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ABSTRACT

For a wide class of applications referred to as indirect-sensing experiments,
a8 systematic . approach yielding solutions in recursive form is establishbed. Indirect-
sensing experiments include problems of estimation, filtering, system identification,
and interpolation and smoothing by splines. Our approach is based on the novel notion
of a discrete-time generalized (not necessarily stmchastic) innovations process. The
discrete~time linear least-squares filtering problem is used to relate the new concept
to the familiar one of a stochastic innovations process. An applieation to the problem
of identifying recursively impulse responses and system parameters by using pseudo
random binary seguences as probing inputs is considered. Further, the problem of

interpolation and smoothing by splines is approached by the method developed.

1 - FORMULATION OF THE PROBLEM

In order to cast many different applications in a single mathematical

framework and stress their essential features, we consider an abstract version of a
problem that often occurs in experimental work, for istance, in estimation, filtering,
system identification, etc.. Let H be a real Hilbert space of functions defined on a
set L of points . The inner product of H is dencted by <- ,+2 » and the corresponding
norm by Il . Let " be the P-Fold Cartesian product of H and A e space of all
real-valued PxM matrices. We define an indirect-sensing linear measurement, or simply

a measurement, on an glement WeE HP to be the values m € RPXM taken on by an ordered

set of M continuoug linear functionals
<wiets i Cwt oM

m ={<u, g5} 2 (1)

<1°-1;’ Y1> ves <N.P"€H>

/! A /
f"%[f‘;"'ﬁﬂl W= [H‘)---I‘L\T?]

where, by the Rlesz representation theorem [?], f € M will be called the measurement
representator. Notice that in {1} M stands for the number of distinct measurements

executed on each of the P components of W,
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Tt is assumed that a sequence of time-indexed measurements
m, = {<ng>b , teTe{4z] (2)
with
{glm‘ t ¢ I mo= 42 M} linearly independent (3)
is available,
The set ét made up of the first t representators and corresponding
measurements defined by

‘f;éé { o M 1.—=4,z,---,t§

’

will be referred to as the experiment up to time t. Further,

2 é{ft,mt,-tel.g
will simply be called the experiment, The problem is then to find a recursive formula
for A ,
W # Lo, 0]
where, for each p=1,2y...,P,
uth 4 the minimum norm element in H interpolating Et’ or, in other words,
the linear least-squares {1l.l.s.) reconstruction of bIP based on the

experiment up to time t.

Example 1 (1.1.s. estimation) - Let H 4 L, (, &, P), the Hilbert space of all

second-order random variables (r.v,), viz. r.v'.s with finite second moments. Here

the inner product of u,v € H is

<wvr> = E[av] & /M(w) v(w) P(dw)
Q
The experiment consists of acquiring the values of the covariance
14

and observing the realization of a second-order M-dimensional time-series et' For
the sake of simplicity, the time series ?t and the P-dimensional r.v. w'are assumed
to have zero means, The problem is thus to obtain a recursive formula for th, the

1.1l.s. estimate of W based on the observations up to time t.

Example 2 (determination of system impulse~responses) — Consider a causal linear time-
invariant system with Q inputs and P outputs. Let {hpq(a))} s e[0,00), be its

impulse-response matrix, Suppose that the given system is b.i.b.o. stable, then, for
a sufficiently large GJ,] > 0, hpq(w) = 0, Va)>6.)1. Thus, if uq denotes the system
g~th input and mz the system p~th output at time t,
Q (%
mb =D | hy,W u"l(b’w) dw . (4)
t 9
1=t &

Setting
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4 L, Q)e L (Q)e®... oL, () (a tines),
the Hilbert space of all functions v: Q. —s-f%

r(w) & [%(w)) TR v‘a(m)]

such that N
i = <Tr> - qZ;; i[‘ﬁ(a)]zdu < e (5)
we can write (4) as
with P ./ .
m, & [mi, o, me 1R
w2 [wt e, W?]' e HF
whew) [k, (), - Q(m)]/ p=4,,P (2)
? (w) & [.u,,(b-m) ) g (k- w)] (&)

with t fixed in I and & € [ﬁ (J]

Here the experiment consists of sending into the system the "“inputs" or representators
{ft} and recording the values of the correspc)ndlng outputs {m } . The problem is
thus to obtain a recursive formula for ﬁ[t’ the l.l.s. reconstruction of the system

impulse~response matrix from input-output data up to time t.
Let d{t be the linear manifold in H spanned by the measurement representators

R, 2 Hpan {g@,%z_-t} 4 41,0,-,‘,{3’:’ mat, o, M wét}

A
It is well-known that ur'rt coincides with the orthogonal projection of the unknown
F R
W € H onto

up to t

t

T [wt] &,]

A
Further, 'ldit is uniquely specified by the two reguirements:

Moo/, pedF (%)
(<&, 8> =0, VT <t (o)

where ~ A A
w_}{; = W - wtt (10)

is the error of the 1,1.s. reconstruction of W based on E,.

Requirements (9), together with the information supplied by the experiment
bed © enable one to write down ’che so-called normal equations [2]. In general this set
of esquations yields the desired I’c in a nonrecursive form in that, if m‘ Jt#1 is

needed, an augmented system of normal equations has to be solved by performing the
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. A
same number of computations as if ld'lt were unknown,

2 ~ INNOVATIONS AS GRAM-SC-MIDT PROCESSES

As a preliminary step to the development of a systematic approach to the

problem that has been posed, viz, recursive linear least-sguares solution to the
indirect-sensing problem, it is convenient to introduce the notion of gausally

pquivalent experiments, We say that two experiments {ft,mt} and {rt, I3 tgare causally

eguivalent if

v b < }
féIISpan‘lgc,Vfc‘é'ﬁ = Gpan r‘f)V'c~i .
This is equivalent to requiring, perhaps in more suggestive terms, the existence of a
causal and gausally invertible linear transformation L HPXI-—-—> HPxI that converts

the representators of the first into the representators of the second experiment in

a causal way,
Z[(s,f’,cét}]= {rv,rst} ’ vt e 1.

An obvious consequence of the given definitions is

A
Proposition 1 - Let 'ld'h_‘( El) be the 1.1l.s. reconstruction of uJ€ HP based on an
experiment Ei’ i = 1,2, Thus,

Glt(s'l) = w*,t_(gz) él & ézare

Ytel, Ywe HE

causally eguivalent.

Let us now construct from the representators {S’t’ tEI} of the given experiment (2)
an orthonormal seguence {'}{C, te I} of the elements in HM by the Gram-Schmidt procedure
[1,2] . By orthonormality here we mean that

Wi, pl> o <wp, el
{<y ,w>ls :
t T H' 4 M M
<‘Vt ,vt> T <V—b /Vt >
’ 1
= IH S‘t“v‘ N vt/T € :
We get A g D ’P>}’V t = 2,3, (11a)
4 = g'i; i { g"f} i v
e, A ?1 (110)
4 -2 ¥tel. (11¢)
1 Y, = G £ ;
- t t t

where Gt is the inverse of the positive square-root of the matrix
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a
6, & {<e,e>]
The sequence {e ,tEI} will be called the seguence of the innovations of the repre-
sentators {?t:tél} , and ﬁ:,teﬂ that of the normalized innovations.

By the way the Gram=Schmidt procedure works, the initial experiment turns out to be

causally equivalent to the corresponding innovations experiment

14 {yt,)xt,ter}

s are defined by (11), and

where the #)

£
(<l
= - 42
= [m- g P {<°)rf§e>” G, t-23, (12a)
M dom, G‘!-yz‘ (126}

By transforming the initial experiment & into the corresponding innovations experiment

A
17 we find immediately the desired ‘ld'h: in a recursive form

4 5w AR
W = 22 fet = Wt Ml

A -1/2
Wlb—1+ﬁth e tel (13a)

1

A
Wy = Q (13b)

Theorem 1 - Let E = {?t’mt‘t € I} be an indirect-sensing experiment, and

Ta {'V , )Jt,t € Ig s with ‘Pt and /1_'; respectively defined by (11) and (12), be
the corresponding innovations experiment. Then, E and ‘j are causally equivalent, and
a recursive formula for the 1l.1l.s. reconstrugtion of Weé HP based on Et is given by
{12) and (13).

Let us apply {13) to get
?t,t-ﬂ = the l.l.s. reconstruction of the representator at time t

based on the experiment defined by

{mr= {<g{:,€‘7)} , Ts= il...[{;_,,} (14)

A t-1
Ctlt-1 = g:; {f<€e’vr>?5% )

We get

Comparing this with (11a), we arrive at justifing the term "innovations".

Corollary 1 - The sequence of the innovations of the representators of an experiment
can be written in the form
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= - t= 2,3
et = ?t gt't"i = + ’

B {15)
& = 5

Every term e, of the innaovations sequence is therefore obtained by substracting from

t
the representator gt its l.1l.s. one-step prediction, i.e. its 1l.1l.s. reconstruction

based on the experiment (14)'up to the immediate past.

Example 3 (Kalman-Bucy formulas) - Let the random vector W of Example 1 be a t—depen

dent random vector Xy Egs. (QS} give at once
A .5 /
“oedt - Korale-1 ¥ E["tn"i]
2 11 a4
Kivale-1 * E[%,,, eﬁ]C’t € (16)

Further, if x,_ is the solution of the stochastic difference state-equation

Zisr = BZ ¥ gt (17)
E[z,]= o E[zqz,,’] =T

and the observations gt are given by

t

A —
gt = z‘t = Ctzt +. 3‘&

with gt and é% zero mean vectors for every t € I uncorrelated with x1 and

E[E;é;] = Q& S{;.; E[ge S«c,}= ?f:st'c E[%t%;]= r;sﬁr
the discrete-time Kalman-Bucy formulas are quickly obtained
it-ﬂ{{; = s‘i Qtft—1 + K e (18)
K, & (45¢+1)(GRY+R,) t
A %tf?; 42/ - k¢ K +Q (19)
%ﬂo =0 F="N

Example 4 (recursive system identification by PABS's) - Hereafter, the problem of

determining impulse responses and system parameters is considersd. To this end the
setting of Example 2 will be used throughout. Our first comment is that, thougb
solution (13) is completely general and hence can immediately be applied to the
problem posed in Example 2, the proposed algorithm becomes very complicated for large

t unless some special input is used, This is so because: first, the number of
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computations required by (11) to get e, increases linearly with t; and second, an
ever expanding Span { gc P V7ve t} makes eventually the reconstructed impulse
raesponse extremely sensitive to measurement neiseﬁB,S}. On the other hand, the given
solution becomes particularly convenient if the system output is uniformly sampled
every A sec. and a periodic imput with period LA > b.),l is used. In this way, if the
measurements start at least LA sec. after the test input has been applied to the
system, there are only L lineraly independent representators to consider, and ideally,
the experiment is completed in the next L. A sec,
In the single-input single-output case, attractive input signals are the pseudorandom
binary sequences {PRBS) [6]of length

L= 2i -1, i=23..e
and amplitude +V and -V. They look attractive essentially because of the following

property of their autocorrelation function
ﬂ?ﬁz t= v+ mLA

<?ti f‘l‘.‘> . i ?IIZ/L elsewhere

where, for a system with an input excited by a PRBS of period LA, I ? ”2=V2LZS .
This feature greatly semplifies Egs. (11) - {13), In Fact, after some Further manipy
1ations, we get the recursive 1l,l.s. reconstruction of the system impulse response

according to the following steps:
= - (W « e (@
g (@) = ) - ¢, ¢ Yo+ e (@)
€, = m -M + &, € (20)

£ + -1 t -1

A A -1 -2
By = B O+ LTI ¢ € )

where: dté {1~t+3) (L—t+2}~1; t = 1,2,00.,L; and the initial values are

¢ (W) = 0 e, (w) = 0 @) = O

4

€, = 0 Mme = O .
PRES's have been used for a long time as probing inputs for identifying systems
f?,B}. However, all previous algorithms used in connection with the identification
experiment of this section essentially relied on the PRBS resemblance to white noise
and were based on crosscorrelation-type arguments. Our success in getting in a neat
way the recursions (20} has been due to the systematic procedure developed in this

paper and based on the notion of a generalized innovation process.
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4 -~ BECUASTVE INTERPOLATION AND SMOOTHING

tet K(t, T ) be & real-valusd nonnegative definite kernel defined for t and

on some interval T of the real line. Hereafter, the Hilbert space H of Sect. 2 will
be identified with the reproducing kernel Hilbert space {RkHS) H{K) with reproducing
kernel (RK) K(t, T). As for BKHS theory and applications, the reader is referred to

[9] and [10]. The only property of H{K) that will be repeatedly used in the sequel is

the so-called reproducing property, viz,
yt) = <y, KCEY Yy e HK).

The interpolation problem we intendo to pose can be formulated as follows, Given a

sequence of numbers

4

y & oyl = <y, KCE)> | del . €T

find

%ﬁ 2 the minimum-norm element in H{K) interpolating YqrYorenesYps

in a recursive form. This problem is clearly a particular version of the indirect-
sensing measurement problem formulated in Sect. 2.

Taking into account the reproducing property of H{K]}, from {11) -(13) we get at once
-l -2
Nenl? = K(bt) - 3fe,ce] el
Y]
- -4 n-l -
Mo = Nyl [5%—{_3, Rolel eé(tn)}

A A -1
glg\:)z 1il:(n—>4 * pole ke )

(21)

Example 5 {interpolation by splines] - Let y be the output of a one-input one-ocutput

finite~dimensional linear system b
%(t) = Alt)z2@) + b(t) alt)
x ()= 0
y (t) = @) 2(t)

Thus, the set of all outputs y on T 4 [to’tF] corresponding to all possible square-
integrable inputs u on T, coincides [12]with the RKHS H(K) with RK given by
tat
Kte) = [ Her HE,e) do (22)
1o
where A denates minimum, H(t,6) 2 c@) &) b(e) and ¢ (&, 6) is the state-

transition matrix of If . Moreover, the transformation Z(: u-—=>y from LZ(T) onto

1) The results that follow can be generalized [11]to the case of unknown initial
state x(ta)
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H{K) is a congruence {isometric isomorphism), i.e.
Ju=y = qif= [Lo)dt (23)
T

In particular, if
[Lyl) = act)
: ’
x ({:o) 2 [ﬂ(to); 1(4)(t°)l.../ g‘(m%)(.bo)] =0

with L a differential operator {D2d/dt)

m m=-1
L2 D™+ o, D"+t a,D+a,

(23} yields an explicit formula for the H{K)-norm of y, viz.
Py 12 = [ [Lyc]’de (24)
T

2] A . . . . .
and ) 4n is L11,13] the L—spline interpolating x(tu), y1’y2""’yn' F 140

m A
]

called the polynomial spline of order m interpolating x(to),yq,y2,...,yn.

Strictly related to the above interpolation problem, we now consider the following
smoothing problem. Let K{t, T} be again a nonnegative definite kernel, H(K) the

associated RKHS and |j. || the corresponding norm. Given a ssguence of real numbers

z., i€1,
1
find ’%n 4 the element in H(K) minimizing
nm,
-2 2 2
2 G Ry iyl (25)

in a recursive form, This is essentially a problem of smoothing by generalized splines.

Tt has been shown[121that {25) is equivalent to the following problem of statistical

smoothing. Given the discrete-time observations

g, 0= Y, + 5‘; el (25)

& 7 2
where y, 4 y(ti) are samples from a stochastic process y(t) with zero mean and

covariance kernel

K(t,v) & E[q@) y@]

and Si r..'s uncorrelated with y{t) with zerc mean and covariance

2) The L~spline interpolating Y41¥oseeesY s is the function passing through YqrYor
«eway, and minimizing {25).
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E [(5"‘53} = 6‘22 S“I

find the 1,1.s. smoothed estimate %n(t} of y(t], t€T, based on 21250002y, ina
recursive form, To solve this problem without resorting to a dynamic representation
of the process vy, we rephrase it in a suitable form., First, notice that by the

reproducing property of H(K) the unknown y €H(K) must be such that
g = <4,KCED>, ¢ el
From {21a) on the other hand we get

L4
K(',té) = Z: A(Li Cic')
§=1

where o
o (el etey) et
“Oj = C i
1 ;
Therefore, .
ra
11{' = .hzq d‘ilj < ’J_} es>
Hence, setting ]/
G, = & & [<ye> e,
’
C&ﬁ [“oaldia’ ) %0 @ 1“3
we have
Oorn = Y5 . (27)
L €
R T

A
from which the Kalman-Bucy Formulas (18) and {19) give the 1.1.s. estimate 8.[n of

B based on CINE SRR viz,

A A
6 =8  +F [z-¢7,,]

Im jm~1 "

(enPocl + 2)1 B el (28)

with P,] sgual to a symmetrlc nonnegative definite matrix, e. g.P = G" I with a

sufficiently large G’ . Finally , we obtain the desired recursive f‘cr'mula for y‘
0 et “i + GF [z,-C, 1»”] (29)
Jm ln Jm-1

where

[ner2e,, e e), 1.
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5 — CONCLUSTONS

Indirect sensing experiments are defined and shown to encopass a large
class of applications such as estimation, filtering, system identification, and
interpolation and smoothing by splines. When a recursive solution to the indirect-
sensing experiment problem is desired, the notion of a discrete~time generalized
innovations process, or innovations experiment, appear to be a natural and effective
one to use. The problem of estimating the state of a finite-dimensional linear system
from discrete~time noisy measurements appears to be but one of the possible applica~
tions of the theory develgped. The problem of determining the impulse response of a
Q-input P-output system is approached by the use of the notion of an innovations
experiment. When PRBS's are used as probing inputs, attractive formulas of recursive
type are obtained by the proposed method easily and in a direct way. Finally, it is
shown that problems of interpolation and smoothing by splines can be approached by

the theory developed.
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