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INTRODUCTION

Penalization and gradient projection are two of the simplest and most useful con-
cepts from nonlinear programming. Both provide a means for extending unconstrained
gradient descent techniques to accommodate equality and inequality constraints. It is
known that penalty function methods may be used to solve a wide class of problems,
even those involving nonconvex constraints. In practice, however, the Hessian matrix
of the objective functional becomes ill-conditioned, causing convergence difficulties
[1]. On the other hand, gradient projection is a concept that involves linear approx-
imation of the constraints and, therefore, is not inherently suited for nonlinear con-
straints. In the gradient projection algorithm of Rosen [2], which was originally de-~
signed for linear constraints forming a bounded convex region, nonlinear constraints
were to be accommodated by a restoration step. This procedure is known to be unsatis-
factory if a minimum on the tangent plane approximation lies far from the constraint.
The difficulty can be avoided by a simple modification of the gradient projection con-
cept that penalizes violations of the constraints along the search direction [3,4].

Recently, Hestenes and Powell suggested that equality constrained minimization
problems be reformulated as the unconstrained minimization of an augmented Lagrangian
functional involving the sum of terms that are Tinear and quadratic in the constraint
while using independent updates for the Lagrange multiplier [5,6]. Some extensions
of the concept to inequality constrained optimization have also been obtained, includ-
ing conditions under which the solution of the dual problem agrees with that of the
primal [7,8]. An important computational advantage of the augmented Lagrangian con-
cept is that a constrained minimum, if it exists, can be obtained by a finite value
of the penalty constant. Computational experience using the technique, although mostly
for equality constrained problems, has been encouraging [9,10,11,12,13,14].

This paper presents an extension of the modified gradient projection algorithm
[15,16], based on an augmented Lagrangian with quadratic penalization. Numerical re-
sults from several problems involving static and dynamic, nonlinear equality and in-
equality constraints are given.

PROBLEM STATEMENT AND NOTATION

We shall treat the nonlinear programming problem of determining an element x in
R" that minimizes a nonlinear functional f(x) subject to nonlinear equality constraints
g{x)=0 in RP. 1Inequality constraints will be discussed below under Numerical Results.
It will be assumed that f and g are second continuously differentiable and that a
relative minimum x exists. The gradient fx is an n-tuple, the Jacobian a pxn matrix
whose rows are gradients of the elements of g, and g denotes the transposed matrix.
The standard inner product and derived norm on RN are
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PROJECTION-RESTORATION WITH AN AUGMENTED LAGRANGIAN FUNCTIONAL
Let p<n and the p gradients of the elements of g be linearly independent. De-
fine the augmented Lagrangian functional
F{x,2,K) = f(x) + < g, 1 >y + 0.5< g, Kg »p (1)

where A is the Lagrange multiplier (a p-tuple)}, and K is a given pxp diagonal matrix
of positive constants. A necessary condition that F(x,r,K) have a minimum for fixed
K is that the following equations are satisfied: the constraint equation,

g(x) = 0 (2)
and the minimization condition
fi(x) + g (X + gx(X)Kg(X) = 0 (3)

An effective approach to the numerical solution of the constrained minimization pro-
blem is a two step procedure based on satisfying (2) followed by adjusting x by grad-
ient descent to approximate a solution of {3). The procedure is repeated until a
stopping condition is met.

Let the first correction 6x, the restoration increment, to an initial guess x be
chosen to satisfy (2} to first order,

g{x) + gy{x)sx = 0 . (4)
From (4}, sx may be formally expressed as
sx = -gfg (5)

where, for brevity, the dependence on x has been dropped, and g; is a pseudo inverse
of gx. Since p<n, there exist an infinite number of solutions to (4) of the form
8y *+ 6z where 8y is any solution of (4) and 6z is an element in the nullspace of gy.
Uniqueness can be assured in (5) by use of the minimum norm pseudo inverse
+ _ % =1 -

9x = 9x(9x9x) (6)
which selects the smallest value of &x, in the norm on Rn, 1ying on the intersection
of the tangent planes to the constraints. Linear independence of the gradients of the
elements of g ensures that gxg§ is invertible. Using (5), an improved value of x is
obtained from

X = x - agk(aegx) 9 (7)

a = argmin{|| g(x - ag;g)Hp | o in R* 3 .

The second correction sx, the projection increment, is chosen so that F(X,xr,K)
is decreased in the direction of its negative gradient

8 = -F (X:2.K). (8)

The multiplier » needed to compute (8) may be formally expressed, from {3), in terms
of a pseudo inverse as

x = (gt - Kg (9)

For x # X, there is no value of x in RP for which {3) is satisfied. However, an
approximation is obtained by use of the pseudo inverse

(G = (0,007, (10)

which selects the least squares value of x» in (9). Using (8), {9) and (10), X is up~
dated according to the descent iteration

>

=X - épfx )
B = argnin{F(x - 8Pf,,2.K) | 8 in R* }
where
P =1 - gilaxah) % (12)

is an nxn matrix representing the operator that projects the gradient into the mani-
fold formed by the intersection of the constraint tangent planes.
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VARIABLE METRIC IMPLEMENTATION

For any symmetric, positive definite matrix G define the weighted inner product
and derived norm,
| 1/2
n? n

for u and v in R1. Let H, the variable metric matrix, be an nxn symmetric, positive
definite approximation to the inverse Hessian Fy,, which is assumed to exist. The
variable metric matrix generates the minimum norm pseudo inverse

<u, Vg = <u, Gvo> ullg = < u, Gu >

-1
g% = HaX(gxHgx)™ (13)
which minimizes {bxﬁH-l, and the least squares pseudo inverse
(Gt = (oxHgl) g H (14)

which minimizes |ify + gx1 + gxKg |-
Using (13) and (14) the restoration and projection increments are,

sx = -Hak(ayHay) g (15)
sx = -H(f, + gxr)
= -HP f, (16)

where

i

P o= 1 - gh(oyho}) g (17)

is an nxn matrix that represents a non-orthogonal projection operator. The variable
metric matrix H is updated after each successful projection update according to es-
tablished formulas [17]. The use of variable metric descent with gradient projection
is due to Goldfarb [18] and Kelley and Speyer [4].

For fixed K suppose that a minimum of F(X,3,K) has been obtained. Let the re-
sulting variable metric matrix be H. This matrix is now refined according to pre-
scribed changes in the penalty constants AK = K - K and the corresponding, although
unknown, changes ax = X - A in the Lagrange multiplier. The update is based on choos-
ing A to minimize the modified residual

2 2
Iy + 9%) + GiKalg + IRy (18)
where the second term in (18) is an energy constraint which prevents large changes in

the multiplier. 1If aK is nonsingular, the minimum value of X can be expressed in
closed form as

T = -(gufgy + 8K1) g A(f, + gikg) - (19)
This corresponds to an initial projection increment

sx(0) = yl0)(s, + g¥kg)

H(O) = HQ (20)

Q=1 - gilochat + oK) Tg,h (21)
If one or more constraints are satisfied, (21) cannot be computed because aK is sing-

ular. In this case, (18) can be minimized sequentially for each nonzero component of
aK = diag (Akl,...,ak }. The corresponding expressions in place of (20) and {21) are

OV 2 B3 ) 3= | 1< <ps akj # 03 (22)
ied
] 1 i
R I V7T E)g$xgixH : (23)

The above results in (20) to {(23) were first obtained by Kelley, et. al. [19] by use
of a Schur matrix identity. The derivation of this section, however, provides insight
into the update's Jeast sgquares structure and use with an augmented Lagrangian.
Variable metric implementation of the projection-restoration algorithm requires
storage of an nxn symmetric matrix. For problems of large dimension, a less costlier



297

alternative is offered by another class of conjugate direction methods known as con-
jugate gradient descent. Implementation is identical to that given in the last sec-
tion except that the gradient F, is updated before computing the projection incre-
ment [3].

NUMERICAL RESULTS

A computer program based on the above method has been written and applied to
various problems. The results reported in this section were obtained on a Telefunken
TR 440 computer using double precision arithmetic. Convergence of the algorithm was
specified by the stopping conditions

FxOon k)l < en s a0y < e, -

Resetting of the variable metric matrix H was enforced after every 2{(n-p+1) projec-
tion updates. The "complementary DFP" rank two variable metric update was employed
[20] together with a gradient linear search by cubic fit for both the restoration and
projection increments. The search required, on the average, four to five function
evaluations, i.e. evaluation of F(x,x,K) for specified x, r and K. A more accurate
linear search had been used in earlier versions of the program without providing
significant improvement.

Inequality constraints

gi(x) <0, 1=pH,...,pHq

have been accommodated by replacing those elements of g in the penalty terms of {1)
by max{0,g;(x)} and by forming the gradients from the c-active constraints defined
by the index set

{1 ] gq(x) + ey 2 0, i=ptl,....p+q)

where ¢. is a small positive constant. This device helps to avoid "jamming” and aids
convergénce of the algorithm. Further justification is given in the literature [21].
The remaining Kuhn-Tucker condition, that the Lagrange multiplier be non-negative,
was not enforced during the descent. In addition, the search was terminated whenever
a new constraint is violated.

In the following examples, one cycle is the completion of both a restoration and
a projection update. Table 1 1ists results for the test problems described below
where N is the total number of cycles required for convergence within e; and ¢,. Np
and Np are the total number of function evaluations required for building the restor-
ation and projection increments, respectively. The penalty matrix was set to the
identity for the initial cycle and updated once. Following the penalty matrix update,
the variable metric matrix was updated using (22) and (23). Convergence tolerences
arg e,=107¢ and 32=10“6 for Examples 1 to 4 and ¢,=10-% and e,=107¢ for Examples 5
and 6.

Example 1 [10]. The problem is to minimize the functional
_ 2 2 2 2
fix) = (x]-xz) + (x2+x3-2) + (x4-7) + (xS-I)
subject to linear equality constraints

g](x) =%+ 3x2 =0
9p(x) = x3 + Xy = 2%5 = 0
93(X):“‘X2'X5 =0-

The constrained minimum of f(x) = 4.0930 where
X = (-.7674, .2558, .6279, -.1163, .2558)
was obtained from a starting point
x=(2, 2, 2,2, 2) .
Example 2 [10]. The problem is to minimize the functional
£(x) = =102 + (xx)2 + (x3-1)% + (xg=-1)* + (x5-1)°
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subject to nonlinear equality constraints
g1(x) = x4x$ + sin(x4~x5) -2/ 7
gz(x) =Xy * xgxi -8 -2 =0,

A constrained minimum of F{X) = .2415 where
X = (1.1661, 1.1821, 1.3802, 1.5060, ,6109)

was obtained from a starting point
x=42,2,2,2,2).

Example 3 [6]. The problem is to minimize the functional

f{x) = XqXoXgX X

subject to the nonlinear equality constraints
g](x) = x% + Xg + xg + Xz + xg -10 =0
gz(x) = XpXg - 5x4x5 =0
g3(x) = x? + xg +1 =0 .

A constrained minimum of f(X) = -2.9197 where
x = (-1.7171, 1.5957, 1.8272, .7636, .7636)
was obtained from a starting point
x=1(2,2,2,2,2).
Example 4. The problem is to minimize the functional
f(x) = x% + 9x§ + 9x§
subject to the mixed constraints
g](x) = X? + xg -1=0
g,(x) = x, + 0.5 <0
The constrained minimum of f{X) = 1 where

x = (0, -1, 0)
was obtained from a starting point
x= (2,2, 2) .

Example 5. A nontrivial test of the algorithm is provided by a problem involving the
optimal positioning of a geostationary satellite [22,15]. We seek a minimum fuel con-
trol function and corresponding optimal trajectory subject to dynamic constraints of
two body motion, initial state {position and velocity) on a specified transfer orbit,
and rendezvous with a specified state on a target orbit. The problem is formulated

in a finite dimensional space by requiring control in terms of N impulsive velocity
increments which act as equivalent initial conditions for the equations of two body
motion. A closed form solution of the resulting initial condition problem and the
forward sensitivity matrices due to Goodyear enables accurate evaluation of the con-
straints and their gradients over the trajectory. The parameter set is the 4N-tuple

T o= (tT,...,tN,C],...,CN)

consisting of the switching times and velocity increments, respectively. Six equality
constraints are obtained from the rendezvous requirement. Additional inequality con-
straints specify bounds on the switching times and magnitudes of the velocity incre-
ments.

In this example, the algorithm is used to compute the positioning control using
three impulses (n=12) for the following input.data. Transfer orbit: semi major axis,
a=25078 km, eccentricity, e=.736047; inclination, i=5°; argument of perigee, w=180°;
longitude of the ascending node, 0=180°; eccentric anomaly, E{t4)=180°. Target orbit:
position, r(t,)=(-42164.22,0,0) km and velocity, v{t,)={0,-3074.65,0) m/sec of the
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rendezvous point where t is the time of apogee passage in the transfer orbit. Posi-
tion is relative to an earth centered coordinate system with the x-y axis in the plane
of the equator. In addition to the six rendezvous {equality} constraints, an inegua-
Tity constraint was specified by the requirement that the first velocity increment not
exceed 1440 m/sec.

Using a starting point of

ty =0 hr ¢ = (0, -1420, 0) m/sec
t, = 12 ¢, = {0, -50, 0)
ty = 24 €y = (0, -20, 0) ,
the optimal control parameters obtained were
?1 = 017 §1 = {1.94, -1435.6, -111.9)
t, = 11.33 Cy = (17.6, -29.3, 16.7)
t, = 22.8 ¢y = (-1.06, -14.5, -8.5) ,

corresponding to a minimum fuel cost of 1494.9 m/sec. A more detailed description of
this and related examples is given in reference [15].

Exampie 6. A second application of the algorithm to trajectory optimization is pro-
vided by a proposed rendezvous with a comet [23]. For scientific investigation of
the comet as it approaches the sun, it is required that the maximum allowable fly-by
velocity of the spacecraft be small. By defining the cost functional as the velocity
increment required for injection from Earth orbit plus that required for rendezvous,
a solution yielding the minimum fuel for the best fly-by is obtained. The impulsive
trajectory formulation used in Example 5 is applied and the algorithm is used to com=
pute the optimal parameters using two impulses (n=8) for the following input data.
Initial (Earth) orbit: a=1.5x10%8 km, e=.0167, i=0°, »=101.2208°, 2=0°, and the mean
anomaly M(ta)=-101.2208 where t5=0 corresponds to an epoch of September 23, 1980.
Final orbit: a=3.3225x10% km, e=.8462, 1=12.35°, »=185.2°, 0=334.72°, M{t,)=0 where
th=0 corresponds to an epoch of December 12, 1980. Six equality constraints are spec-
ified by the rendezvous requirement.

Using a starting point of

t 0 days ¢y = (-5.9, =5.9, 0) km/sec
t, = 100 Cy = (-11, -13, 4) ,
the optimal control parameters obtained were
t) = -24.75 ¢ = (-3.005, -8.421, 4.182)
fz = 81.16 62 = {-1.102, -6.539, -2.416) ,

corresponding to a launch date of August 29, 1980 and a flight time of 106 days. The
injection velocity is 9.87 km/sec and the fly-by velocity is 7.05 km/sec (Figure 1).

CONCLUSIONS AND COMMENTS

Although the algorithm is heuristic in the sense that convergence criteria are
not provided, numerical experiments by the authors indicate that the program is gen-
erally more reliable than that employing only gradient projection or penalization
alone. The main difficulty to date, and one that is familiar to users of penalty
function techniques, is the proper choice and updating of the penalty constants. How-
ever, bounds on the magnitudes of the constants are available [11].

The algorithm has also been applied to a problem invoiving the optimal control of
heat distribution at the interface of an inhomogeneous rectangular solid. In view of
the Targe number of parameters resulting from time and spatial discretization of the
control function, the gradient of the cost is most efficiently evaluated from the
state and adjoint (backward sensitivity) equations. In this case, the Green's func-
tion for the system and adjoint are simply related due to the assumed linearity of
the model and can be explicitly obtained in terms of a Fourier series.
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TABLE 1
CONVERGENCE PROPERTIES OF THE PROJECTION-RESTORATION METHOD

Problem Cycles Function Evaluations CPU Time? Parameters Constraints

N, NN sec n P9
4 20 20 0.668 5 3
M 39 66 1.784 5 2
5 27 25 0.902 5 3
7 36 39 1.350 3 11
16 61 75 33 P 12 6 1
15 51 75 20 P 8 6

8 Telefunken TR 440 Computer {double precision).

b Includes evaluation of dynamical system constraints and gradients.
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FIGURE 1i.
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