(Summary) ${ }^{(1)}$

$\frac{\text { J.L. MENALDI }}{\text { Instituto de Matemática "Beppo Leve" }}$
Universidad Nacional de Rosario
ARGENTINA

51. Let us consider the state equation of a dynamical system

$$
\left\{\begin{array}{lr}
\dot{y}_{x t}(s)=f\left(s, y_{x t}(s)\right) & 0 \leqq t \leqq s \leqq T<+\infty \tag{1}\\
y_{x t}(t)=x & x \in \mathbb{R}^{n}
\end{array}\right.
$$

with the cost function
(2) $J_{x t}(\tau)=g\left(\tau, y_{x t}(\tau)\right)+\int_{t}^{\tau} 1\left(s, y_{x t}(s)\right) d s \quad 0 \leq t \leq \tau \leq T, x \in \mathbb{R}^{n}$.

Our purpose is to find the function

$$
\begin{equation*}
\rho(t, x)=\min \left\{J_{x t}(\tau) / t \leq \tau \leq T\right\} \quad, \forall(t, x) \in[0, T] \times \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

and the smallest time $\tau_{x t} \in[t, T]$ for which we get

$$
\begin{equation*}
\rho(t, x)=J_{x t}\left(\tau_{x t}\right) \quad, \quad \forall(t, x) \in[0, T] \times \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

(1) - (4) will be called Pb I .

In $\S 2$ we show (Theorem 1) properties of regularity of the function $\rho(t, x)$ and we get some necessary conditions (Theorem 2) that $\rho(t, x)$ must satisfy if (3) holds. As we intend to study Pb I with the tools of the theory of variational inequalities we introduce:
.) the new unknown

$$
u(t, x)=[\exp (-b(t))][\rho(T-t, x)-g(T-t, x)]
$$

[^0]$$
\text { with } \quad b(t) \in C^{\circ}[0, T] \quad \text { and } \quad \frac{d b}{d t} \in L^{2}(0, T) \quad \text {; }
$$
.) the functions
\[

$$
\begin{aligned}
& f^{*}(t, x)=-f(T-t, x) \\
& I^{*}(t, x)=\left[\exp (-b(t)]\left[\frac{\partial g}{\partial s}(T-t, x)+\frac{\partial g}{\partial y}(T-t, x) \quad . \quad f(T-t, x)+1(T-t, x)\right]\right.
\end{aligned}
$$
\]

.) the weight functions
$-\frac{S_{i}}{2}$
$w_{i}(x)=\left(1+|x|^{2}\right)^{-\frac{1}{2}} \quad, \quad i=1,2$, $s_{1}-\frac{n}{2}>\gamma+1, \quad s_{2}+1 \leqq s_{1}, \gamma$ given in Theorem 1 ;
.) the spaces

$$
H=\left\{v / v \cdot w_{2} \in L^{2}\left(\mathbb{R}^{n}\right)\right\} ; V=\left\{v \in H / \frac{\partial v}{\partial x_{i}} \cdot w_{2} \in L^{2}\left(\mathbb{R}^{n}\right) ; i=1,2, \ldots, n\right\} ;
$$

.) the operator

$$
A(t): V \rightarrow H \quad, \quad(A(t) v)(x)=\frac{d b}{d t}(t) \cdot v(x)+\sum_{i=1}^{n} f_{i}^{*}(t, x) \frac{\partial v}{\partial x_{i}}(x)
$$

.) the functional

$$
\varphi(t): H \rightarrow \mathbb{R}, \quad(\varphi(t), v)_{H}=\int_{\mathbb{R}^{n}} I^{*}(t, x) v(x) w_{1}^{2}(x) d x
$$

.) and the cone

$$
K_{0}=\left\{v \in H / v(x) \leqq 0 \quad \forall x \in \mathbb{R}^{n} \quad, \quad \text { (a.e) }\right\}
$$

Finally, we put the
$\mathrm{Pb} I I\left\{\begin{array}{l}\text { to find } u(.) \in H^{1}(0, T ; H) \cap L^{2}(0, T ; V) ; u(0)=0 ; u(t) \in K_{0} \forall t \in[0, T] \\ \text { such that a.e. in }] 0, T[\text { the following inequality holds: } \\ \left(\frac{d u}{d t}(t), v-u(t)\right)_{H}+(A(t) u(t), v-u(t))_{H} \geqslant(\varphi(t), v-u(t))_{H}, \forall v \in K_{0} .\end{array}\right.$
In Theorem 3 we show the equivalence between PbI and PbII , and the existence and uniqueness of the solution of these problems.

In $\S 3$ we study the analogous of PbI for a bounded set $\Omega \in \mathbb{R}^{n}$.
In this case we have to do with boundary conditions. Following the same ideas of $\$ 2$ we obtain the existence and uniqueness of the solution of this new problem.

In 84 we present a numerical approach to solve the problems which have just been introduced in $\S 2$ and $\S 3$ (the proof of the convergence is included). It consist in a combination of the penalty method with an internal approximation technique.
ihm.

[^0]: ${ }^{1}$) This paper was prepared for the IFIP -TC7 Technical Conference on Optimization Techniques, Novosibirsk, USSR, July 1974. It will be published in spanish as a "Rap port de Recherche" at |RIA, Rocquencourt, FRANCE.

