

sum = list 0 plus i

map f = list () prefix f

371

where 'i' represents the identity function

ix=x

The standard set operations have been defined by Burge

(Burge 1968) using combinatory functions. We will give them

here, since they demonstrate the flavor of combinatory

programming. In what follows, sets will be represented by

lists with no duplicate elements.

exists p = list false or p

where 'or' is the logical function

or x y = if x then true else y

The 'exists' function applies the predicate p to each

element of a list and returns true if at least one of the

resulting values is true, and false otherwise.

filter p = list () i X x. if p x then prefix x else i

The 'filter' function returns a subset of the argument set

selected by the predicate p. Mathematically, the result is

{xeS Ip(x) }

372

where S is the argument set.

belongs 1 x = exists (equal x) 1

where equal is the prefix formulation:

equal x y = x = y

The 'belongs ~ function is a predicate which returns true if

x is an element of l, and false otherwise,

intsn = filter o belongs

where ~ is an infix representation of the prefix composition

function

b f g x = f (g x)

Thus, f g = b f g ,

The 'intsn' function defines set intersection

diff x y = filter (not . (belongs y)) x

where ~not ~ is the logical function

373

not x = if x then false else true

The 'diff' function defines set difference.

union x y = concat (diff x y) y

where 'concat' is defined by

concat x y = list y prefix i x

The 'union' function defines set union.

The type of combinatory functions described here are

supported by and can be programmed in any of the "higher

order" languages (Reynolds 1972) inspired by Landin (Landin

1966) such as PAL (Evans 1968), McG (Burge 1968), GEDANKEN

(Reynolds 1970) and QUEST (Fenner et al 1972).

Nondeterministic Programming

The programming of a wide class of combinatorial problems is

made easier by using certain operators introduced by Floyd

(Floyd 1967). These consist of:

(I) a multiple valued choice function called choice (n)

whose values are the integers from I to n

374

(2) a success function, and

(3) a failure function

The choice function allows a program to be conceptually

executed in parallel with each path using one of the values

of the argument. The success and failure functions label

termination points of the computation. However, only those

termination points labelled as success are considered to be

computations of the algorithm.

Since context-free languages are recognized by

nondeterministic pushdown automata, we will use these

nondeterministic primitives in specifying a context-free

parser.

We will modify the choice function slightly and allow the

argument to be a list instead of an integer. Then each path

will use one of the elements of the list.

The parsing algorithm to be programmed uses a top down

method which will parse strings generated by any

context-free grammar without left recursive rules. There is

an input string and a prediction string which initially

consists of the distinguished symbol S of the grammar. The

leftmost symbol of the prediction string is tested for the

following cases:

375

(I) If a Terminal symbol, it is compared with the input

symbol under scan. If there is a match, both symbols are

deleted, otherwise the failure function is invoked.

(2) If a Non-terminal symbol, it is replaced (using the

choice function) by all the right hand rules defining it.

(3) If a Rule number, it is deleted from the prediction and

added to the buffer.

A simple program to realize this algorithm will now be

shown.

parse (input,pred,bufr) =

if and (null pred,null input) then

(print bufr; success) else

i_ff or (null pred,null input) then failure else

if rule no (h pred) then

parse (input,t pred,h pred:bufr) else

i_ff term (h pred) then if h input = (h pred)

then parse (t input,t pred,bufr)

else failure

else let x = choice (gmap (h pred));

parse (input,x II (t pred),bufr)

If both the prediction string and input string are empty,

376

the buffer is printed (side effect [) and the parse is

successful. After this test, if either the prediction string

or input string is empty, the parse fails. If the top of the

prediction is a rule number, it is added to the buffer. If

the top of the prediction is a nonterminal, the choice

function is called with a list of right hand rules as

argument°'gmap' is a function (relation) that maps a left

part (nonterminal) of a grammar to a list of alternatives

(right hand rules)° When the computation terminates, the

buffer contains in reverse order the rules that were applied

during the parser

The above programt when defined in the environment of the

grammar

gmap = {<S~ ([IaAS], [2a]) >,<A, ([3SbA]r [4ba], [5SS])>},

representing the context-free grammar

S -> aAS I a

A -> SbA I ba i SS

and applied to the arguments input =[aabbaa] ,pred = S:()

and buff = () , produces the string 13242. 'gmap' is

expressed as a binary relation where the range values are

given as lists of character strings (nonterminals in upper

case, terminals in lower case, and rule numbers denoted by

integers)°

377

Nondeterministic functions such as those described here have

been added to FORTRAN (Cohen and Carton 1974). The approach

followed is to transform programs written in the extended

FORTRAN into standard (deterministic) FORTRAN following

Floyd's work. Similar techniques can be applied to other

high level languages.

Elimination of Low Level Detail

The programming techniques already introduced (recursive,

combinatory, nondeterministic) do much to eliminate

inessential detail in the programming process. Now we will

briefly outline those low level features that can be

eliminated and roughly their nonprocedural equivalents in

the following form: low level feature => nonprocedural

substitute. Some of the nonprocedural techniques have

already been discussed. The others will appear in subsequent

sections.

Explicit referencing and search => associative referencing

We would like to eliminate explicit access paths and

referencing dependent on array subscripts, pointers and

explicit searching.

Loops => associative referencing, aggregate operators, and

combinatory programming

378

Elimination of loops raises the level of programming

because it decreases the number of decisions the

programmer has to make. We also include in this

category most iterative and recursive constructions.

Explicit sequencing => recursive and combinatory programming

Explicit sequencing is intimately connected with

procedural programming, side effects and the updating

of memory. The presence of side effects increases

greatly the opaqueness of programs and difficulty of

verification.

Explicit control and pattern matching => nondeterministic

programming and pattern matching

Pattern matching and nondeterministic control are

treated together since they are related in many ways.

The suppression of control flow is a step in the

direction of nonprocedurality and serves to hide

details which are not relevant to the problem solution.

Associative Referencing

We use the term associative referencing to refer to the

accessing of data based on some intrinsic property of the

data. This method of referencing allows the programmer to

suppress implementation oriented details so that the

decision of how to represents objects in the machine is left

379

to the compiler.

The relation 'gmap' in the previous example represented a

mapping from nonterminals to right hand rules in a grammar

which did not commit the compiler to any particular

representation or access paths. Earley (Earley 1974) has

described higher level data structures (tuples, sequences,

sets, relations) and operations on these structures which

provide this type of freedom from access path dependence.

Associative referencing is usually described syntactically

using the standard set notation:

{xeS Ip (x) }

That is, all the members of set S satisfying the property

p(x). Underlying this syntax, however, is the application of

a function such as 'filter' previously defined:

filter p S

Aggregate qperators

The set operators previously defined by combinatory

functions are examples of aggregate operators. We will

briefly discuss four types of aggregate operators which

perform the following kinds of mappings:

380

(I) aggregate -> scalar

(2) aggregate -> aggregate

(3) aggregate X aggregate -> scalar

(4) aggregate X aggregate -> aggregate

An example of the first type is the reduction operator of

APL which is exemplified by the ~sum' function defined

earlier. The 'map' function is an example of type (2).

We will now define a function analogous to the 'list'

function but which operates on two lists of equal length. It

will then accommlodate the two remaining types as special

cases.

lists a g f x y = if null x then ()

else g (f (h x) (h y)) (lists a g f (t x) (t y))

An example of the third type is an inner product function

defined as follows:

inner = lists 0 plus mult

where 'mult' is given by the prefix formulation

381

mult x y = x * y

Finally, a distribution function which applies the same

operator on pairwise elements of two lists to produce a

result list, a la APL, can be defined

dist f = lists () prefix f

It is well known that APL has excellent facilities for

aggregate operations. However, the present approach is more

powerful because any function can be the argument of a

generator whereas the arguments allowed by APL are

restricted to the built-in functions.

Pattern Matching

The string pattern matching facilities provided by SNOBOL4

(Griswold et al 1968) are representative of the type of

operations we want in order to suppress low level detail.

However, we would like pattern matching to be applicable to

arbitrary data structures, not just strings.

The following highly recursive SNOBOL program which uses

patterns and uneva!uated expressions to recognize strings

generated by the context-free grammar previously introduced,

demonstrates the power of a generalized pattern matcher.

382

&ANCHOR = I

A = *S ~B ~ *A I 'BA ~ I *S *S

S = 'A' A *S i ~A~

INPUT S RPOS(0)

END

In the above programr the grammar is represented by the

pattern variable S, the infix symbol 'I ' represents the

operation of alternation, and the unary operator '*'

postpones evaluation of its operando The first statement

specifies "anchored mode", which means that the pattern must

match the input string starting at the first character.

Finally, the function call 'RPOS(0) ~ is a pattern that

succeeds only if the entire input string has been scanned.

Unfortunately~ the programmer can't use this mechanism to

produce a parse because there is no way to distinguish

between successes or failures of alternative paths. In

addition to the information that the pattern matched or did

not match the input string, it would be useful if SNOBOL

produced a derivation tree as the value of the match which

would indicate exactly which rules were used to match the

given string.

An approach which incorporates a SNOBOL-Iike pattern

matching facility into a higher order programming language

called QUEST has been described by Tennant (Tennant 1973).

383

This approach allows the type of translation discussed above

and hence is more powerful than SNOBOL.

Since space precludes an adequate discussion of pattern

matching techniques, a discussion of their application in

various artificial intelligence languages can be found in

(Bobrow and Raphael 1973).

Summary

We have discussed in some detail three styles of

programming subsumed by the notion of nonprocedural

programming. These techniques have been applicable to

raising the level of algorithm description. We have also

advocated the elimination of certain low level features

conventionally used and their replacement by these and other

techniques such as associative referencing, aggregate

operators and pattern matching. Finally, we have suggested

some programming languages and extensions which support this

type of programming.

REFERENCES

D.G. Bobrow and B. Raphael, "New Programming Languages for

AI Research", Tutorial presented at 3rd IJCAI, Stanford,

California, August, 1974.

384

W.H. Burge~ "McG - A Functional Programming System", Report

RC 2189, IBM Research DivisionF Yorktown Heights, N.Y.August

1968.

W.H. Burge~ "Combinatory Programming and Combinatorial

Analysis"~ IBM Journal of Research and Development, Vol. 16,

No. 5 (Sept. 1972).

J. Cohen and E. Carton, "Non-deterministic FORTRAN",

Computer Journal, Vol. 17, No. I, (May 1974).

J. Earley, "Relational Level Data Structures for Programming

Languages"~ Acta Informatica Vol. 2 Fasc. 4 1973.

A. Evansr ~'PAL - A Language designed for teaching

Programming Linguistics", Proceedings ACM 23rd National

Conference, 1968.

T.I. Fenner, M.A. Jenkins and R.D. Tennent, "QUEST : The

Design of a Very High Level Pedagogic Programming Language",

S!GPLAN Notices~ Vol. 8, NO. 2(Feb~ 1973).

R.W. Floyd, "Nondeterministic Algorithms", JACM Vol. 14

(Oct. 1967) o

R.E. Griswold, J.F. Poage and I.P. Polonsky, The SNOBOL4

Programming Language, Prentice-Hall, Englewood Cliffs, New

Jersey, 1968.

385

D.E. Knuth, "Fundamental Algorithms", Vol. I, The Art of

Computer Programming, Addison-Wesley, Reading, Mass°,196~8.

P.J. Landin, "The Next 700 Programming Languages", CACM Vol.

9, No. 3 (March 1966).

B.M. Leavenworth and J.E. Sammet, "An Overview of

Nonprocedura! Languages", Proceedings Symposium on Very High

Level Languages, SIGPLAN Notices Vol. 9, No. 3 (April 1974).

J.C. Reynolds, "GEDANKEN : A Simple Typeless Language Based

on the Principle of Completeness and the Reference Concept",

CACM Vol. 13, No. 5

J.C. Reynolds, "Definitional Interpreters for Higher-Order

Programming Languages", Proceedings 27th ACM National

Conference, 1972.

R.D. Tennent, "Mathematical Semantics and Design of

Programming Languages", PhD. Thesis, University of Toronto,

1973.

