ON FINAL STOPPING TIME PROBLEMS

(Summary) ⁽¹⁾

J.L. MENALDI and E. ROFMAN Instituto de Matemática "Beppo Levi" Universidad Nacional de Rosario ARGENTINA

§1. Let us consider the state equation of a dynamical system

(1)
$$\begin{cases} \dot{y}_{xt}(s) = f(s, y_{xt}(s)) & 0 \leq t \leq s \leq T < +\alpha \\ y_{xt}(t) = x & x \in \mathbb{R}^n \end{cases}$$

with the cost function

(2)
$$J_{xt}(\tau) = g(\tau, y_{xt}(\tau)) + \int_{t}^{t} 1(s, y_{xt}(s)) ds$$
 $0 \le t \le \tau \le T$, $x \in \mathbb{R}^{n}$

Our purpose is to find the function

(3)
$$\rho(t,x) = \min \left\{ J_{xt}(\tau) / t \leq \tau \leq T \right\}$$
, $\forall (t,x) \in [0,T] \times \mathbb{R}^n$

and the smallest time $\tau_{xt} \in [t,T]$ for which we get

(4)
$$\rho(t,x) = J_{xt}(\tau_{xt})$$
, $\forall (t,x) \in [0,T] \times \mathbb{R}^{n}$

(1) - (4) will be called Pb I.

In §2 we show (Theorem 1) properties of regularity of the function $\rho(t,x)$ and we get some necessary conditions (Theorem 2) that $\rho(t,x)$ must satisfy if (3) holds. As we intend to study Pb I with the tools of the theory of variational inequalities we introduce:

.) the new unknown

$$u(t,x) = [exp(-b(t))] [\rho(T-t,x) - g(T-t,x)]$$

 $^(^{1})$ This paper was prepared for the IFIP-TC7 Technical Conference on Optimization Techniques, Novosibirsk, USSR, July 1974. It will be published in spanish as a "Rap port de Recherche" at IRIA, Rocquencourt, FRANCE.

	with	b(t) e C°[0,T]	and	$\frac{db}{dt} \in L^2(0,T)$;		
.)	the func	tions					
	f*(t	f(x,x) = -f(T-t, x)					
	1*(t	(x,x) = [exp(-b(t))]	$\frac{\partial g}{\partial s}$ (T-t, x)	+ $\frac{\partial g}{\partial y}$ (T-t, x)	. f(T-t,x)+	1(T-t, x)]	;
.)	the weig	ht functions	- ^s i				
		t functions $w_i(x) = (1 + $	x ²) 2	, i = 1,2	3		
		$s_1 - \frac{n}{2} > \gamma + 1$, s ₂ + 1	$\leq s_1$, γ	given in Theore	m1;	
.)	the spac H = $\begin{cases} v \end{cases}$	tes $v / v.w_1 \in L^2(\mathbb{R}^n)$; $V = \begin{cases} v \end{cases}$	$H / \frac{\partial V}{\partial x_1} \cdot W_2$		1,2,,n}	;
.)	the oper A(t) :	rator $V \longrightarrow H$, (A(t)	$(v)_{(x)} = \frac{db}{dt}$	$(t).v(x) + \sum_{i=1}^{n}$	$f_i^*(t,x) \frac{\partial v}{\partial x_i}(x)$;	
.)	the funct $\varphi(t)$:	tional H $\rightarrow \mathbb{R}$, ($\varphi(t)$	$(v)_{H} = \int_{-\pi}^{\pi}$	$1^{*}(t,x) v(x) w$	$^{2}_{1}(x) dx$;	
.)	and the		1K				
	Fina	ally, we put the					

 $\begin{array}{l} \mbox{Pb II} \\ \mbox{Pb II} \\ \mbox{find } u(.) \ensuremath{\,\varepsilon\)} \ensuremath{\,\varepsilon\)} \ensuremath{\,H\)} \ensuremath{\,\Gamma\)} \ensuremath{\,\epsilon\)} \ensuremath{\,\Gamma\)} \ensuremat$

In Theorem 3 we show the equivalence between Pb I and Pb II, and the existence and uniqueness of the solution of these problems.

In §3 we study the analogous of PbI for a bounded set $\ensuremath{\,\Omega} \subset \ensuremath{\mathbb{R}}^n$.

In this case we have to do with boundary conditions. Following the same ideas of §2 we obtain the existence and uniqueness of the solution of this new problem.

In \$4 we present a numerical approach to solve the problems which have just been introduced in \$2 and \$3 (the proof of the convergence is included). It consist in a combination of the penalty method with an internal approximation technique.

ihm.