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We go to congider here problems of parameter optimization in ab-
stract process relations such as minimum problems and mixed varia=-
tional inequalities in Banach spaces, Besgsides we obtain existence
results and projected and iterated approximation methods for the so-
lution of these problems which cover, for instance, problems of opti-
mal control, of identification and inverse problems for partial dif=-
ferential equations.

1. Minimum problems

Let V be a real Banach space with norm Il.lIl, V¥ its adjoint space
and (g,u) = g(u) for g& V*, ué&V, By the symbols —» , —> we denote
strong and weak convergence in V, respectively, The symbol M[(.)]
will be used to denote the set of all solutions of the problem re-
presented by the formula (»).

Let UCV, U 4 ¢ and £,h& (U—>R"), We consider the problem (1) -
(2): .

(1) f(u) = inf £(v) , ve um[2],
(2) h{v) inf h(uv) , ue U,
Existence theorems for (1)-(2) can be obtained from the generalized
WelerstraB theorems,
Let UCV, U 4§, e, >0, e, —>0, £, h € (U, —7R"), n=1,2,....

)

As an approximation method for (1)-{2) we consider

(Gn) g (w) = iwfj (u) , wueU,, j, = h+e £, n=1,2,,...

Let the following assumpiions be fulfilled:
L w-Iimucu.

11, (j:“n,Un) —> (£,U) upper gemi~-coniinuously (vne U v,—> V€U
implies lim fn(vn) < f(v)) and weakly lower semi-continuously

(v,€ Uy, v,— v €U implies lim f (v )= £(¥)),

111, (hn’Un) ~—>» (h,U) upper semi~continuously (u.s.c.) and weakly
lower semi-continuounsly {(w.l,s.c.).

Definition 1, The notation "(fn,Un)—‘-y (f,U) with the property (F+)"

means: if vy e Uy, v, —=ve& U, 1im fv) < £(v) then Av,-vh —> o.
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Theorem 1, Let (3n) have at least one solution w, for every n and let
the following essumptions be fulfilled:
(1}-(2) has at least one solubtion w such that there exisis a se-
quence {vn'g with the properties v, € U, for n=n, uvn-wﬂ—> o and
lim [(hn(vn) b (w ))/e, 1< o.
2. One of the following conditions (i},(ii) is fulfilled:
(i} U < ECV , n=2142,e.3 E is weakly compact,
(ii) B is a reflexive space and Tim f (u ) = +00 if uy € U, and
ﬂu N> to° .
Then w - L:un w, $ d) and w - Lim w N ! E(1) (2)]. 1f additionally
(f ) (f U) with property (F )
is fulfilled then every weakly convergent subsequences of { ’j is
also strongly convergent,
Proof: cf. ES] . For special cases see [_'5'—7-].
Remarks, 1, Based on the weak™ (131 ~) convergence in B = B.l*' an analo-
gows theorem on the convergence of {wn} can be derived [8] . 2o If
under the assumptions of Theorem 1 problem (1)-(2) has a unique solu-
tion then wn-->' woor Hw, - wl —> o holds.
Let be V a Hilbert space H,P(X) the operstor of projection frem B
onto the convex and closed set KCH, -{Hlj a sequence of subspaces and
P(H ). Let for p > o0 be Lp] the smallest integer greater than
or equal to p.

Theorem 2, Let (1)=(2) have a unique solution w, (3n) have a solution
L for every n, UnC. Hn be convex and closed; jn be defined on H and

strongly convex with convexity constant c(jn); the assumptions 1-3 of
Theorem 1 be fulfilled, Besides assume that for every jn the gradient
jr'l exigts and is Lipschitz-continuous with Lipschitz consgtant I‘(jﬁ)'

Then the projection~iteration me thod

(4) {P(Un)l’n LI - t,3) ]} a, » n=1,2,..., a,€ H, with
2 i
0 < t < 16003 ) /B0N? , 1y = [e/C1-1)], o > o,
= ‘}/1 - 16 t (i) + tgl.(jr'l)zlconverges strongly to w in B,
Proof: cf }:8-]« For special cases see LS-TJ-

Theorem 3, Let (1) (MEZ)] = U) have a unique solution w; U C H.,
n=1,25...,, be convex and closed; U = 8 - Linm U 3 f be defined on H,
strongly convex with c(f )= ¢ > o and have the gradlent f' with
I‘(f;x) < L, If\-/Un is unbounded then let llf;l(o)ll % q and
[£,(0)] & =.

(5n) £ (w)) = inf £ (v) , weEU ,
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hase a unique solution LA for every n and the sequence {Wn.& as well
as the sequence {anlj generated by the projection-iteration method.

’
(6) a4 =PU)IE [I-t £ Ta ,n=1,2,..., 8 €H,

with 0< 61 £ tn & 1.6_.1:;_(.{112. - 52, £2 > o, converge strongly to w in H,
Proof: cf, (8 1. For special cases see [s5-%1.

Remark, In[81 also the methods (4) and (6) for locally Lipschitz-
continuous gradients j;l and fr'x’ respectively, are given (see E4o] ).

2. Generalized trace funtionals

Let also Y be a real Banach space, XC Y, Fe (X x U—>R'), s€ (v—> X).
We consider problem (1) in the form
(7 F(Sw,w) = inf F(Su,u), u€U,
If P is w.,1l.s8.c, and S is weakly continuous then F(S.,.) is w,l.s.c,
The same is true, if F is (strongly, weakly) - lower semi-continuous
(i.e. x ~> x and uy —> u implies lim F(x,u) > P(x,u)) and S is
increased continuous (i.e. u,— u implies Su, —> Su) . In both cases
the generalized WeierstraB theorems may be applied. Purther existence
theorems can be obtained for weakly or increased closed S, for multi-
valued S& (U —”>2X) and on the base of weak* convergence (cf. 81 ).

Let besides be X.C ¥, P &(X x U, —> R'), 5, €(U,—>X ), As an
approximation method for (7) we consider (3n) in the form
(8) F (5, w, w) = inf F (5u,u) , u €U,

If (Fn,X x Un)-—éz (F, X x U) u,s.¢, and (strongly, weakly) - 1,s.c.
Ew.l. g.c.| and (Sn,Un)———‘,(S,U) increased continuously [continuously
and weakly continuously | then (P (5,.4.), U ) —> (F(5.,.),U) u.s.c.
and w,1l,8.c, If, in addition, for x, € Xn and Z, > X€ X
an——> xeX] (P (x.,.)0,) —> (F(x,.),U) with property (F+) then also
(F (8,.5.),U;) —>(F(s.,.),U) with property (F ) holds,

So we can apply Theorem 1 (with £, = Fn(Sn ese)s h = o) to (8n),

Let be Y g Hilbert space, {Ynzj a sequence of subspaces and
Q, = P(Y,). Assume F (S, .,.) = F,(S..) + Fy(.), F € (Y—> r') convex,
Fy€ (v—r") strongly convex, U , X convex, S = _S—n + X, §n linesar
and bounded, 'fne X, . Then the functional f, = Fn(Sn.,.) are strongly
convex with c(fn) = c(Fz) and

— %
£ = Fy +8.Q, Fy (5..)
holds, Under appropriate assumptions the Theorems 2 and 3 may be
applied (ecf. ES] Y.
3. Optimization with minimum problems

We consider (7) where SE€ (U—> X) is the solution operator of the
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following problem (9)-(10):

(9)  k(x,u) = inf k(y,u) , yeM[{10)],

(10) 1(y,u) = inf 1{z,u) , z€X,
Theorem 1 can then be uged to investigate the weak or increased con-
tinuity of S(ef.L[3]). As an approximation method for (7),(9),(10)
we consider (8n) with the solution operator Sn of

(11n) m (x,u) = inf m (y,u), yeX,, m (y,u) = 1 (y,u)+e k (y,u).

In (8n),(11n) as special cases combined Ritz=-Ritz (Ritz-projected
penalty, Ritz-projected regularization) methods are contained,
Theorem 1 gives results on the continuous, weakly continuous or increa-
sed continuous convergence of (Sn,Un) —> (S,U)., Using these results
and, once more, Theorem 1 (cf., Part 2) the convergence of solutions
of (8n),(11n) to molutions of (7),(9),(10) can be proved (e£. L9] ).
In some cases also iteration methods of the form (4) and (&) can be
derived ( L8] ). For applications of the results in problems with
partial differential equations see [aa1 .

4, Mixed variational inequalities
Let be Y a reflexive space; T,8€ (Y —> ") and k,1€ (Y —af'R1). We
congider the mixed variational inequality
(12)  (Tz,y~z) > k(z) - k(3) , yeM [ (13)],
(13) (Sy,x-y) 2 k(y) - k(x) , x€X ,

Existence theorems for (12)-(13) can be obtained from the results
of BREZIS[4], BROWDER [?1 , KLUGE-BRUCKNER [10] and LIoNs [(13] on
variational inequalities,

Let be X $ d), convex and closed; T, S, e —> Y"() be monotone
and hemlcontinuous operators, Rn = S + e; Tn, kn, 1 < (Y — R ) be
convex and lower semicontinuous functionals and m, = 1 ate kn,n-1 250000

As an approximation method for (12)-(13) we ccnsz.der

(14n) (Rn nt X = 2 ) mn(z ) - mn(x) s xeX s = 1,2,000e

Let the :following assumptions be fulfilled:
v, w - le X C X,
V. X¢s - Lm X, if 530 and y€ s-Lim X for any ye M((13)] if s#o.
VI, (Tn,X )——9 (T X) and (S Xn)—ﬁ (s, X) continuously;

(kn’xn)‘“) {k,X) and (ln,Xn) —=>(1,X) u.s.c. and w,1l,8.C,
Definition 2., The notation "(Tn,Xn)——sv (T,X) with property (S+) u
means: if y € X ,y,—~ y € X and Iim (Tn Ipr¥y = ¥) £ 0o then
Ny, =yt —> o.

Theorem 4. Let (14n) have at least one solution z, for every n and



381

let the following assumptions be fulfilled:
1, (12)-(13) has at least one solution z such that there exists a
gequence {y } with the propert:n.es- Yn e—X for n= no ,lly -zl —*o,

ﬁn;%;{[(-sni Tyt T, )+1 (y )-1 (z >]/e o, j_zz o

if I\Z Il-—)c'o and
l:Lm {[-S Ipr Zn = yn)+1n(yn)-1n(zn)]/en} £ 0

1f {znf( is bounded.

2., One of the following conditions (i),(ii) is fulfilled:
(i) X C PCY, n = 1,2,.0..3; F is bounded,
(ii) 1Iim T z z vy, )+f (= VAT = + oo
i >°o°{[( i ni’ g’ ny oy ny }
if \\z Il —> + 00,

Then w-Iim z_ F 0 ana w-Etm 2z c u[(12)-(13)].

It additionally the assumptlon
(T o X )"'9’ (7,X) with property (S+) or (kn,Xn)—-e (k,X) with pro=-
perty (F)
is fulfllled then every weakly convergent subsequence of 1’ } is
also strongly convergent.

ny

Proof, cf, EX]- For specisl cases see LY- *1.
Remark, Analogous to the theorems 2 and 3 we may give theorems on the
strong convergence of projection-iteration methods for (12)-(13)

(see [4-8 1 ).
5. Optimization with variational inequalities

We consider (7) where S€ (U —»X) is the solution operator of the
following problem
(15)  (Q(z,u),y-2z) = k(z,u)-k(y,u) , yeu{(16)] ,
(16)  (P(y,udx-y) =2 1(y,u)-1(x,u) , x€X .
Theorem 4 can then be used to investigate the weak, strong or increa-
sed continuity of S (cf, Eﬂ,’l’l]). As an approximation method for (7),
(15), (16) we consider (8n) with the solution operator S of
(17n) (Rn(zn,u),x-zn)';mn(zn,u)-mn(x,u), x€X ), ns1,2,...,

Rn(x,u) =Pn(x,u) + e - Q (x,u), mnIx,u)=ln(x,u)+en-kn(x,u).

In (8n),(17n) as special cases combined Ritz-Galerkin (Ritz-projected
penalty, Ritz-projected regularization) methods are contained., Theorem
4 gives resultis on the continuous, weakly continuous or increased con-
tinuous convergence of (Sn,Xn)_‘> (S,X). Using these resulis and
Theorem 1 the convergence of solutions of (Bn),(17n) to solutions
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of (7), (15), (16) can be proved (cf.[3]). Por special cases see
KRAUSS [12] and YVON [157. In some cases also iteration methods of
the form (4) and (6) can be derived ( [93 ). .

For applications of the results see sl and C”4] .

References

(1]
(2]
3]
(4]
(sl
L]
71
Le]
Lol
E}o]
(1]

KH
[13]
{14l
[15]

Brezis, H., BEquations et inéquations non linfaires dans les
egpaces vektoriels en dualité, Ann, Inst, PFourier, Grenoble 18,
115-175 (1968),

Browder, F,E,, On the unification of the calculus of variations
and the theory of monotone nonlinear operators, FProc, Nat, Acad.
Sei. 56, 419-425 (1966).

"Kluge, R.,, Ein Projektions-Iterationsverfahren bei Pixpunktpro=-

blemen und Gleichungen mit monotonen Operatoren, Mber, Dit,Akad.

==, Zur gpproximativen Losung nichtlinearer Variationsunglei-
chungen, Mber., Dt. Akad, Wiss, 12 (1970), 120-134.

-w=, Digssertation B. Berlin 1970.

~w= . N@herungsverfahren zur approximativen LOsung nichtlinearer
Variationsungleichungen, Math, Nachr, 51 (1971), 343-356,

~ww, Ndherungsverfahren fiir einige nichtlineare Probleme, Proc.
of the Summer School on nonlinear operators., Neuendorf/Hidden-
see (GDR)(1972), 133-146, Akademie~Verlag, Berlin 1974.

-=w, Variationsungleichungen iiber LOsungsmengen von Variations=-
ungleichungen, Math, Nachr,

-, Zur Optimierung in Aufgaben mit Variationsungleichungen,
Math, Nachr,

Kluge, R. und G, Bruckner, Iterationsverfahren fiir einige
nichtlineare Probleme mit Nebenbedingungen. Math, Nachr, 56
(1973), 346-369.

Kluge, R., Krauss, E, und R, Nirnberg, Zur Optimierung in Auf-
gaben mit Operatorgleichungen und Evolutionsgleichungen, Proc,
of a Summer School on nonlinear Operators, Stars Lesnd (Czecho-
slovakia), 1974 .

Krauss, E.,, Zur Steuerung mit Operatorgleichungen., Proc, of the
Summer~School on nonlinear operators. Neuendorf/Hiddensee (GDR)
(1972), 169~176, Akademie-Verlag, Berlin 1974.

Lions, J.L., Quelques méthodes de résolubtion des problémes aux
limites non linfaires, Dunod, Gauthier Villars, Paris 1969,

- Contrdle optimal de systémes gouvernef par des &quations
aux dérivées partielles, Paris, Dunod, Gauthier~- Villars, 1968,

Yvon, J.P,, These, Etude de quelques problemes de controle pour
des systemes distribues, 1973.



