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PART I : GENERAL CONCEPTS 
= = = = ~  = = = = = = = = = = = = = ~ = = =  

I. INTRODUCTION 

Numerical methods of structural analysis have reached a high standard of effi- 

ciency. As a consequence they tend to overgrow their usefulness as numerical checks 

of stress distribution, amplitudes of displacement, natural frequencies and elastic 

stability to become adjuvants to design procedures. 

The objectives of design vary according to the purpose of the structure. In aero- 

space engineering the weight is the prominent factor and is often the only goal of 

numerical optimization studies. In other cases the functional that is subject to mi- 

nimization is more complex, economical factors of various kind being incorporated 

with their relative weights into the cost function. 

Until recently the minimization was carried out by trial and error~ the preliminary 

design and the modifications introduced after evaluation of a numerical structural 

analysis being largely based on engineering judgment. Presently there is a tendancy 

to a more scientific approach in which the changes in design parameters are evalua- 

ted on the basis of algorithms. Efficient algorithms are those that tend to bring the 

functional to its minimum with the smallest number of iterations requiring a subse- 

quent structural reanalysis. Moreover they have to satisfy many kinds od side cons- 

traints such as : 

- remain within the elastic limits of the material in each structural member under a 

given set of load distributions; 

- keep displacement-type limitations; 

- avoid elastic instability; 

- keep natural frequencies within prescribed limits; 

- keep member sizes above minimum values. 

The starting point of such automated Structural Optimization Programs is a given 

preliminary design. It is therefore difficult to evaluate the cost of optimization 

procedures, since the computer time devoted to reach a near-optimal stage will heavily 

depend on the quality of the preliminary design. 

In case where the unicity of the optimal solution is not guaranteed a poor prelimina- 

ry design can even lead to a local and not to the global minimum. 
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For this reason, while optimization programs will probably remain essential tools, 

the objectives of optimality will also tend to incorporate the computer in the pre- 

liminary design stage. This more direct approach towards an optimal structure is the 

aim of '"Computer aided Design". 

It is also a much more ambitious goal and, fortunately perhaps, will never obliterate 

the exercize of engineering art. It is indeed difficult to conceive a selection by 

the computer of the best "topology" of structural members to carry the loads accor- 

ding to the purpose of the structure, taking immediatly the effect of side constraints 

into account. On the other handp once the topology has been fixed by engineering 

judgement and experience, we will probably reach the stage where the computer will 

carry out from there the sizing of the members and even such other alterations in 

their geometry~ permissible under the given topology and external constraints. 

Whether such ambitious programs will ever become operational within economical limits 

is a question that only experience will answer. 

2. DESIGN VARIABLES 

One can divide design variables in groups according to their relative importance. 

For aerospace structures, with a finite element method idealization, the following 

groups are proposed : 

2.1. Element sizes 

They comprize cross-sectional areas of beam, membrane and plate thicknesses ... 

The optimization of those variables alone leaves the topology (system of element 

interconnexions) and other geometrical characteristics (height, length, taper of 

beams, planforms of membranes and plates ...) unchanged. 

2.2. Geometric variables 

The choice of geometrical variables may alter the configuration of the structure 

but not its topology. In the finite element method they correspond to modifications 

in the nodal coordinates. 

2.3. Material ~roperties 

The efficiency of the structure can be improved by a change of nature of the material 

selected for some of its members. For example Young's modulus and material density 

may be varied but this introduces discrete parameter modifications as opposed to the 

continuous variations possible in the previous design variables. 

2.4. Topology 

A change in topology is also, and more fundamentally so, a discrete modification 

to the structure. For example, a set of members may be replaced by a new one with 

different elements, differently connected. 

The order in which the groups of design variables have been listed is roughly 

that of increasing complexity in an optimization program and attendant increasing cost. 
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This consideration has led numerous research teams to limit themselves to the first 

category. There is also some justification for it in the fact that the general layout 

of a structure is often dictated by other considerations than a certain definition 

of optimality. Aerodynamic shape, headroom, access facilities, failsafe design are 

characteristic examples. 

The relative simplicity of dealing with element sizes only is enhanced by the choice 

of a finite element method for the disoretization of the structure. As nodes are kept 

in place and element interconnexions are invariant, the statics and kinematics of the 

structure are not modified by alterations in element sizes. This can make a large part 

of the optimization program a fixed subroutine. 

In the sequel we shall deal only with this restricted aspect of optimization. 

3. NUMERICAL METHODS OF STRUCTURAL OPTIMIZATION 

This section describes briefly two main approaches encountered in structural optimi- 

zat ion and discusses their relat ire capabilit ies. 

3.1. Mathematical programming 

In this relatively recent approach, min~num weight design is treated as the mathe- 

matical problem of extremizing a cost function in design space. Each dimension of this 

space is related to one design variable, so that each point corresponds to a possible 

design. The side-constralnts consist of limits to the design variables (element sizes) 

themselves and to stresses or displacements, the latter constraints being generally 

functions of the design variables. Symbolically, denoting by A i (i=l...n) the design 

variables 

W = W (A I...A n ) rain. 

A1 ~ ~i i=l...n A i 

gj (A I...A n ) ~< ~j J=lo..p 

The ,-'ost function and the nature of the second type of constraints determine whether the 

problem can be treated by linear or non-linear progrm~ming. The second case usually 

prevails for structural optimization. 

Drawbacks inherent to the mathematical programming approach appear with large numbers 

of design variables as the number of cycles required to get close to the optimum ra- 

pidly rises. Each cycle involves a costly stress reanalysis and the computational 

expenditure rapidly becomes prohibitive. On the other hand the method is very general 

and reliable. If a solution converges to a local minim~ instead of the global minimum 
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required, this can always be checked and the necessary steps be taken to reinitiate 

the procedure. 

3.2. Opt~alit), criteria 

Intuitive considerations as to the nature of the optimal design may lead to adopt 

optimality criteria that are not directly related to the minimization of the given 

cost function but sometimes constitute a satisfactory approximation to it. They can 

then provide a basis for the search techniques and lead to simple recursions formulas 

for redesign. The best known and widely used example of such a procedure is the 

"fully stressed design" concept. According to it, each component of an optimal struc- 

ture is stressed to its limit in at least one of the loading conditions. 

Convergence to the optimal solution, according to the fully stressed design criterion, 

is obtained in one iteration for statically determinate structures. In statically 

determinate cases the internal loads are indeed independent of the design variables 

and optimality based on fully stressed design coincides with the exact minimal weight 

criterion if no limitations are put on displacements. In the statically indeterminate 

case each redesign modifies the internal loading distribution and fully stressed 

design does not yield the minimum weight but may be considered to approach it satis- 

factory° 

An attractive feature of fully stressed design that explains its relative success is 

its tendency to converge in a number of cycles independent of the number of design 

variables, in contrast to t~e more rigorous mathematical programming method. 

MoreQver each redesign cycle is fairly simple. 
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PART II : AN ALGORITHM FOR MINIMUM WEIGHT DESIGN UNDER A 
====~ ============================================== 

SET OF LOADING MODES WITH CONSTRAINTS ON STRESSES 
================================================= 

~D DISPLACEMENTS. 
~========~======= 

i. PROBLEM DEFINITION 

The structure is in the linear elastic regime and idealized by finite elements, 

Under all the specified loading distributions certain constraints on stresses and 

nodal displacements must be satisfied. The geometry and the material properties are 

predetermined. 

The functional to be minimized 

W = E 0 i L i A i i = i ...n (i) 
i e 

is the structural weight, proportional in each element to the material density Pi' 

to the design variable A, (cross-section of bar , thickness of membrane~..,) and a 
l 

geometrical parameter L i (length of bar, area of membrane...), 

2. DESCRIPTION OF THE CONSTRAINTS 

2.1. Production constraints 

They place a lower and sometimes an upper limit to the design variables: 

A i ~< A i ~< A i (2) 

2.2. Stress limitations 

the 
In bar-type elements the tensile stress limit is determined by elasticVproperties 

of the material; the compressive limit may be reduced to take into consideration, 

in a simple mannerj a safeguard against buckling. 

If ~. is the actual stress in the bar., 
i 
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ai ~< ~i "< ~i (3) 

In shear panels one assumes a maximum allowable shear stress, usually governed by 

buckling considerations: 

~ .  ~< T .  (4) 
i I 

In more general membrane elements, where the three stress components ~ , ~ and 
x y 

r play equally important roles, a reference stress related to an elastic limit 
xy 

criterion may be introduced. 

2.3. Displacement constraints 

They assign upper bounds to generalized displacements. To determine analytical 

expressions for them in terms of the design variables, the virtual work theorem is 

used. 

If F denotes a vector (column matrix) of externally applied loads, 

u the conjugate vector of generalized displacements, 

the stress vector, 

the conjugate strain vector, 

the virtual work is given by : 

(v) U(r) = V O(r) e(v) dV = V g(v) e(r) dV (6) 

The subscripts between brackets refer to either a virtual or a real vector, the 

superscript T denotes transposition. Splitting the integral into the sum of contri- 

butions of each finite element: 

A = E I (aT dVi (7) 
i v (r) ~(v))i 

i 

According to the finite element theory we have : 

I r T T 
(a(r) ~(v))i dVi = q(r) i Ki q(v) i = q(r) i g(v)i 

(s) 
V i 

where qiis the vector of generalized displacements of element i and gi its conjugate 

of generalized loads. K. is the stiffness matrix of the element. 
i 

Let now u. denote a displacement component of the nodal displacement vector of the 
3 

structure. Applying a corresponding virtual unit load to the structure, (7) and (8) 

give : 

T 
u, = Z q(r)i gi(j) (9) 
3 i 
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where the gi(j) are the corresponding virtual loads generated at each element level. 

In statically determinate structures the loads gi(J) are uniquely determined by the 

unit load and (9) turns out to be given in terms of the design variables by : 

c.. 
u. = z !~ 
3 i Ai 

(io) 

where the cij are constants. In redundant structures those coefficien~ are themselves 

implicit functions of the design variables. 

3. FORMULATION 

Let us begin with the statically determinate case 

3.1. Analysis stase 

The structure is analyzed under 

- the n real loading systems of the design specification 
r 

- the n virtual loading cases connected with each displacement constraint. 
v 

3.2. Re desisn stase 

If the stress constraints are : 

~i£ $ °iZ i = 1 ... n e 

= I ... n 
r 

where ciZ is the actual stress in element i under the loading case £ 

is effected in a single step by 

(ll) 

, the redesign 

max ( Oi"- ~" } A i = A i 

£ i£ 

with, in addition, the minimum size requirement : 

(12) 

A* > A i (13) 
i " 

This method provides a "fully stressed" design~ each element reaching its limiting 

stress (or having its minimal size) under at least one of the loading cases. 

If we have displacement constraints, the analysis stage will provide the matrix of 

e.. coefficients appearing in (iO). Taking the A ~. values appearing in (12) as minimal, 
ij i 

the problem with the addition of displacement constraints can be stated as follows: 
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under 

W = Z 0i L i A i ~nin 
i 

l~ < uj j = l...n t (14) E A " 
i i 

~i > Ai >~ Asi i = l...ne (15) 

where n = n x n . 
t r v 

Because of the assumption of statical determinacy the formulation is rigorous~ the 

solution unique and only one stress analysis is required. 

Real structures, however, are rarely statically determinate. If subjected to different 

load distributions they are in fact both stiffer and even lighter if proper use is 

made of the stress cooperation provided by redundancy. But in this case both the 

c.. and the A ~. become implicit functions of the design variables. Each change in 

those will produce new cij and A i that can only be known exactly through a costly 

stress reanalysis. The following approach is suggested. The problem as defined by 

equations (14) and (15) is solved by considering the cij and A~'I as constants. The 

evolved solution for the design variables is inserted in a new stress analysis to 

provide new cij and A~'l values with which to reinitiate problem (14), (15) untill 

close to convergence. 

4. SOLUTION OF THE LINEARIZED PROBLEM (14)~ (15) 

In order to solve this problem, in which the c.. and A~ are assumed to be given, 
Ij I 

it is beneficial to take the reciprocals of sizing variables as new desig~ variables. 

The recast problem may then be solved by means of the gradient projection method for 

linear constraints (ref. [6] ) adapted to the problem under consideration. 

As required by this method, the initial point must be a feasible point, a point lying 

in the convex region formed by the prescribed constraints. 

In any given case, such a point can readily be found by linear scaling of all member 

sizes, so that a feasible bounded design is generated (one constraint at its critical 

value, others subcritical). This scaling of all the design variables does not introduce 

stress redistribution : each stress and each displacement are simply divided by the 

same scaling factor. 

5. APPLICATION OF THE METHOD 

Amongst known optimization programs we can mention : 

- GELLATLY and BERKE (ref. [2] ) 

- TAiG and KERR (ref. [31 )o 
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As mentioned previously a structural optimization program performs iterative cycling 

between a structural analysis stage and a redesign stage. The programs under study 

at the Aerospace Laboratory of the University of Liege are coupled to the extensively 

developped ASEF code as the analysis module. The structural idealization consists up 

to now of axial force members and triangular or quadrilateral membrane elements. The 

degree of displacement polynomials within the elements is allowed to vary from i to 3. 

A syam~etry opt ion has been introduced~ that constrains members of any specified group 

to be identical; in this case, the number of design variables is reduced to the number 

of element groups. 

6. EXAMPLES 

The method proposed in section 3 has been tested against solutions to classical 

problems found in the literature. 

The two first examples show clearly that the rate of convergence of the redesign 

procedure is not directly related to the size of the problem under consideration. 

6.1. Four-Bar ' Pyramid (f is. i 

This very simple structure is subjected to the single loading case given fig.l. 

Constraints are placed on maximum stress (25000 psi), minimum area (O.i in~) and node 

displae~nent in z-direction (0.3 in.). The present results (table I ) duplicate those 

of ref. [2] and [ 3] . Fig. 4.a shows the strange pattern followed by the iteration 

procedure : the design seems to converge after 2 cycles and only after several more 

cycles does the rate of weight reduction accelerate till the final design is generated 

(after 20 iterations). 

6.2. 72- Bar Four Level Tower (fi$.3) 

This doubly symmetric tower is subjected to two loading cases (table ll-a). 

Symunetry is achieved by use of the input option, which reduces the number of design 
2 

variables from 72 to 16. The stress limits are again 25000 psi. with O.i in . minimum 

area. The displac~nents of the four uppermost nodes are limited to 0.25 in. in the 

x and y-directions. In spite of the larger size of the problem~ convergence is very 

rapid and opt~lal design is reached in only five iterations (see fig. 4.b). The 

results (table ll-b) are the same as those of ref. [3] i 

6.3. Cantilever Fr~ e (fig.2) 

The iO bar-truss is subjected to the single loading case indicated on fig. 2. 

The stress limit in all members is 25000 psi. with O.i in 2. minimum area. The node 



323 

displacements in y-direction are prescribed to be less than 0.2 in. Table III shows 

the results obtained from the present method and, for comparison~ from other methods 

In addition~ stress constraints have been formulated in a similar way than for dis- 

placement constraints:each in~nber stress is linearly expressed in terms of the inverses 

of the design variables. Corresponding results are given in table III under the title 

"Experimental Method". This method generates a design weighting 5060.8 lb. which 

exhibits the following particular characteristics. M~nber 0 is fully stressed, while 

being at its minimum area. Furthe~nore only one displacement constraint~is exactly 

satisfied (node I) while another prescribed displacement is close to its limiting 
value (node 3). 

For the other designs, shown on table III, these two displacements reach simultaneously 

their limiting values. 

7. CONCLUSION 

While using a math~natical programming algorithm, the method that Was presented 

has the convergence characteristics of an optimality criterio~ approad~. Except for 

the last example (cantilever frame), the smne results as those of Taig and Kerr 

(ref. [3 ] ) have been obtained for each analysis and redesign step~ In addition, 

when there is only one active displacement constraint, the results of Gellatly and 

Berke (ref. E2] ) are also identical to ours. In fact, all these methods are based 

on the same technique : by means of the virtual work theor~n each l~lited displacement 

(or linear combination of displacements) is expressed in terms of the design variables. 

The resulting relations remain exact only in the case of a statically determinate 

structure; for a redundant structure~ they become approximated. The redesign procedures 

are characterized by the algorit~ used in order to resolve the ensuing linearized 

problem (14) (15). 

The present method has the advantage of using a particularly suggestive algorithm : 

each path up to an "approached" optimum readily shows whether a constraint becomes 

active or not. 

Furthermore each point of this path is a feasible bounded point. That important 

feature allows the algorithm to be eventually stopped before reaching the optimum, 

in order to avoid a final divergence due to a tOO strong internal redundancy. 
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TABLE I FOUR BAR PYRAMID 

WEIGHT No OF 
ITERATION 

~iEMBER SIZES 

1 2 3 4 

120.73 22 0.IOO 3.893 0.747 2.510 

TABLE II 72-BAR TOWER 
(a) Loadin~ sys__tems (ib) (b) Final Design-- 

Load 
case 
! 

2 

Node X Y Z 

17 5000 5000 -5000 
17 0 0 -5000 
18 O O -5000 
19 O O -5000 
2O O O -5000 

Final Weight : 379.66 Ib 
NO of iteration : 5 

Member Size Member Size 

i-4 
5-12 

13-16 
17,18 
~2-12 
23-30 
31-34 
35,36 

1.897 
0.516 
0. IO0 
0. iOO 
1.280 
0.515 
0. IOO 
O. I00 

37-40 0.507 
41-48 O.520 
49-52 O.i00 
53,54 O.iO0 
55-58 O.157 
59-66 0.536 
67-70 0.410 
71,72 0.654 

TABLE III CANTILEVER FRAME 

5 
6 
7 
8 
9 

IO 

MEMBER 

No 

TOTAL 
WEIGHT 

No.OF 
ITERATIONS 

 F[3] 

0.I0 
31.98 
15.43 
22.57 
0.57 
0.58 
0.I0 

22.76 
21.82 
6.44 

5167. 

32 

[2] 

O.iO 
31.35 
15.60 
2O.03 
0.24 
O.14 
O.IO 
22.21 
22.06 
8.35 

5112.17 

19 

 F[13 

0;13 
30.42 
14.90 
23.41 
0.I0 
0.I0 
0.19 

21.08 
21.08 
8.70 

5084.90 

25 

PRESENT 
METHOD 

(±) 

O.iO 
30.73 
14.73 
23.94 
O.IO 
O.IO 
O. iO 

20.95 
20.84 
8.54 

5076.67 

14 

EXP. 
METHOD 

O.iO 
30.52 
15.22 
23.20 
0.55 
O.IO 
O.IO 

21.O3 
21.53 
7.46 

5060.85 

19 

(~) Taig and Kerr have also obtained this result by fixing member 5 at its minimum 
area. 


