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We go to consider here problems of parameter optimization in ab- 

stract process relations such as minimum problems and mixed varia- 

tional inequalities in Banach spaces. Besides we obtain existence 

results and projected and iterated approximation methods for the so- 

lution of these problems which cover, for instance, problems of opti- 

mal control, of identification and inverse problems for partial dif- 

ferent ial equations. 

1° Minimum problems 

Let V be a real Banach space with norm i[.ll, V ~ its adjoint space 

and (g,u) -- g(u) for g~V ~, uaV. By the symbols --~ , --~ we denote 

strong and weak convergence in V, respectively. The symbol M[(.)~ 

will be used to denote the set of all solutions of the problem re- 

presented by the formula (.). 

Let UCV, U ~ ~ and f,h~ (U---~RI). We consider the problem (I) - 

(2) : 
(I) f(u) = inf f(v) , v ~ M L(2)] , 

(2) h(v) = inf h(u) , u ~ U. 

Existence theorems for (I)-(2) can be obtained from the generalized 

Weierstra~ theorems. 

Let UnCV, U n ~ ~, en>O, en---~ o, fn' hn6 (Un---~RI)' n=1,2, .... 

As an approximation method for (I)-(2) we consider 

(3n) Jn(Wn ) = ~TJn(U) ' UaUn' Jn = hn+en'fn ' n=1,2, .... 
Let the following assumptions be fulfilled: 

I. w - Lim U C U . n 

II. (fn,Un)~ (f,U) upper semi-continuously (Vn~ Un,Vn-- ~ v~ U 

implies lim fn(Vn)-~ f(v)) and weakly lower semi-continuously 

(Vn~ Un, Vn-~ v ~ U implies 1.im fn(Vn)~ f(v)). 

III. (hn,U n) > (h,U) upper semi-continuously (u.s.c.) and weakly 

lower semi-continuously (w. 1. s. c. ). 

Definition1. The notation "(fn,Un) ~. (f,U) with the property (F+)" 

means: if Vn~ Un, Vn~-:~ v E-U , l'~ fn(Vn)~ f(v) then ~Vn-V~- ~ o. 
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Theorem I. Let (3n) have at least one solution w n for every n and let 

the following assumptions be fulfilled: 

I. (I)-(2) has at least one solution w such that ~here exists a se- 

quence ~Vn~ with the properties v n ~ U n for n~n o ~ilVn-Wl[--~ o and 

lie [(hn(V n) - hn(Wn))/en~ O. 
2. One of the following conditions (i),(ii) is fulfilled: 

(i) UnCEdV , n=1,2,...; E is weakly compact. 

(ii) B is a reflexive space and lim fn(Un) = +oo if Un~ U n and 

IIUnll----~ +~ . 
Then w - ~ w n + ~ and w - L-~ WnC= ~ ( 1 ) - ( 2 ) ] .  I f  a d d i t i o n a l l y  
3. (fn,Un) (f,U) with property (F+) 
is fulfilled, then every weakly convergent subsequences of ~Wn~ is 

also strongly convergent. 

Proof: cf.~8]. Por special cases see~-~]. 

Remarks. I. Based on the weak @ (B I ") convergence in B = B ~ an analo- 

gous theorem on the convergence of ~Wn~ can be derived ~ . 2. If 

under the assumptions of Theorem I problem (I)-(2) has a unique solu- 

tion then Wn--~w or l|w n - w~-~ o holds. 

Let be V a Hilbert space H,P(K) the operator of projection fr~mB 

onto the convex and closed set KCH, ~ Hn~ a sequence of subspaces and 

Pn = P(Hn)" Let for p ~o be Lp~ the smallest integer greater than 

or equal to p. 

Theorem 2. Let (I)-(2) have a unique solution w, (3n) have a solution 

w n for every n, UnCH n be convex and closed; Jn be defined on H and 

strongly convex with convexity constant C(Jn) ; the assumptions I-3 of 

Theorem I be fulfilled. Besides assume that for every Jn the gradient 

0n' exists and is Lipschitz-continuo~s with Lipschitz constant L(j~) 

Then the projection-iteration method 

(4) an+ I =~P(Un)P n [I - tnJ~ zn an , n=1,2,..o, aIEH , with 

o ~ t n< 16C(Jn)IL(j~)2 = , i n Eeo/(1-L n) , e O~ o, 

L n = VI 16 tnC(Jn) + tnL(Jn)2 ., 2'converges strongly to w in B. 

Proof: cfL~ For special cases see ~S-~]~ 

Theorem 3. Let (I) (M~2)] = U) have a unique solution w; UnC Hn, 

n=1,2,..., be convex and closed; U = s - L~ Un; fn be defined on H, 

strongly convex with C(fn) ~ c ~ o and have the gradient f~ with 

L(f~)~ L. If n~JU n is unbounded, then let ilf~(o)~l ~ q and 

Ifn(O)l ~ r. 

(5n) fn(Wn) = inf fn(U) , u ~ U n , 



379 

hase a unique solution w n for every n and the sequence ~w n~ as well 

as the sequence ~an~ generated by the projection-iteration method. 

(6) an+ I = P(Un)PnEl - tn,fnSJan , n=1,2,..., al EH , 

with O~ ~I ~- tn ~ 16 c(fn) _ 62 ' E2 ~ o, converge strongly to w in H. 
L 2 

Proof: cf. LS~. For special cases see ES-~S. 

Remark° In ~SB also the methods (4) and (6) for locally Lipschitz- 

continuous gradients j~ and f~, respectively, are given (see ~OS ). 

2. Generalized trace funtionals 

Let also Y be a real Banach space, XC Y, Fe(X x U-->RI), SE (U-> X). 

We consider problem (I) in the form 

(7) F(Sw,w) = inf F(Su,u), u~U. 

If F is w.l.s.c, and S is weakly continuous then F(S.,.) is w.l.s.c. 

The same is true, if P is (strongly, weakly) - lower semi-continuous 

(i.e. x n --~ x and Un~-~ u implies l~ F(Xn,U n) ~ F(x,u)) and S is 

increased continuous (i.e. Un--~ u implies Su n --~ Su) . In both cases 

the generalized Weierstra~ theorems may be applied. ~k~rther existence 

theorems can be obtained for weakly or increased closed S, for multi- 

valued S~ (U-->2 x) and on the base of weak ~ convergence (cf. ~8S ). 

Let besides be Xn~Y, Pn ~(X n x U n--> RS), Sn~(U n > Xn). As an 
approximation method for (7) we consider (3n) in the form 

(8) F n (S n Wn, w n) = inf Fn(SnU,U) , u EU n. 

If (Fn,X x Un)~ (F, X x U) u.s.c, and (strongly, weakly) - 1.s.c. 

~w. 1. s.c.~ and (Sn,U n) ~ (S,U) increased continuously ~continuously 

and weakly continuously~ then (Fn(S n. ,. ), U n) --~ (F(S. ,. ) ,U) u.s.c. 

and w.l.s.c. If, in addition, for x n~ X n and x n--> x~X 

CXn --~ xEX~ (Fn(Xn,.)U n) --~ (F(x,.),U) with property (F+) then also 

(Pn(Sn.,.) ,U n) ;--~ (2(S. ,. ) ,U) with property (F+) holds. 

SO we can apply Theorem I (with fn = Pn(Sn "'" )' hn -- o) to (Sn). 
Let be Y a Hilbert space, ~Yn½ a sequence of subspaces and 

Qn = P(Yn )" Assume Pn(Sn .,.) = FI(Sn.) + P2(.), PI~(Y --> R I) convex, 
F2~ (V--P R I) strongly convex, Un, X n convex, S n = ~n + ~n' S-n linear 

and bounded, ~n ~ X n. Then the functional fn = Fn(Sn'") are strongly 

convex with c(f n) = c(F 2) and 

fn F~ + n Qn F~ (Sn.) 

holds. Under appropriate assumptions the Theorems 2 and 3 may be 

applied (cf. ~2~ ). 

3. Optimization with minimum problems 

We consider (7) where S~ (U--~ X) is the solution operator of the 
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following problem (9)-(1o): 

(9) k(x,u) = inf k(y,u) , y~M~1o)J, 

(Io) l(y,u) = inf l(z,u) , zEX° 

Theorem I can then be used to investigate the weak or increased con- 

tinuity of S(cf.~SB). As an approximation method for (7),(9),(Io) 

we consider (8n) with the solution operator S n of 

(11n) mn(X,U) = inf mn(Y,U), y~ X n, mn(Y,U) = ln(Y,u)+enkn(Y,U). 

In (8n),(11n) as special cases combined Ritz-Ritz (Ritz-projected 

penalty, Ritz-projected regularization)methods are contained. 

Theorem I gives results on the continuous, weakly continuous or increa- 

sed continuous convergence of (Sn,Un)--~(S,U). Using these results 

and, once more, Theorem I (cf. Part 2) the convergence of solutions 

of (8n),(11n) to solutions of (7),(9),(Io) can be proved (cf.~ ). 

In some cases also iteration methods of the form (4) and (6) can be 

derived ( ES S ). Pot applications of the results in problems with 

partial differential equations see C4~S . 

4. Mixed variational inequalities 

Let be Y a reflexive space; T,S~ (Y--~Y~) and k,l~ (Y ~?RI). We 

consider the mixed variational inequality 

(12) (Tz,y-z) ~ k(z) - k(y) , y~M ~(13)J, 

(13) (Sy,x-y) ~ k(y) - k(x) , x~ X . 

Existence theorems for (12)-(13) can be obtained from the results 

of BREZlSE4], B~OWDER~3 , ~UGE-BRUOE~ER C~O3 and ~IO~S g~3] on 

variational inequalities. 

Let be X n + ~, convex and closed; Tn, Sn6 (Y --~ Y~ be monotone 

and hemicontinuous operators, R n = S n + e~ Tn; kn, ln~ (Y~R I) be 

convex and lower semicontinuous functionals and m n = ln+enkn,n=1,2, .... 

As an approximation method for (12)-(13) we consider 

(14n) (R n Zn, x - z n) ~ mn(Z n) -ran(X) , xEX n , n = 1,2, .... 

Let the following assumptions be fulfilled: 

Iv. w - ~im Xn~ x. 

v. xc s - ~x n if s~o and y~ s-~x n for any y~M~13)] if S~o. 

VI. (Tn,Xn)-~ (T,X) and (Sn,X n) ~ (S,X) continuously; 

(kn,Xn)~- ~ (k,X) and (ln,Xn)~P(1,X) U.SoC. and w.l.s.c. 

Definition 2. The notation "(Tn,Xn)--~ (T,X) with property (S+)" 

means: if yn ~ Xn,Yn ~-~ y 6 X and 1Tm (T n yn,y n - y)~ o then 

fly n - Yll --~ o. 

Theorem 4° Let (14n) have at least one solution z n for every n and 
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let the following assumptions be fulfilled: 

1. (12)-(13) has at least one solution z such that there exists a 

sequence { y~ with the properties: YneXn for n ~ n o ,IlYn-ZIl--~o , 

il'~+~ [(-Sn~ Yni , Zni- y_ni)+l_~i (y-I1i)-l-ni (Zni)~/e_niIlz~..iil ~ ~z- o 

if iI z n It--* o~ and 
i 

~m J [-S y , z n - yn)+In(Yn)-In(Zn)q/en~j ~ 0 n__9~ [ u n n 

if ~ Zn~ is bounded. 

2. One of the following conditions (i),(ii) is fulfilled: 

(i) X C pdy, n = 1,2,...; P is bounded. 
n 

(ii) i~i_,c~ [<Tni Zni, Zni- Yni)+fnl(znl)~/. . (' Zn~l ~. = + 

if llz II --~ + co . 
n i 

Then w-L'~ z n ~ ~ and w-Lim Zn( M ~12)-(13)S. 
If additionally the assumption 

3. (Tn,Xn)--~ (T,X)with property (S+) or (kn,X n) ~ (k,X) with pro- 

perty (F+) 
is fulfilled, then every weakly convergent subsequence of ~ Zn~ is 

also strongly convergent. 

Proof. of. [8]- For special oases see g~-~S" 
Remark. Analogous to the theorems 2 and 3 we may give theorems on the 

strong convergence of projection-iteration methods for (12)-(13) 

(see g~-~ ~ ). 

5. Optimization with variational inequalities 

We consider (7) where S£ (U --~X) is the solution operator of the 

following problem 
(15) (Q(z,u),y-z) >~ k(z,u)-k(y,u) , yeM[(16)] , 

(16) (P(y,u~x-y) ~ l(y,u)-l(x,u) , xex . 

Theorem 4 can then be used to investigate the weak, strong or increa- 

sed continuity of S (of. ~#11])° As an approximation method for (7), 

(15), (16) we consider (Sn) with the solution operator S n of 

(17n) (Rn(Zn,U),X-Zn)~mn(Zn,U)-mn(x,u) , XeXn, n=1,2,..., 

Rn(X,u) =Pn(X,U) + e n- Qn(X,U), mn(X,u)=ln(X,u)+e n" kn(X,U). 
In (8n),(17n) as special cases combined Ritz-Galerkin (Ritz-projected 
penalty, Ritz-projected regularization) methods are contained. Theorem 
4 gives results on the continuous, weakly continuous or increased con- 

tinuous convergence of (Sn,Xn)---> (S,X). Using these results and 
Theorem I the convergence of solutionsL of (Sn)~(17n) to solutions 



382 

of (7), (15), (16) can be proved (cf.~]). Pot special cases see 

KRAUSS Ida] and YVON ~dS]. In some cases also iteration methods of 

the form (4) and (6) can be derived ( [~] ). 

For applications of the results see ~S~ and ~44] • 
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