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In this contribution we are going to discuss the extension of the method of

{11, [21, [3]

feasible directions to programming problems involving an infinite num-
ber of constraints. Problems of this type arise frequently in applications. We shall
be working with arbitrary convex approximations instead of with linearizations, simp-
ly to emphasize the fact that the feasible direction method belongs to that class of
methods where not differentiability but rather convex-likeness of the functions in-
volved is the essential property.

Our programming problem has the following form:
(®) min {F(x)|x€C,£(t,x) £ O VLeT} .

With S = {x[xEC,f(t,x) <0 VtET} the admissible domain of (P) we introduce for all
x€S approximations @(x,%),¢(t,x,E) for the functions F(&),f(t,£). We assume that
C is a compact convex set of some normed (metrizable) linear space, that T is a com-
pact metric space, and that the functions F(E),f(t,£),d(x,8),¢(t,x,&) are jointly
continuous in all their arguments, with £€C, x€S, t€T.

We shall be particularly interested in certain elements of S, henceforth denoted
by ﬁ, which will be limit points of our iterative procedure. Concerning these points
%€S we require in addition that the functions & and ¢ are "good" approximations

in the sense that
fo(x,8) - F(E)|< o(g-8),]0(t,%,8) - £(£,8)|S o(E-%)

uniformly for all t€T. Moreover @(ﬁ,g) and ¢(t,§,€) have to be convexr with re-
gard to &.

For =%€S 1let us define the set of binding constraints

T = {t€T|f(t,x) = 0O} ,

and consider the following system in &:
(1 EEC,5(%,E) - F(X) < 0,¢(t,%x,€) < O VL€T .
Under the assumptions made it is not difficult to prove the following

Lemma 1: Let £ be a solution of (1). Then there exists x€[§,i] satisfying

X€EC,F(x) - F(X) < 0,£(t,x) < O Vt€T .

From this lemma one obtains immediately the following necessary optimality criterion
which may be considered as a generalization of Kolmogorov's criterion for best
Chebyshev—approximations.

Theorem 1: If =X€S 1is an optimal solution for the programming problem (P),

then system (1) is inconsistent.
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We note that the inconsistency of (1) is also a sufficient condition for optimality,
if ¥(&) and f£(t,g) are convex with regard to &, and if Slater's assumption is
satisfied: there exists %EC satisfying f(t,;) <0 Vt€%.

Any limit point X of the approximation procedure to be described is a station-—
ary point in the sense that it meets the necessary optimality condition of Theorem I.

Let us now describe the iterative scheme. We choose a positive number o > 0,
and sequences Gk 2 O,pk 2 0 such that ek - O,kak <+ o, x°€S is arbitrary.
Given XRGS we define x * according to the following rules: Let

™ = {ter)£¢t,<5) 2 - o} ,

H(E) = max{e(,8) - F(x5),4(t,x5,8): teT’}

Let EkEC be such that

) H°(£") < min {B°() |cec) + 0,
and define xk+1€[xk,gk] N S such that
(3) F(xk+]) < min {F(x)|x€[xk,£k] n S} + N

Obviously xk+] is well defined, and is again in S. Since S is compact, the se-
quence {xk} has a cluster point X€S.,

Theorem 2: If X is a cluster point of the sequence {xk} , then ; satisfies
the necessary optimality criterion of Theorem 1.

Proof: 1In addition to Hk(E) let us define the continuous functions

max {8(x,£) - F(x),¢(t,x,E): t€T} ,

H (x,)

ﬁ(X,E) max {@(x,g) - F(x),¢(t,x,E): tGT} .

Since C is compact we can choose a subsequence xk such that
xE - §, éE - §€C .
From (2) follows
(S < BD) + o weec .

The continuity of f£(t,x) over _i x C, the compactness of T, and the convergence
of QE o X imply that T c Tk for all sufficiently large k. Also fE < T.

Therefore

'ﬁ(xk,gk) < Hm(xk,g) + 0 VEEC

for all sufficiently large k. Passing to the limit we obtain
05 H(%,8) < H (%,£) VEEC .
From (3) follows

PG <7 v o

thus a fortiori
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F(xk+]) < F(xk+1) + Z_ 0.
u=k+1 H
Again by (3)
F(xk+l) < F(x) + Z_ p for all xe{xk,gk} satisfying max f(t,x) <0 .
p=k+1 t€T

Passing to the limit we obtain by continuity

F(%) < F(x) for all xﬁff}?,gI satisfying max f(t,x) <0 .
e teT

This means that the system
(5) xe{ﬁ,é], F(x)-F(x) < 0, £(t,x) < O Vt€T

is inconsistent. Assume now that (1) has a solution. A slight variant of the proof
of Lemma 1 shows that (1) has still a solution if we replace T by T. This means

there exists EEC satisfying Hm(ﬁ,g) < 0. By (4) then ﬁ(%,é) < 0. Lemma 1 gives
then the existence of x satisfying (5), a contradiction. Thus (1) is inconsistent.

g.e.d.
We may study the rate of convergence of F(xk) if we require in addition:
F(&),£(t,E),o(x,E),d(t,x,E) are convex with respect to £ ;

®(x,x) = F(x),9(t,%x,x) = £(t,x) Vx€S ; the set

S, = {%€C|£(t,x) < v VeeT, F(x) < F(x)}

is bounded; 3IxEC: ft(§5 <0 VtET; 8, =0 and p, = 0 ¥k .

k
We use the abbreviations

Tk = Hk(gk)a 6k = F(Xk)—ﬁ >

where ﬁ is the optimal value of (P). Then

rk <9, Tk - 03 6k > 0, Gk -0 .

We obtain the following results.

Lemma 2: If there exist constants u 2 0, 0 <m < 1, such that (i)@(x,€)°p15~x{2
is convex with respect to E, (ii) ¢(t,x,E)-u|E-x|% £ £(t,8), (iii)e(x,&)-(l-mpn]e-x|><
< F(£), then Tk < p(—ék) for some o > O.

Lemma 3: (a) If F(E) < o(x,&) + M|e-x|%, £(t,6) € ¢(t,x,8) + Mje-x|%, then

6k+1 - Gk £ - Y(Tk)2 for some vy > 0. (b) If, in addition, there exists pu > 0O
such that &(x,£) - u]g—xlz and ¢(t,x,8) - u]&—x]z are convex with regard to §E,
then 6k+! - 5k < Yrk for some vy > O.

From these follows
%
Theorem 3: 1If the assumptions of Lemma 2 and Lemma 3(a) hold, then 5k ! <
< (1 - ka) Gk for some p > 0. If the assumptions of Lemma 2 and Lemma 3(b) hold,

then Gk+l = (1 - p) Gk for some p > O.
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This extends some results of Pironneau - Polak . Proofs are too lengthy to

be given here; they will be reproduced elsewhere.
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