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INTRODUCTION 

In applications one has often to tackle extremumproblems 

where the objective function happens to be not strictly fixed as in 

the general theory of nonlinear programming but changes versus some 

parameter (time, in particular). That is, instead of /~{~J there is 

a sequence of functions /~xJin a certain sense approximating /v/~, 

on the basis of which the extremum of P/~ is to be found. As a 

rule, one fails to execute the passage to the limit, to find F/~J 

and then its extremum due to a number of circumstances of which the 

following might be emphasized: 

q. The parameter~ / corresponds to the discrete time and 2C~ 

becomes known at the instant~=~/only. In this case the limit passage 

takes a whole time given for the problem solution. 

2. The parameter~ is an index of members of the sequence. 

It may be changed at one's discretion, "frozen", in particular, at 

some stages of the optimization process, however, the execution of 

limit passage is technically difficult. Such cases are particularly 

characteristic of problems of optimizing steady regime of controlled 

processes when averaged performance figures of the form 

/"(x) : CD,-x¢ / "  ~ eb.-x~ ~ -  ~ (k, ~2 ,  

H 

t " 1 ~  = gz,.-~ 1" Nf~.) = ~ , , , ~  Z <i.. *~..(~, ~. 
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are dealt with. 

3. The limit passage operation deteriorates some good proper- 

ties of the function P~%~ which is characteristic of approximation 

problems when a function, being due to some reasons "bad", is appro- 

ximated by a sequence of "good" ones and thus, instead of ~(~) , it 

is of advantage to manipulate with the functions ~ #  • An inte- 

resting and difficult problem arises here of optimizing the limit 

function ~/~ with the only use of information about members of 

the sequence ~v~ approximating ~/~J. It is important to have 

in mind that if P(Z~ is unknown then the examination of only one # 
of the functions ~l%J in solving the problem approximately does not 

allow estimation of the accuracy of the obtained approximate solution. 

Such extremum searching procedures are treated here in which the 

search of the function ~{~ extremum is based on the analysis of a 

sequence of functions ~ . The paper grounds on results of !3~. 

ALGORITHMS 

Consider the extremum problem 

F(zJ~ z 6 X~ (I) 

where X is a convex closed bounded set, F/~J - a convex but not 

necessarily continuously differentiable function determined as the 

limit of a functional sequence: 

F / z )  : F 

The f o l l o w i n g  q u i t e  n a t u r a l  a l g o r i t h m  may be o f f e red  f o r  the problem 

solution 

where ~0are step-by-step factors, ~ /~ 

ent of t~e convex function ~L'vt/Z~ ~X ('~ Z 

projection on the set X • The following theorem holds. 

THEOREMq. Let P ~2~ be convex functions for each & , the 

sequence ~ ~/ZJ uniformly converges on ~¢ ~ , and ~-~9~ ~ _-~ 

Then for each convergent subsequence ~ ~ ~# 

s=o~ ~ .... , (2) 

- a generalized gradi- 

- an operator of 
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X~ 
where is a set of solutions of problem (1). The requirement for 

the sequence ~'~ to converge uniformly is the most essential of 

the theorem assumptions. However, when functions ~g(S~J are convex 

the uniform convergence follows readily from the point one if some 

additional fairly weak assumptions are introduced. The rest of condi- 

tions do not differ from those of convergence of the known method of 

generalized gradients, formulated in ~1~, however, the study of con- 

vergence by method (2) with the direct application of the scheme in 

£1S under assumptions of the theorem is impossible. Theorem 1 is 

proved in ~3] by an approach elaborated in ~2] . Of great interest 

is also a convergence of the stochastic analogue of algorithm (2): 

z '+','<,.0 = 'n",< <'z f,'<,.,j-p, >~ % "  <~j) ~3~ 
s ) 

where ~ ~ Sis a random vector (a stochastic quasl-gradient) whose con- 

ditional ex]?ectation 

£ <'V ?.~: .-.. ~ "):/~" r~ ~. c~ 

THEOREM 2. Let assumptions of Theorem I be satisfied and Z ~ .  

Then algorithm (3) converges in the sense that for almost all cxJ the 

X" limit points of sequence /Zl/~j belong to the set and with 

probability I ~>~ FP~%F*: 

APPLICATIONS 

On the method of penalty functions. With the use of the method 

of penalty functions the problem of minimization of fo/~ in the 

domain ~ determined by the constraints 

is approximated by the minimization of a function P/Z, C)in the 

domain X so that 

for some C ~ , the C ~ being often equal to O, ~ j or must be a 

sufficiently large number. The C being fixed, the minimization 

of /?l~Jin the domainX does not yield, generally speaking, the 

precise solution of the initial problem. However, if such arbitrary 

sequence C ~ . . .  is chosen that ~-P~ and if the limit extremum pro- 

blem with the function P~zJ--Y/z.~is studied then under appropriate 

conditions the precise solution will be obtained by method (2). A 
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question is interesting about choosing ways of the sequence 

that impacts the speed of convergence. 

INTERCONNECTED EXTREMU~ PROBLEMS 

Sometimes there is a set of interconnected extremum problems 

in which solution of one problem prepares information for solving 

the others. In problems of vector optimization, for instance, the 

minimization problem 

ri J: l /  %j - I %-U 
,~ ~ ~ X  

is dealt with when choosing a compromise solution. In this case the 

problems of minimizing ~ ~z) prepare information for the basic problem 

of minimization of the function r~). Since the solution of each 

auxiliary problem necessitates an infinite number of iterations, the 

direct way to calculate ~J even in a separate point, to say nothing 

of its extremum search, is a nonconstructive one. In addition, if 

sequences of points J~ ~A/J such that 

z6X 

are considered together with the limit extremum problem with the 

function 
H 

then, if conditions of Theorem I are satisfied, procedure (2) helps us 

to find the precise minimum of ~/~. 

OPTIMIZATION OF STEADY REGIMES 

The results of Theorem 2 offer quite an effective way of solv- 

ing function minimization problems of the form 

N 

It is easily seen that with proper assumptions about the differenti- 

ability of functions ~(~) the stochastic gradient~s~), satisfy- 

ing relations (4), can be determined, for instance, as follows: 

N 
where~ is a random variable uniformly distributed on the set t~-~ 
Such a construction allows to calculate at each iteration a derivative 
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of only one member of the increasing sum of terms ~K~/~,~J. A similar 

method is also appl icab le  fo r  minimizing 

N 

ON THE RANDOM SEARCH METHOD 

When the calculation of gradient of the objective function is 

complex the following method might prove helpful which also necessi- 

tates the solution of limit extremum problems. Instead of the objec- 

tive function ~/~Jwe consider the function 

Ffz, <~ ) = C f (z - ~ ~,~# = JF(z -yJ Pry,~) ~, 
where the distribution Pf~)of the random variable G(d) for~-~O 

concentrates in O, i.e. /?/z~F/zJ# d-~ . Then subject to exist- 

ence of corresponding integral~ and T/z-#)P(#,~g~g#~ 

- ~i~, ~Jp~ ,<-; r~, ~ J : l  _.. ~ r=,-,<,j ,<>~ ~j <~t: _ ~/,<',"=,-~,J ,<r~, 
Thus, the random v a r i a b l e  

for the fixed ~ coincides on average with the gradient ~ .  The 

examination of the sequenc~ ~f~O and the limit extremum problem 

with functions ~=~/~ ~completed, we obtain the possibility to 

organiz~ by procedure (3) and for 

the iterative process where derivatives of ~(~ are not employed. 
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