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1. Intreduction.

A great desl of attention has been devoted in recent years to the theory
of non-linear filtering, in particular, to the problem of deriving a stochastic
differential equation for the filter. (see the bibliography in [2]). Perhaps
the most general form of such an equation when the noise in the observation
process model is the Wiener process 1s the one obtained in the paper of
Fujisaki, Kallianpur and Kunita [2].

The work in [2] was motivated by applications in which the signal and
observation processes are governed by an Ito stochastic differential equation
or by a more general stochastic equation studied by Tto and Wisio (see [2]).
However, the aim of the present paper is to show that the approach to filtering
theory adopted in [2] is not limited to this kind of application and to give a
generalization of the main result {Theorem 4.1) of the Fujiseki-Kallianpur—
Kunita paper.

For reasons of brevity we shall consider real-valuelobservation processes
but there is no difficulty whatever in meking the appropriate changes to cover
the vector-valued case.

2. Observation process model and the innovation process. The system or signal

process xﬁ(w} taking values in a complete metric space S and the observa-
tion process zt(w) (t €[0,T]) are assumed given on some complete probabil
ity space (Q, A, P) and further related as follows.

t
(2.1) z, (0) = jo h (W) du + w,(0)

where
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(2.2) wi(w) is a real-valued standard Wiener process

(2.3) ht(w) is a (t,w) measurable real-valued process such that
T 5 ‘
J E(h_t)dt is finite.
o
Let us introduce the following family of o-fields.

(2.4) & = U{XS, v 8 < t} , EE‘= G{WV —w, t<udvg T}

and

= c{zs, s <t} .

1=l

It will be assumed that the o-fields Et and G, are augmented by adding

to E and G, @all P-mull sets. In the model (2.1) the information about

the signal process is carried by (ht) by means of the measurability assump-

tion
(2.5) For each t, hy is G, measurable, i.e. (ht) is (gt) -
adapted

In order to take into account applications involving stochastic control we make

the further assumption that for every t the o-fields

(2.6 G, end NI are stochasticall independent.
=t =t 7

Clearly (2.6) includes the case when the signal (Xt) and noise (Wt) are
completely independent.

The derivation of the desired stochastic equation rests on two important results
proved in Fujiseki-Kallianpur-Kunita [2]. We state them below without proof.
From the assumptions made above on (ht) it can be shown that one can work with

a modification of the conditional expectation E(ht | E%) which is jointly
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measurable and (gt) - adapted. This particular modification will be hence-
forth denoted by hy .
Let us now define the process (vt) by
.
(2.7) vy =2y - [ B ds .
)
Proposition 1. (vt, E» P) 1is a Wiener martingale. Furthermore ¥, and

Givv-vu; t<u<v< T are independent,

(Vt) is called the innovation process.

Proposition 2. (A mertingale representation theorem). Under conditions (2.1},
(2.2), (2.3), {2.5) and {2.6) every separable square integrable martingale
(Yt’ gt’ P) is sample continuous and has the Ito stochastic integral repre-

sentation
+
(2.8) T, - MY) = J’o # dv
where
T2
(2.9) jo E(®)) ds < &

and (§s) a jointly measurable and adapted to (ES) .

3, A stochastic differential equation for the general non—linear filtering

problem, First we replace the conditions defining the class D(E) of [2] by
a wider set of assumptions which make the theory applicable to more general
types of signal processes (Xt}. Let f be a real measurable funcition on S

such that
(3.1) E{f(xt)}2<°° for &11 t in [O,T] .

The function f£ is said to belong to the class D if there exists a jointly
measurable, real function Bt[f](u) adapted to (E%) and having the

following properties.

(3.2) Almost all trajectories of the process (Bt[f]) are right - contin-
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uous and of bounded variation over the interval [0,T] with Bo[f] =0,
2
(3.3) E(Var B[f])" < =

where

Var B[£](w) is the total variation of the trajectory Bt[f](w) (0gtgD .

(3.4) The process Mt(f) = f(x,b) - E[f(xo) | go] - Bt[f] isa (G

g,» P)

martingale,

Note that from conditions (3.1) and (3.3) it follows that (Mt(f)) is a square
integrable martingsle.

Theorem 1. Let the conditions of Section 2 and (3.1)-(3.4) hoid. Then for
every f in D there exists a jointly measurable procese (Et[f]) adapted
to the family (.F—_'t) such that almost all its trajectories are right-continuous
and of bounded variation over the intervel [0,7] with Eo[f] =0, Turther-

more,
(3.5) E(Var B[£])? < = ,

and the process

il

(3.6) F%(f)

(g‘b’ P) martingale.

E[f(x'b) | g‘t] - E[f(xo) | F=O] - Et[f] is a square~integrable

Proof. Since f dis fixed we shall suppress it for the time being and write
B, for B’t[f] , ete. The existence of (Et) follows from the ideas of

C. Dellacherie [1] and P.A. Meyer [3] concerning the "dual projection® or
"compensator" assoclated with an increasing integrable process. Write

B, =T, -V, where (Ut) R (Vt) are increasing processes with right-continuous
trajectories and such that Uo = Vo =0 . From (3.3) we also have E(HIZ) <
and E(VTZ) < ® . The process § = E(UT - U, | E‘H) is a positive supermartin-

gale of class (D) . Hence it has a Doob decomposition Yt - ﬁ‘b where (Yt) is
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a martingale and ﬁt is a (uniquely determined) predictable, integrable

increaging process adapted to (F,,) with ﬁo =.0 , Hence for &8 < %t , we have

L
E(U, - U | Fey) = E(U,C - T lgﬁ) which gives

(3.7) B, - U | E) = BT, - T |E) .
The predictability of (ﬁ£) also implies that ﬁt is actually Evt -mea.surable,
Define the process ﬁt) in a similar fashion and write §t = ﬁt - Vt . Tt is

clear that go =0, almost all trajectories of (ﬁt) are right-continuous and
of bounded variation over [0, T] eand further that E(Var B) = E(ﬁ;’t‘) + E(\_]T)

< = , THowever, the deduction of the square integrability of Var B from (3.3)
ig & bit more complicated and will not be given here, It, of course, implies
the square integrability of ﬁt(f) . The fact that (ﬁt(f), E P) is a

martingale follows easily. For s < t,

E{M, (£) - M (£) | £}

Be(xy) - £(x)) | £} - By - B, | EJ)

it

By, () = M (£) | E.} + E(B, - B, | r) - E(ﬁ,G - ES | E

=0 from {3.4) and (3.7) .

Since (Mt(f )s gt’ P) is a square integrable martingale there exists a
unique ssmple contimuous process {(M(f), w) adapied to (gt) such that almost
ell of i‘bs trajectories are sbsolutely continuous with respect to Lebesgue
measure in [0, T] . Furthermore there exists a modification of the Radon-
Nikodym derivative which is (ty45)-measurable and adapted to (_(_},t) and which
we shall denote by b‘tf(w) . Then it follows that [2] <M(f),w), =
J : 581‘ ds 2.8,

where
T 2
J' E(Dsf) ds < = ,
o

We now state the principel result which yields the stochastic equation of

non-linear filtering. Conditions (3.3) and (3.5) are crucially used in the
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proof which will be presented in detail elsewhere. It will be understood that
only separable versions of the mertingsles Mt(f) and ﬁi(f) are considered.
We shall also use the shorter notation Et(°) for E(* l Et) .

Theorem 2. Assume conditions (2.1)-(2.3), (2.5), (2.6) and (3.1)-(3.4). Sup-

pose [ Dbelongs to the class D and satisfies
T 2
(3.8) fo E[f(xt) h,c] dt < =
Then Eﬁ[f(xt)] satisfies the following stochastic differential eguation,

(3.9) Et[f(:ét)] = Pl£(x )] + B,[£]

+ jg [Es(f(xs)hs) - Es(f(xs))ES(hS) + ES('b’Sf)]dvs .

Theorem /.1 of Fujisaki~Kallianpur-Kunita [2] is a particular case of the above
result. According to the assumptions in Section 4 of [2] if f €D (which is
denoted by D(E) in that paper) there exists a (i,w)-measurable real function
Eéf(w) adapted to (gt) tsnch that jijfﬁéf)zdt is finite and

f(xt) - E[f(xb) | go] - IO Igf ds is a (necessarily square integrable)

(gt’ P)-martingale. Hence conditions (3.2),(3.3) ard (3.4) are satisfied with
t ~
(3.10) B[f] = jo Afds .

Tt is then easily verified that Bt[f] = J’t ES['KSf]ds and that the stochastie
equation {3.9) reduces to equation (4.12) gf [2]. As explained in the Intro-
duction the assumption (3.10) above made in [2] was suggested by applications of
which the following is a typical example. The signal and observation processes

form a Markov process (Xt’yf) gatisfying the stochastic differential equation

(3.11) dx, = al(t,xt,yt)dt + bl(t,xﬁ,yt)dW£

dy, = az(t,x%,yf)dt + bz(t,yf)dwt

where (W{) ig a (vector) Wiener process, ¥, =0 a.s., x is an arbitrary
random variable independent of c{ws, 0<s< T and the coefficients satisfy

suitable conditions ensuring the existence and uniqueness of the solution of
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(3.11), let (At) , t €[0,T) be the extended generator of the Markov process
N = (xt,yt) as defined in [2] and let D(A) be the set of zll real functions
f depending only on the first variable x, belonging to the domain of (At)
and satisfying the conditions E[f('ﬂ_t)]2 < ® for each t and frE[Atf(ﬂt)]zdt
< ® , It can easily be shown that in Theorem 2 we may take D(A)O for D and
Bt[f] = f:ﬁsf(’ﬂs)ds . TFor details ses [2].

It is hoped that the equation obitained in Theorem 2 will prove useful in

the study of new types of stochastic filtering and control problenms.
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