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i. Introduction. 

A great deal of attention has been devoted in recent years to the theory 

of non-linear filtering, in particular, to the problem of deriving a stochastic 

differential equation for the filter. (see the bibliography in [2]). Perhaps 

the most general form of such an equation when the noise in the observation 

process model is the Wiener process is the one obtained in the paper of 

Fujisaki, Kallianpur and Kunita [2]. 

The work in [ 2] was motivated by applications in which the signal and 

observation processes are governed by an Ito stochastic differential equation 

or by a more general stochastic equation studied by Ito and Nisio (see [2]). 

However, the aim of the present paper is to show that the approach to filtering 

theory adopted in [2] is not limited to this kind of application and to give a 

generalization of the main result (Theorem 4.1) of the Fujisaki-Kallianpur- 

Kunita paper. 

For reasons of brevity we shall consider real-valuedobservation processes 

but there is no difficulty whatever in making the appropriate changes to cover 

the vector-valued case. 

2. Observation process model and the innovation process. The system or signal 

process xt(~ ) taking values in a complete metric space S and the observa- 

tion process zt(~ ) (t E [O,T]) are assumed given on some complete probabil. 

ity space (~, _A, P) and further related as follows. 

t 
(2.1) z t (~)=~ ~(~)du+wt<~), 

O 

where 
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(2.2) wt(~ ) 

(2.3) ht(~) 

T 
E(h~)dt 

o 

is a real-valued standard Wiener process 

is a (t,w) measurable real-valued process such that 

is finite. 

Let us introduce the following family of o-fields. 

_%=o{x s,w s, s<t}_ 

It will be assumed that the G-fields ~t a~d ~t are augmented by adding 

to F and G all P-null sets. In the model (2.1) the information about =~ ::o 

the signal process is carried by (ht) by means of the measurability assump- 

tion 

(2.5) For each t , h t is _~ measurable, i.e. (ht) is (_~) - 

adapted 

In order to take into account applications involving stochastic control we make 

the further ass~unption that for every t the G-fields 

(2.6) _~ and N__tT are stochastically independent. 

Clearly (2.6) includes the case when the signal (xt) and noise (wt) are 

completely independent. 

The derivation of the desired stochastic equation rests on two important results 

proved in Fujisaki-Kallianpur-Kunita [ 2]. We state them below without proof. 

From the assumptions made above on (ht) it can be shown that one can work with 

a modification of the conditional expectation E(h t I _~) which is jointly 

and 

(2./+) 

_E =c{z s, sit} . 
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measurable and (_~) - adapted. This particular modification will be hence- 

forth denoted by ht " 

Let us now define the process (~t) by 

t 

o 

P~°p°siti°n!" (~t' -~' P) is a Wiener martingale. Furthermore F__% and 

~v-~u; t < u < v ~ T] are independent. 

(~t) is called the innovation process. 

Froposition 2. (A martingale representation theorem). Under conditions (2.1), 

(2.2), (2.3), (2.5) and (2.6) every separable square integrable martingale 

(Yt' -~' P) is sample continuous and has the Ito stochastic integral repre- 

sentation 

t 
(2.8) Yt - E(Yo) = J~ @s d~s 

o 

where 

T 
(2.9) ds < 

o 

and (~s) a jointly measurable and adapted to (~s) . 

3. A s tochas t i c  d i f f e r e n t i a l ,  equation fo r  the general  non- l inear  f i l t e r i n g  

problem. First we replace the conditions defining the class D(~) of [2] by 

a wider set of assumptions which make the theory  appl icab le  to mere general  

types of signal processes (xt). Let f be a real measurable function on S 

such that 

(3.i) E[f(xt)]2 < ~ for all t in [O,T] . 

The function f is said to belong to the class 

measurable, real function Bt[f](~) adapted to 

following properties. 

D if there exists a jointly 

(F=t) and having the 

(3.2) Almost all trajectories of the process (Bt[f]) are right - contin- 
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uous and of bolmded variation over the interval [O,T] with Bo[f] = 0 . 

(3.3) E(v~ B[f]) 2 < 

where 

Vat BKf](~) is the total variation of the trajectory BtKf S (~) 

(3.4) The process Mt(f ) --- f(xt) - E[f(Xo) I F=o] - Bt[f] is a 

martingale. 

(0it< T) 

(_~, P) 

Note that from conditions (3.1) and (3.3) it follows that (Mr(f)) is a square 

integrable martingale. 

Theorem 1. Let the conditions of Section 2 and (3.1)-(3.4) hold. Then for 

every f in D there exists a jointly measurable process (Et[f]) adapted 

to the family (F__ t) such that almost all its trajectories are right-continuous 

and of bounded variation over the interval [O,T] with Bo[f] = 0 . Further- 

more, 

(3.5) E(Va~ ~[f])2 < =, 

and the process 

(3.6) 

(~, P) 

Proof. 

B t for 

Mt (f) ~ E[f(x t) I Ftl - E[f(x o) I F:ol - Bt KfS 

martingale. 

is a square-integrable 

Since f is fixed we shall suppress it for the time being and write 

Bt[f] etc. The existence of (Bt) follows from the ideas of 

C. Dellacherie [I] and P.A. Meyer [3] concerning the "dual projection" or 

"compensator" associated with an increasing integrable process. Write 

B t -- U t - V t where (Ut) , (Vt) are increasing processes with right-continuous 

= V = 0 From (3.3) we also have E(~) < ~ trajectories and such that U ° o " 

and E(VT 2) < ~ . The process ~t = E(UT- Ut I _~+) is a positive supermartin- 

gale of class (D) . Hence it has a Doob decomposition Yt - Ut where (Yt) is 
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a martingale and ~t is a (uniquely determined) predictable, integrable 

increasing process adapted to (F__t+) with ~o = 0 ; Hence for s ( t , we have 

E(U t - U s I ~s+ ) = E(~ t - U s l~s+) which gives 

(3.7) E(u t - H I :~) = E(Ut- : l:s) • 
S -- S -- 

The predictability of (Ut) also implies that Ut is actually F t -msasurable~ 

Define the process (~t) in a similar fashion and write Bt = ~t - ~t " It is 

clear that Bo = 0 , almost all trajectories of (Bt) are right-continuous and 

of bounded variation over [0, T] and further that E(Var B) = E(U~) + E(V T) 

~ . However, the deduction of the square integrability of Var B from (3.3) 

is a bit more complicated and will not be given here. It, of course, implies 

the square integrability of Mr(f) . The fact that (Mr(f), ~t' P) is a 

martingale follows easily. For s ( t , 

E::t(~)- :s(f) I :s3 

=E{f(x t)-f(x s) I~]-E(: t-:s I~s ) 

=E{Mt(f)'Ms(f) IKs }+E(~ t-B s LF)-E(: t-:s i:s ) 

= 0 from (3.4) and (3.7) • 

Since (Mr(f)' ~t' P) is a square integrable martingale there exists a 

unique sample continuous process (M(f), w> adapted to (_~) such that almost 

all of its trajectories are absolutely continuous with respect to Lebesgue 

measure in [0, T] • Furthermore there exists a modification of the Radon- 

Nikodym derivative which is (t,~)-measurable and adapted to (~t) and which 

we shall denote by ~tf(w) . Then it follows that [2] <M(f),w>t = 
t 

~ ~sf ds a.s. 
O 

where 

W 

j, ~.(~f)2 as < - . 
O 

We now state the principal result which yields the stochastic equation of 

non-linear filtering. Conditions (3.3) and (3.5) are crucially used in the 
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proof which will be presented in detail elsewhere. It will be understood that 

separable versions of the martingales Mt(f ) and Mr(f) are considered. only 

We shal] also use the shorter notation Et(') for E(" I ~t ) • 

Theorem 2. As,s%une conditions (2.1)-(2.3), (2.5), (2.6) and (3.1)-(3.4). 

pose f belongs to the class D and satisfies 

T 
(3.8) ~ E[f(x t) ht]2 dt < ~ . 

o 

Then 

Sup- 

Et[f(xt )] satisfies the following stochastic differential equation. 

(3.9) #[f(~t )] = ~°[f(x)] + ~t[f] 

+ ~ [ES(f(xs)hs ) - ES(f(Xs))ES(hs) + ES(Zsfl]d~ s • 
O 

Theorem 4.1 ofFujisaki-Kallianpur-Kunita [2] is a particular case of the above 

result. According to the assumptions in  Section 4 of [2] i f  f E D (which i s  

denoted by D(~) in that paper) there exists a (t,~)-measttrable real function 
T 

~tf(~) adapted to (-~)- tsuch that SO E(~tf)2dt is finite and 

f(x t) - E[f(x o) I F=o] - ~ <f ds is a (necessarily square integrable) 
o 

(_~, P)-martingale. Hence conditions (3.2),(3.3) and (3.4) are satisfied with 

t 
(3.1o) BtEf]=2  fas" 

o 

t 
It is then easily verified that i t [ f ]  = ~ ES['A f]ds--__ and that the stochastic 

o 
equation (3.9) reduces to equation (4.12) of [2]. As explained in the Intro- 

duction the assumption (3.10) above made in  [2] was suggested by app l i ca t ions  of 

which the following is a typical example. The signal and observation processes 

form a Markov process (xt,Y t) satisfying the stochastic differential equation 

dx t = al(t,xt,Yt)dt + b!(t,xt,Yt)dw t 

dy t = a2(t,xt,Yt)dt + b2(t,Yt)dw t 

where (wt) is a (vector) Wiener process, Yo = 0 a.s., x ° is an arbitrary 

random variable independent of G[Ws, 0 < s < T] and the coefficients satisfy 

suitable conditions ensuring the existence and uniqueness of the solution of 
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(3.11). Let (At) , t 6 [0,T) be the extended generator of the Narkov process 

~t = (xt'Yt) as defined in [2] and let D(A) be the set of all real functions 

f depending orgy on the  f i r s t  v a r i a b l e  x ,  be long ing  to  the  domain o f  (At) 
T 

and satisfying the conditions E[f(~t)]2 < ~ for each t and ~ E[Atf(~t)]2dt 
O 

< ~ It can easily be shown that in Theorem 2 we may take D(A) for D and 
t 

Bt[f ] = ~ Asf(~s)dS . For details see [2]. 
0 

It is hoped that the equation obtained in Theorem 2 will prove useful in 

the s tudy  of  new types  o f  s t o c h a s t i c  f i l t e r i n g  and c o n t r o l  problems.  
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