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Let us consider function f()(), that is given and 1imi‘ted
to the set ,@ s consisting Qf a finite number of elements Xéﬂ}.

For an arbitrary )(cef[) and any number R>0 there exists a
non-empty subset@(xt’/{)c_@, possessing the following properties:

it Xe DX, R)
then!f(){)w—;(x"”ép\;
it X¢ D(XIR)  (Xe D\D(XR)),

wen | ()~ £(X9) | >R
Let us introduce function f(x)?—][()()*f(x 0) for all

XE@- It is clear that when X:—X‘i ‘-f(xo):o . We shall provide

several definitions.
Let u;,D (dxgsigngte subset @(XfR)as the region of R-stability
for the values )= s, and let us say that the value 0 at
D(X°R) isR-s)table. PXY)
' The value Y(X°) is absolutely R-stable, if P(X)=0
for 211 Xe D(X°R) .

The value (X° is absolutely stable, if kf) ( X) = 0
for a11 €D (f(X)=const ) )

The following assertiom is evident. If _)( ( )()3E const .
then a number Ro exists, which is the upper boundryx of the absolute
R-stability of the value Y(X°) , f.e., i£0£R« RY, then an1
regions @(X‘:P\)are regions of absolute R-stability, if R>/ R ,
then no single region@()(‘i Q ) is a region of absolute R~

stability. e oo
Tt is not difficult to mote that 9D (X°R)=D(X50)
for all 0!}, RL Ra . For this reason in order to determine the
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region of absolute R-stability for any Oz R“ R ’ it is necessary
to find all of the solutions for equatiom '70 ( X) =0 with
the condition that Xe Z) The solution of such equations, as a rule,
is often quite diffieult (it ie sufficient to reecall the Diofan equa—
tions).

During the investigation of the stability of value &P(xa)
the following problems emerge:

~ +to determine Ro — the upper boundry of absolute R-stability:
- for anyR> () *o evaluate the quantity | @(ng} |-
the number of elements in the set @( Xf R) :
-~ for anyr'Rz 0 to comstruct an algorithm for obtaining all
elements of the existing sei @(xc; R) .
In many applications the solutions of these problems are of

interest in cases in which the optimal value of the function ( X)
is attained at X°. For the sake of definition let f( X‘):minf (X)
for e Jy. Then P(X)> 0 for 211  Xg 9P and
min Y(X) = P(X):0:
Let us cite a few examples and classes of functions for whick
a solution proved to be possible for the problems mentioned sbove

during the investigation of the stability of their optimal wvalues,

1. XC_Z={1,-"7 m]; @:ix}

Jj()()satisfies the conditious

FAY 2 i W Iyt -b) :
FOXE) +f (XB)-FXEUXY)-£(XNX*) £ 0. (1)
, 0

Por the determination of the minimal value of f(X )of such
functions let us employ the method of sequential calculation [1].

The function (J( X ) likewise satisfies conditioms (1). For
the determination of the region Z)(Xf&)the following generalizations
of the rejectiom rules are employed, the proof of which is given in

[2,.3 } .
. s 4 L
The first generalized rejection rule, If for x and X
the following conditions are fulfilled:

Xic Xz and LF(XJ’)’!-RL "F (xi;) s then no single
XD XLenter_s into @(Xj’k) .

The second genmeralized rejection rule. If for Xi and Xi/
the following conditions are fulfilled:

XLC X‘L and kP(XL)> xp(xb)+ﬁ , bthen no

gingle
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XC i enters in’co XOR) -

The third generalized rejection rule. If for X!' and x]’

the following conditions are fulfilled: xi C X"” and
B> PR)+R o 4 (X) 7 P(X)+ R,
then no single X of the type X X C xz enters into

@(XTR . Here: — e X ;
) f(X) Xfcvxf;x‘{j_( )

Y ©
x is the arbitrary subset ] y in partiecular it may be X:—.X :

Bl0=$00)- Z, [906)- YU (X4Ui)];
B (XY) = P 12) - Z e LI

There exists a large class o concrete problems of mathem—
atical programming in which the corresponding functions f{}()
satisfy the conditions (1) (for example, different types of problems

of distribution [2 4]) For many of these problems effective algo-
rithms have been elaborated for the determination of subset
Z)(X: R)C: @, that implement the generalized rejection rules

2. X < J': {{ } , Whereupon

;X} WL men, @ SX} ,ccnsequently/ I Cm .

For each Xe @ let us correlate a quadratic system of 11near

Z 31(5,("‘5 s Where r
B& (0.,(,_ ,Clgm ), 6=(gi,,.,) gm) .

Let us denote by the set of all Xé@ » for which the correspon—

ding system has a non-negative solution agg()( )} Ke X ,
Let us examine the function >

= cye(R), i XSDs
f(X): - oo it €D\ Ds

It is evident that the wvalues X and\f x ) in this case are
determined by methods of linear programming. An algorithm hag been
elaborated 4] for the determination of the regions $(X, R)
that is a2 modification of the algorithm proposed in [6]

e

equations:

-
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3. Xz('xL,--'; OC‘"')
(L‘A,,O are integer numbers, satisfying the condition

h .
= oil(x)e b, D={X}
=4
n“ d
F(X)=-= 9i(X:) ,
The values X° and (=1 Y may be determined by methods of dynamic
. . - 7 4 -
programming [7] « The determination of region @(X} R) in [4]
relies on a modification of the algorithm of Bellman for the case
when 9( (:x‘ )710 and (1, (;’)CL) are single-valued functions,
QL (xt-)take on integer values in the presence of whole X, , and
g 0 are integers,
4 ' : . v

Thus, for a large class of functions tP(X) it turns out fo
be possible to determine the regions of R-stability of their optimal
values. Primarily, this 18 0f great practical significance for the
solution of concrete problems of optimal planning - Awhgch in practice
makes it possible to choose such a solution S @(X} R) ,
that satisfies some additional conditions that had not been taken inte
account iIn the initial construction of the problem, or else are gen-
erally not formalizable. Af the same time it is well known that

R i XED(XR)
&P ( s) > i > "
econdly, these functions may be used for the deter-
minationw of optimal values of more "complex" functions (X) . The
approximational-combingtorial method for the solutiom of problems of
discrete programming [4‘,. 8] » 1is based om this approach consisting
of the following basic elements.
Let the determination of yég) be required, such that
g(Y)= e g(X).

Let us assume that such a functiom J((X)is known, for
which there exist effective algorithms for the determingtion of the
region D(X° R ) and it has been established that

g(g)?, J((y) . Then a certasin value C 7//()(0) ] is
chosen and the region @(ka) is determined for R= C'f (Xo) .
Then the element yC—E :Z_)(X)OR) is found such that

9(9):)(?%;-&?/2) g(,\),() ~
i 9(Y)e . then y=Y, g(‘f):g(‘f),

that is, the problem ig solved. "

~S
But if g(y >C , then y and g(V) are taken as
an approximate solutiom, whereupon ( - g (y) £ g (\]) .
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Using this method problems of distribution that take inte
account communicatiom, and territorial-production complexes, the
distribution problem with Boolean variables and a series of others
were solved [2,4,5,_8_] .
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