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INTRODUCTION 

Penalizat ion and gradient project ion are two of the simplest and most useful con- 
cepts from nonl inear programming. Both provide a means for  extending unconstrained 
gradient descent techniques to accommodate equal i ty  and inequa l i t y  constra ints .  I t  is 
known that  penalty funct ion methods may be used to solve a wide class of problems, 
even those invo lv ing nonconvex constra ints.  In pract ice,  however, the Hessian matrix 
of the object ive funct ional  becomes i l l - c o n d i t i o n e d ,  causing convergence d i f f i c u l t i e s  
[ I ] .  On the other hand, gradient project ion is a concept that involves l i near  approx- 
imation of the constraints and, therefore, is not inherent ly  suited for  nonlinear con- 
s t ra in ts .  In the gradient project ion algorithm of Rosen [2 ] ,  which was o r i g i n a l l y  de- 
signed for  l i near  constraints forming a bounded convex region, nonlinear constraints 
were to be accommodated by a restorat ion step. This procedure is known to be unsat is- 
factory i f  a minimum on the tangent plane approximation l i es  far  from the constra int .  
The d i f f i c u l t y  can be avoided by a simple modif icat ion of the gradient project ion con- 
cept that penalizes v io la t ions  of the constraints along the search d i rec t ion  [3 ,4 ] .  

Recently, Hestenes and Powell suggested that equa l i ty  constrained minimization 
problems be reformulated as the unconstrained minimization of an augmented Lagrangian 
funct ional  invo lv ing the sum of  terms that  are l i near  and quadratic in the constra int  
whi le using independent updates fo r  the Lagrange m u l t i p l i e r  [5 ,6 ] .  Some extensions 
of the concept to inequa l i t y  constrained opt imizat ion have also been obtained, inc lud-  
ing condit ions under which the so lu t ion of the dual problem agrees wi th that of the 
primal [7 ,8 ] .  An important computational advantage of the augmented Lagrangian con- 
cept is that a constrained minimum, i f  i t  ex is ts ,  can be obtained by a f i n i t e  value 
of the penalty constant. Computational experience using the technique, although mostly 
for  equal i ty  constrained problems, has been encouraging [9,10,11,12,13,14]. 

This paper presents an extension of the modified gradient project ion algorithm 
[15,16],  based on an augmented Lagrangian with quadratic penal izat ion.  Numerical re- 
su l ts  from several problems invo lv ing s ta t i c  and dynamic, nonl inear equa l i ty  and in-  
equal i ty  constraints are given. 

PROBLEM STATEMENT AND NOTATION 

We shal l  t rea t  the nonlinear programming problem of determining an element x in 
R n that minimizes a nonl inear funct ional  f ( x )  subject to nonlinear equal i ty  constraints 
g(x)=O in RP. Inequal i ty  constraints w i l l  be discussed below under Numerical Results. 
I t  w i l l  be assumed that f and g are second continuously d i f f e ren t i ab le  and that a 
re la t i ve  minimum x ex is ts .  The gradient fx  is an n- tup le ,  the Jacobian a pxn matrix 
whose rows are gradients of the elements of g, and g~ denotes the transposed matr ix.  
The standard inner product and derived norm on R n are 

n 
>I/2 

< U, V >n = uiv i , II u I~ = < u, u n 
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PROJECTION-RESTORATION WITH AN AUGMENTED LAGRANGIAN FUNCTIONAL 

Let p<n and the p gradients of the elements of g be l i nea r l y  independent. De- 
f ine the augmented Lagrangian functional 

F(x,~,K) = f (x )  + < g, ~ >p + 0.5< g, Kg >p (1) 

where ~ is the Lagrange mu l t i p l i e r  (a p- tuple) ,  and K is a given pxp diagonal matrix 
of posi t ive constants. A necessary condition that F(x,x,K) have a minimum for f ixed 
K is that the fol lowing equations are sa t is f ied :  the constraint equation, 

g(~) = 0 (2) 

and the minimization condition 

fx(X) + gx(X)~ + g~(~)Kg(R) = 0 (3) 
An e f fec t ive  approach to the numerical solut ion of the constrained minimization pro- 
blem is a two step procedure based on sat is fy ing (2) followed by adjusting x by grad- 
ient  descent to approximate a solution of (3). The procedure is repeated unt i l  a 
stopping condition is  met. 

Let the f i r s t  correction 6x, the restorat ion increment, to an i n i t i a l  guess x be 
chosen to sa t i s fy  (2) to f i r s t  order, 

g ( x )  + gx (X )~X  = 0 . ( 4 )  

From (4), 6x may be formal ly expressed as 

: -g g (5) 
where, for  brev i ty ,  the dependence on x has been dropped, and g~ is a pseudo inverse 
of gx. Since p<n, there ex is t  an i n f i n i t e  number of solutions to (4) of the form 
ay + ~z where ~y is any solution of (4) and 6z is an element in the nullspace of gx. 
Uniqueness can be assured in (5) by use of the minimum norm pseudo inverse 

: g (gxg ) -I (0) 
which selects the smallest value of ~x, in the norm on R n, lying on the intersectfon 
of the tangent planes to the constraints. Linear independence of the gradients of the 
elements of g ensures that gxg~ is invert ible. Using (5), an improved value of x is 
obtained from 

^ ~  ~ - I  
= x - ~gx(gxgx) g (7) 
= argmin{ll g(x - ~g~g)llp I ~ in R + } . 

The second correction 6x, the projection increment, is chosen so that F(~,~,K) 
is decreased in the direction of i ts negative gradient 

6~ = -Fx(X,~,K). (8) 
The mu l t i p l i e r  x needed to compute (8) may be formally expressed, from (3), in terms 
of a pseudo inverse as 

* +  
= -(gx) fx - Kg . (9) 

For x # x, there is no value of i in RP for  which (3) is sa t i s f ied .  However, an 
approximation is obtained by use of the pseudo inverse 

(g~)+ = (gxg~)-Igx ( I0) 

which selects the least squares value of x in (9). Using (8), (9) and ( i 0 ) ,  x is up- 
dated according to the descent i te ra t ion  

= 7 - ~Pfx ( I I )  

= argmin{F(x-  BPfx,X,K ) I ~ in R + } 

where 

P = I - g~(gxg~)-Igx (12) 

is an nxn matrix representing the Operator that projects the gradient into the mani- 
fold formed by the intersect ion of the constraint tangent planes. 
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VARIABLE METRIC IMPLEMENTATION 

For any symmetric, pos i t i ve  d e f i n i t e  mat r ix  G def ine the weighted inner  product 
and derived norm, 

< u, v >G = < u, Gv >n ' llullG = < u, Gu >~/2 
f o r  u and v in  R n. Let H, the var iab le  metr ic  m~t r i x ,  be an nxn symmetric, pos i t i ve  
d e f i n i t e  approximation to the inverse Hessian F~x, which is assumed to ex i s t ,  The 
va r iab le  metr ic  matr ix  generates the minimum norm pseudo inverse 

g~ , , - I  
: Hgx(gxHgx) , (13) 

which minimizes IIaXllH_ I ,  and the leas t  squares pseudo inverse 

(g~)+ = (gxHg~)-Igx H , (14) 

which minimizes l#x + g~z + gxKgIl~ • 

Using (13) and (14) the res to ra t i on  and pro jec t ion  increments are, 

ax = -Hg~(gxHg~)-Ig (15) 

6 x =  -H( f  x + gx x) 

: -HP fx  (16) 

where 
, * -1 (17) P = I - gx(gxHgx ) gx N 

is an nxn matr ix  tha t  represents a non-orthogonal p ro jec t ion  operator.  The var iab le  
metr ic  matr ix  H is updated a f t e r  each successful p ro jec t ion  update according to es- 
tab l ished formu]as [17] .  The use of  va r iab le  metr ic  descent w i th  grad ient  p ro jec t ion  
is due to Goldfarb [ ] 8 ]  and Kel ley and Speyer [4]. 

For f i xed  K suppose tha t  a minimum o f  F(x ,x ,K)  has been obtained. Let the re-  
su l t i ng  va r iab le  metr ic  mat r ix  be H. This mat r ix  is  now re f ined according to pre- 
scr ibed changes in the__pena]ty constants AK = K - K and the corresponding, al though 
unknown, changes AX = X - X in the Lagrange m u l t i p l i e r .  The update is  based on choos- 
ing ~ to minimize the modif ied residual  

llfx + g~) + g~Kgll~ + IFII~AK)-I (18) 
where the second term in (18) is an energy constraint which prevents large changes in 
the m u l t i p l i e r .  I f  AK is  nons ingular ,  the minimum value of  z can be expressed in  
closed form as 

: -(gxHgx + AK- l ) - I gxB ( f  x + g~Kg) (19) 

This corresponds to an i n i t i a l  p ro jec t ion  increment 

a~(o) = _ N ( O ) ( f x  + g~Kg) 

H (°)  ~ HQ (20) 
q i , ~ .  ) - I  (21) = _ gx(gxHg x + AK - I  gx R • 

I f  one or more cons t ra in ts  are s a t i s f i e d ,  (21) cannot be computed because AK is s ing-  
u la r .  In t h i s  case, (18) can be minimized sequen t i a l l y  f o r  each nonzero component o f  
AK = diag (Ak I . . . . .  Ak ).  The corresponding expressions in  place of  (20) and (21) are 

H(°) ~ H ( Z  Qi ) ' 3 = { i  I 1 < i < p, Ak i ~ O} (22) 

i~J 

(I /AK i 1 ~ * H (23) Qi = I - + l~ ix l l  ) g i xg i x  . 

The above resu l t s  in  (20) to (23) were f i r s t  obtained by Ke l ley ,  e t .  a l .  [19] by use 
of  a Schur matr ix  i d e n t i t y .  The de r i va t i on  of  t h i s  sect ion,  however, provides i n s i g h t  
in to  the update's leas t  squares s t ruc tu re  and use w i th  an augmented Lagrangian. 

Var iable metr ic implementation of  the p ro j ec t i on - res to ra t i on  a lgor i thm requires 
storage of  an nxn symmetric mat r ix .  For problems of  large dimension, a less c o s t l i e r  
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a l te rna t ive  is offered by another class of conjugate d i rec t ion  methods known as con- 
jugate gradient descent. Implementation is ident ica l  to that  given in the las t  sec- 
t ion except that  the gradient F x is updated before computing the project ion incre-  
ment [3] .  

NUMERICAL RESULTS 

A computer program based on the above method has been wr i t ten  and applied to 
various problems. The resul ts reported in th is  section were obtained on a Telefunken 
TR 440 computer using double precision ar i thmet ic .  Convergence of the algorithm was 
speci f ied by the stopping condit ions 

l[Fx(X,~,K) lJn < E 1 , I lg(x)[Jp < c 2 • 

Resetting of the variable metric matrix H was enforced after every 2(n-p+l) projec- 
tion updates. The "complementary DFP" rank two variable metric update was employed 
[20] together with a gradient l inear search by cubic f i t  for both the restoration and 
projection increments. The search required, on the average, four to f ive function 
evaluations, i .e .  evaluation of F(x,~,K) for specified x, ~ and K. A more accurate 
l inear search had been used in earl ier versions of the program without providing 
signif icant improvement. 

Inequality constraints 

gi(x) ~ 0 , i = p+l . . . . .  p+q 

have been accommodated by replacing those elements of g in the penalty terms of (1) 
by max{O,gi(x)} and by forming the gradients from the c-active constraints defined 
by the index set 

{ i  I g i ( x )  + ~i ~ O, i=p+l . . . . .  p+q} 
where c~ is a small pos i t ive  constant. This device helps to avoid "jamming" and aids 
convergence of the algorithm. Further j u s t i f i c a t i o n  is given in the l i t e r a t u r e  [21].  
The remaining Kuhn-Tucker condi t ion,  that  the Lagrange m u l t i p l i e r  be non-negative, 
was not enforced during the descent. In addi t ion,  the search was terminated whenever 
a new const ra in t  is v io la ted.  

In the fo l lowing examples, one cycle is the completion of both a restorat ion and 
a project ion update. Table 1 l i s t s  resul ts  fo r  the tes t  problems described below 
where N c is the to ta l  number of cycles required for convergence w i th in  c i and c z. N r 
and Np are the tota l  number of funct ion evaluations required for  bu i ld ing the restor-  
ation-and project ion increments, respect ively.  The penalty matr ix was set to the 
i den t i t y  fo r  the i n i t i a l  cycle and updated once. Following the penalty matr ix update, 
the var iable metric matrix was updated using (22) and (23). Convergence tolerences 
and are ~1=10 -6.and cz=lO-G for Examples 1 to 4 and el=lO -3 and E2=IO-G for Examples 5 

Example 1 [ I 0 ] .  The problem is to minimize the funct ional  

f ( x )  = (Xl-X2)2 + (x2+x3.2)2 + (x4- I )2  + (x5-1) 2 

subject to l inear  equal i ty  constraints 

g l (x )  =: x I + 3x 2 = 0 

g2(x) = x 3 + x 4 - 2x 5 = 0 

g3(x) = x 2 - x 5 = 0 . 
The constrained minimum of f (x)  = 4.0930 where 

£ = (-.7674, .2558, .6279, -.I163, .2558) 

was obtained from a starting point 

x : (2, 2, 2, 2, 2) 

Example 2 [lO]. The problem is to minimize the functional 

f(x) = (X l - l )  2 + (Xl-X2)2 + (x3-1) 2 + (x4-1) 4 + (x5-1) 6 
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subject to nonlinear equality constraints 

= x4x~. + sin(x4-x5) - 2 ~ =  0 gl (x) 
g2(x) x 2 + x~x~ - 8 - ~ = 0 , 

A constrained minimum of f ( x )  = .2415 where 

= (1.1661, 1.1821, 1.3802, 1.5060, .6109) 

was obtained from a star t ing point 

x = ( 2 ,  2 ,  2 ,  2 ,  2)  . 

Example 3 [6] .  The problem is to minimize the functional 

f ( x )  = XlX2X3X4X 5 
subject to the nonlinear equal i ty  constraints 

: xX+ 0 
g2(x) = x2x 3 - 5x4x 5 = 0 

g3(x) = X~ + x~ + 1 = 0 . 

A constrained minimum of f(x) = -2.9197 where 

= (-I.7171, 1.5957, 1.8272, .7636, .7636) 

was obtained from a starting point 

x : (2, 2, 2, 2, 2) . 

Example 4. The problem is to minimize the functional 

subject to the mixed constraints 

gl(x) = X~ + x ~ -  1 = 0 

g2(x) = x 2 + 0.5 ~ 0 . 
The constrained minimum of f (x)  = l where 

= (0, - l ,  O) 

was obtained from a starting point 

x = (2, 2, 2) . 

Example 5. A nontrivial test of the algorithm is provided by a problem involving the 
optimal positioning of a geostationary sate l l i te  [22,15]. We seek a minimum fuel con- 
trol  function and corresponding optimal trajectory subject to dynamic constraints of 
two body motion, i n i t i a l  state (position and velocity) on a specified transfer orbi t ,  
and rendezvous with a specified state on a target orbit .  The problem is formulated 
in a f i n i t e  dimensional space by requiring control in terms of N impulsive velocity 
increments which act as equivalent i n i t i a l  conditions for the equations of two body 
motion. A closed form solution of the resulting i n i t i a l  condition problem and the 
forward sensi t iv i ty  matrices due to Goodyear enables accurate evaluation of the con- 
straints and their gradients over the trajectory. The parameter set is the 4N-tuple 

= ( t  I . . . . .  tN,c I . . . . .  c N) 
consisting of the switching times and ve loc i ty  increments, respect ively.  Six equal i ty 
constraints are obtained from the rendezvous requirement. Additional inequal i ty  con- 
s t ra in ts  specify bounds on the switching times and magnitudes of the ve loc i ty  incre- 
ments. 

In this example, the algorithm is used to compute the posit ioning control using 
three impulses (n=12) for  the fol lowing input data. Transfer o rb i t :  semi major axis,  
a=25078 km, eccent r ic i ty ,  e=.736047; inc l ina t ion ,  i=5°; argument of perigee, m=180°; 
longitude of the ascending node, Q=180°; eccentric anomaly, E(tA)=ISO °. Target o rb i t :  
posit ion, r(t^)=(-42164.22,0,O) km and ve loc i ty ,  v(t^)=(O,-3074.65,0) m/sec of the 
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rendezvous point  where t A is the time of apogee passage in the t ransfer  o rb i t .  Posi- 
t ion  is r e l a t i ve  to an earth centered coordinate system with the x-y axis in the plane 
of the equator. In addi t ion to the s ix  rendezvous (equa l i ty )  const ra in ts ,  an inequa- 
l i t y  const ra in t  was speci f ied by the requirement that the f i r s t  ve loc i t y  increment not 
exceed 71440 m/sec. 

Using a s tar t ing  point  of 

t I = 0 hr c I = (0, -1420, O) m/sec 

t 2 : 12 c 2 = (0, -50, O) 

t 3 = 24 c 3 = (0, -20, O) , 

the optimal control  parameters obtained were 

~I = .017 E l = ( I .94 ,  -1435.6, - I l l . 9 )  
^ 

t 2 = I I . 33  ~2 = (17.6, -29.3, 16.7) 

t3 = 22.8 c 3 = (-1.06, -14.5, -8.5) , 

corresponding to a minimum fuel cost of 1494.9 m/sec. A more detai led descr ipt ion of 
th is  and related examples is given in reference [15].  

Example 6. A second appl icat ion of the algorithm to t ra jec tory  opt imizat ion is pro- 
vided by a proposed rendezvous wi th a comet [23].  For s c i e n t i f i c  invest igat ion of 
the comet as i t  approaches the sun, i t  is required that  the maximum allowable f l y -by  
ve loc i t y  of the spacecraft be small. By def in ing the cost funct ional  as the ve loc i ty  
increment required for  in jec t ion  from Earth o rb i t  plus that required for  rendezvous, 
a so lut ion y ie ld ing  the minimum fuel for  the best f l y -by  is obtained. The impulsive 
t ra jec tory  formulat ion used in Example 5 is applied and the algorithm is used to com- 
pute the optimal parameters using two impulses (n=8) for  the fo l lowing input data. 
I n i t i a l  (Earth) o rb i t :  a=l.5xlO 8 km, e=.0167, i=O °, ~=I01.2208 °, ~=0 °, and the mean 
anomaly M(t~)=-lOl.2208 where ta=O corresponds to an epoch of September 23, 1980. 
Final orb i t~ a=3.3225xlO 8 km, e=.8462, i=12.35 °,  m=185.2 °, ~=334.72 °,  M(th)=O where 
tb=O corresponds to an epoch of December 12, 1980. Six equa l i t y  constraints are spec- 
i f i e d  by the rendezvous requirement. 

Using a s ta r t ing  point  of 

t I = 0 days c I = ( -5.9,  -5.9,  O) km/sec 

t 2 = I00 c 2 = ( - I I ,  -13, 4) , 

the optimal control  parameters obtained were 

t l  = -24.75 Cl = (-3.005, -8.421, 4.182) 

t2 = 81.16 c2 = ( - l .102,  -6.539, -2.416) , 

corresponding to a launch date of August 29, 1980 and a f l i g h t  time of I06 days. The 
in jec t ion  ve loc i t y  is 9.87 km/sec and the f ly~by ve loc i t y  is 7.05 km/sec (Figure l ) .  

CONCLUSIONS AND COMMENTS 

Although the algorithm is heur is t i c  in the sense that convergence c r i t e r i a  are 
not provided, numerical experiments by the authors indicate that  the program is gen- 
e ra l l y  more re l i ab le  than that employing only gradient project ion or penal izat ion 
alone. The main d i f f i c u l t y  to date, and one that  is  f am i l i a r  to users of penalty 
funct ion techniques, is the proper choice and updating of the penalty constants. How- 
ever, bounds on the magnitudes of the constants are avai lab le [ I I ] .  

The algorithm has also been applied to a problem involv ing the optimal control of 
heat d i s t r i bu t i on  at the inter face of an inhomogeneous rectangular so l id .  In view of 
the large number of parameters resu l t ing  from time and spat ial  d i sc re t i za t ion  of the 
control funct ion,  the gradient of the cost is most e f f i c i e n t l y  evaluated from the 
state and ad jo in t  (backward s e n s i t i v i t y )  equations. In th is  case, the Green's func- 
t ion  for  the system and ad jo in t  are simply related due to the assumed l i n e a r i t y  of 
the model and can be e x p l i c i t l y  obtained in terms of a Fourier ser ies. 



300 

ACKNOWLEDGEMENT 

The work of W. A. Gruver was supported through a Senior Scientist Award admin- 
istered by the U. S. Special Program of the Alexander von Humboldt Foundation. 

I .  

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

REFERENCES 

Lootsma, F. A.: A Survey of Methods for Solving Constrained Minimization Pro- 
blems via Unconstrained Minimization, in F. Lootsma (ed), Numerical Methods for 
Nonlinear Optimization, Academic Press, New York, 313-347 (1972). 

Rosen, J. B.: The Gradient Projection Method for Nonlinear Programming; Part I: 
Linear Constraints, J. SIAM, 8, 181-217 (1960); Part I I :  Nonlinear Constraints, 
J. SIAM, 9, 414-443 (1961). 

Miele, A., Huang, H., and Heideman, J.: Sequential Gradient-Restoration Algo- 
rithm for the Minimization of Constrained Functions - Ordinary and Conjugate 
Gradient Versions, J. Optimization Theory and Applications, 4, No 4, 213-242 
(1969). 

Kelley, H. J. and Speyer, J. L.: Accelerated Gradient Projection, in Lectures 
in Mathematics, 132, Springer Verlag, Berlin-Heidelberg, 151-158 (1970). 

Hestenes, M. R.: Mul t ip l ier  and Gradient Methods, in L. Zadeh (ed), Computing 
Methods in Optimization Problems, 2, Academic Press, New York, 143-163 (1969). 

Powell, M. J. D.: A Method for Nonlinear Constraints in Minimization Problems, 
in R. Fletcher (ed), Optimization, Academic Press, New York, 283-298 (1969). 

Roode, J. D.: Generalized Lagrangian Functions in Mathematical Programming, 
Thesis, University of Leiden, Netherlands, (1968). 

Rockafellar, R. T.: Augmented Lagrange Mul t ip l ier  Functions and Duality in 
Nonconvex Programming, SIAM J. of Control, to appear. 

Haarhoff, P. C. and Buys, J. D.~ A New Method for the Optimization of a Non- 
l inear Function Subject to Nonlinear Constraints, Computer J.,  13, 178-184 
(1970). 

lO. Miele, A., Cragg, E., lyer, R., and Levy, A.: Use of the Augmented Penalty 
Function in Mathematical Programming Problems, Part I ,  J. Optimization Theory 
and Applications, 8, 115-130 (1971). 

o 

I I .  Martensson, K.: Methods for Constrained Function Minimization, Report 7107, Div. 
of Automatic Control, Lund Inst i tu te of Technology, Sweden, March 1971. 

12. 

13. 

14. 

15. 

Glad, T.: Lagrange Mul t ip l ier  Methods for Minimization Under Equality Constraints, 
Report 7323, Div. of Automatic Control, Lund Inst i tute of Technology, Sweden, 
August 1973. 

Tripathi,  S. S. and Narendra, K. S.: Constrained Optimization Problems Using 
Mul t ip l ier  Methods, J, Optimization Theory and Applications, 9, 59-70 (1972). 

Wierzbicki, A. P.: A Penalty Function Shift ing Method in Constrained Static 
Optimization and i ts Convergence Properties, Archiwum Automatyki i Telemechaniki, 
16, 395-416 (1971). 

Gruver, W. A. and Engersbach, N. H.: Nonlinear Programming by Projection-Re- 
storation Applied to Optimal Geostationary Satel l i te  Positioning, AIAA Journal, 
December 1974. 



301 

16. 

17. 

18. 

19. 

20, 

21. 

22. 

23. 

Engersbach, N. H. and Gruver, W. A.: Constrained Optimization Based on Genera- 
l ized Exterior Point Methods, Report IB013-72/I0, Deutsche Forschungs- und Ver- 
suchsanstalt fur Luft- und Raumfahrt, December 1972. 

Broyden, C. G.: Quasi-Newton Methods, in W. Murray (ed), Numerical Methods for 
Unconstrained Optimization, Academic Press, 87-106 (1972). 

Goldfarb, D.: Extension of Davidon's Variable Metric Method to Maximization 
Under Linear Inequality and Equality Constraints, SIAM J. Applied Math., I]_7, 
739-764, July 1969. 

Kelley, H. J.: Denham, W., Johnson, I . ,  and Wheatley, P.: An Accelerated Grad- 
ient Method for Parameter Optimization with Nonlinear Constraints, J. Astro- 
nautical Sciences, 13, No 4, 166-169, July-August 1966. 

Goldfarb, D.: A Family of Variable-Metric Methods Derived by Variational Means, 
Maths. Computation, 2_4_4, 23-26 (1970). 

Zangwill, W. I . :  Nonlinear Programming, Prentice-Hall, Englewood C l i f f s ,  N. J., 
Chapter 13 (1969). 

Gruver, W, A. and Engersbach, N.: A Mathematical Programming Approach to the 
Optimization of Constrained, Impulsive, Minimum-Fuel Trajectories, Report IB013- 
72/3, Deutsche Forschungs- und Versuchsanstalt f~r Luft- und Raumfahrt, June 
1972. 

Eckstein, M. C. and Jochim, E. F.: Vorl~ufige Untersuchung zur Bahnoptimierung 
f~r die Helio-C Mission, Report IB522-73/I, Deutsche Forschungs- und Versuch- 
sanstalt f~r Luft- und Raumfahrt, March 1973. 

TABLE l 

CONVERGENCE PROPERTIES OF THE PROJECTION-RESTORATION METHOD 

Problem Cycles Function Evaluations CPU Time a Parameters Constraints 

N c N r Np sec n p q 

l 4 20 20 0.668 5 3 

2 If! 39 66 1.784 5 2 

3 5 27 25 0.902 5 3 

4 7 36 39 1.350 3 l 

b 5 16 61 75 33 12 6 

6 15 51 75 20 b 8 6 

a Telefunken TR 440 Computer (double precision). 

b Includes evaluation of dynamical system constraints and gradients. 
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