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In 1972, L. McLinden 13,47 proposed a perturbation method in order to build the
dual of a minimax problem. This method is similar to Rockafellar's for dual minimi-
zation problems but is much more complicated for several technical reasons. In
particular, Mclinden permanently works with classes of equivalent convex-concave
functionals.

Our aim is to present an equivalent theory of duality for minimax problems,
using only the classical duality theory for minimization problems and a notion of

partial minimization.

I. NOTATIONS

The notations are essentially the same as in [1,2}. We denote by X and X' two
locally convex topological linear spaces in duality ; < x,Xx' > being the value of
the bilinear form at x € X and x' € X'. In the same way Y, Y' are in duality ;
Y:L’ Yi H Xg, Xé s and so on ... . We consider functionals f defined on X (or
X', ¥, ¥',...) with values in B = R U {+} U {-=} . The set of functionals [
defined on X which are the supremum of a family of continuous affine functionals
will be denoted by I'(X). The conjugate of f will be denoted by = ; it is an element
of T(X'). If a functional f is defined on a product XY, £* means the conjugate of £
with respect to the two variables ; it is an element of T'(X'Y'). We will need a
notion of partial conjugency ; for example, if f is defined on XY, pr will denote a
funetional defined on XY' which is obtained by partial conjugency with respect to

yey:

Pyf(x,y") = Sup (< y,y' > - £(x,5)) .
yeY

The conjugency (or partial conjugency) operation will always be applied to convex
functionals. Rather to define a notion of conjugency for concave functionals g, we
will wuse the "change of sign operator” § (such that 8g = -g) and take the conjugate
of 8g . For example, if £ e T{XY), pr is concave with respect to x € X and we can
define oy ] pr . It is easy to see that :

Py © Pyf(x',y") = £5(x',5") = by 6 By f(x',y") .
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IT. DUAL MINIMIZATION PROBLEMS AND DUAI. MINIMAX PROBLEMS.
Following Rockafeliar [5] , but using notations as in [1,2] , a pair of dual

minimization problems is defined by two convex functionals o € T(XY') and ¥ € T(X'Y)
which are mutually conjugate (i.e. such that v = q:x and @ = \yi)._

If we define £f(x) =o(x,y' = 0) (%) and g(y) = ¥(x' = 0, y) , the two dual
problems are :

(P) a = Inf £(x)
xeX

(@ B = Inf g(y)
yey

We always have - B < o . The variables y' and x' act as perturbatinon variables.
If we consider the two families of minimization problems :

(P.y) h(y') = Inf o(x,y")
y xeX

(Q,) k(x') = Inf ¥(x',y)
QX yeY

the problems (P) and (Q) correspond to the value zero of the perturbation variables
y' and x'.

The duality between (P) and (Q) could also be defined by the class L of

equivalent (see [5] ) convex-concave functicnals, the extreme elements of which are :

%(x,5) = 8py@(x,5) == Swp (< y,y' > - 9(x,5"))
y'eY!
&(XQ’) = pX,‘If(X,y) = Sup (x X,x' > - W<X':y))

x'eX!

L={efg <8<}

The minimax problem (S) associated to the functionals ® and ¥ consists in
finding [x,y] € XY such that :

(8) L(x%,y) < 0(x,y) < 8(x,y) , forallxeXandyeV

(the solutions of (S) are the same for all 2 ¢ L).

(%)  The notation @(x,y' = 0) instead of ¢ (x,0) helps to recall that the variable
which is taken equal to zero is y' € Y'. This method will be very useful later for
more complicated cases.
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It is well-known that the following three propositions are equivalent :
(1)  [%,y] is a solution of (S).
(i1) x is a solution of (P), ¥ is a solution of (Q) and o = - B8 .
(iii) £(X) + g¥) = 0 .

Thus, hereafter, a minimax problem will rather be given by a pair of mutually
conjugate functionals @ and ¥ which are defined on a product of two spaces.

DEFINITION : Consider two minimax problems S1 (represented by the two functionals
Py and ‘yll’ and the associated minimization problems (Pl) and (Q1)> and 82 (repre-
sented in the same way by P55 Yoy , and the assoclated problems (P2) and (Q2)).

We will say that S1 and 82 are dual if

- P1 and Q2 are dual (with respect to @, and Y¥,,)

- P, and Q1 are dual (with respect to 9, and L1’21)

This definition can be summarized by the following diagram :

(R) <f—> (Q)

(Pz ) M o (Q9_>

In the next section we will show how this diagram can be easily obtained in
the classical framework of duality for two minimization problems, using partial

minimization.

ITT. DUAL MINTMAX PROBLEMS AND PARTTAL, MINIMIZATION.

Let (P) and (Q) be two dual minimization problems corresponding to ¢ € T'(XY')
and ¥ € T(X'Y) (with V¥ = cpx), but suppose that the variable x € X splits into two
variables X, € X1 and X, € X2, i.e. X is the product X1X2. In the same way, suppose

Y to be the precduct Y1Y2. The spaces X = X1X2 and X' = XiXé are in duality and simi-

larly the spaces Y = Y1Y2and Y' = YiYé are in duality.
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The prcblem (P) can be written :

(P) o = Inf f(xl,xg)
X, €X
11

with f(xl,xg) = co(xi,xg,yi =0, y) = 0), while the problem (Q) is :

(@ 8 = Inf g(yl,y?)
V€Y,

V€Y,

with g(yi,;y2) = ‘Y(xi = Q, xé =0, yi,yZ) .

Now we construct a problem (Pi) which consists in minimizing over X1 the
functional f‘,_l which is the result of a partial minimization with respect to the
variable Xye Conversely we call (Pg) the problem of minimizing over X2 the functio-
nal f2 which is the result of a partial minimization with respect to X

In the same way we construct the problems (Q1> and (Qg). Let us write the four
problems at the vertices of a square :

(P} : o= Inf £ (x) Q) : B= Inf {v,)
1 1'%1 1 &1\
X, €%, V1€%
with £ (x,) = XIn}i; £(x,5%,) with g (y)) = Iﬂg 8(y45¥,)
X, Y&t

(P,) : o= Inf f,(x,) Q)+ B= Inf g,(y,)

2 2% > 2\ Yo

with  f,(x,) = Inf £(x;,%,) with  g,(y,) = Inf gly;,y,)

We will show that the duality relations described in the diagram of section IT
can be easily obtained :

@ Duality between (P,) and (Q) :

The objective functionals of (Pl) and (Qi) can be written :

fl(xl) = Inf fp(xl,xyyi = 0, yé =0)
xEE
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gi(yl) = Inf \P(Xj'_ =0, Xé =0, yl’yZ)
£,

The dual variable of ¥4 being yi, we consider the function of Xy and yi defined

by :

¢ - 1 [ - R 1 = ] 1
0 (x5y8) = Inf @0k ,%5,¥]555 = 0) = Opy @(x;,x) = 0, y{,¥5 = 0)
£k 2

and similarly :

V({5900 = Inf ¥(f,x) = 0,5,,¥,) = 6py ¥(x],x} = 0, y,y) = 0)
y26Y2 2

The functionals @ 1 and \yli are convex ; in general they do not belong to
I‘(XlYi) and I‘(Xin) respectively, and they are not mutually conjugate. But under weak
assumptions these properties can be satisfied. Let us consider for example the follow-

ing two assumptions :
or all x} € » the function
(H,) for all x} € X} , the functional
[Xj_’yj'_’yé] > er CP(Xl,Xé,yj'_,yé)
2

vt
belongs to F(XlYlYZ) .

(K for all yé € Y!, the functional

[x],%35941 + 0py ¥(x],x5,¥,,55)
2

] 1
belongs to ¥ (X1X2Y1) .

The assumption (Hl) means that the projection of the epigraph of @ (which is a closed

convex set of X,_]XZYiYéIR) onto the space X,_IYiYéIR is closed. There are many sufficient

conditions for obtaining this property.

PROPOSTITION :
The assumption (Hl) implies that Py, = ‘1’1{1 and the assumption (Kl) that
_ %
Yiq =979 -

PROOF : We have :
E (gt = o (x! = t -
034 (x]5y,) = (pYiepxl)erép(xl,Xé =0, y;5¥5 = 0)

¥14(x355) = epYEW(Xi>Xé =0, y4,¥5 = 0)
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By assumption (K ), if we take the conjugate of epY ¥ with respect to the variables

x! xzyl, and then the conjugate with respect to X 2y1, we obtain epY Y itself :
2

(Py16py 0Dy ) (Py 6py40Dy, 6P, ¥ = 0p,, V¥
v1°Px, pX2 ¥, Pxs Py Py, Y,

_ u¥ o - x
But leerieréepYZ\P =¥ =@ . It follows that pYiepxlepxch = epY2‘¥ , hence cp11 = \1111.

By similar arguments, we prove that assumption (H ) implies ‘If =P -

Thus, under (Hl) and (Ki)’ the functionals ®,, and ¥, , are mibually conjugate
and they define a duality between (Pl) and (Ql)' We will call (S'.I) the corresponding
minimax problem.

@ Duality between (P2) and (QZ) :
Proceeding in the same way, we define

1y = = [ [ 1
Pop(%ps¥3) = Iean 00y %551 = 053) epxlcp(xi 0s%3551 = 0s¥3)
%1

1 = = = =
l{l22(x2’y2) = Inf \F(X =0 X23y15y2> - GPY \I’(Xj'- - O’Xé’yj_ - O,yz)
y1€Y 1

and we congider the two assumptions :
(H2) for all xi € X1, the functional
] 1 ! 1 1
[x5,555y51 > er1 ® (] 5%5,¥15¥5)
Tyt
belongs to P(X2Y1Y2)
(K2) for all yi € Yi , the functional

[x],%5,5,1 > ele ¥(x],%5,5]59,)
tye
belongs to T(X1X2Y2) .

— X :
The assumption (H ) implies that Py = ‘P22 and (KZ) that ‘1’22 =955 With (Hg) and (K2)
the two functlonals Pos and ‘P22 are mutually conjugate and define a duality between

(PZ) and (Qz). We will call (SZ) the corresponding minimax problem.

() Duality between (S,)_and (S,) :
In order to define a duality between (Sl) and (82) we have to define

1°/ a duality between the two minimization problems (Pl) and (QZ) and
2°/ a duality between (PZ) and (Ql)'



Congider the two functionals :
@ ,(xp¥0) = epxgﬁ(xl,X§

1 = t ot
¥ 5(x],y,) eleq(xl,xz

One can prove that the assumption (Hl) implies that o 10 = ‘Y?lEZ and the assumption (Kz)

i

O:Y:’L

0,y1 =

that ‘1’12 = cpgf2 . Thus the two assumptions (Hl) and (Kz) together imply that 9,, and
‘?12 are mutually conjugate and define a duality between (Pl) and (Q2).

Similarly, we define :

P,1(2555]) = epxicp(xi

¥o1(5s¥y) = 0Py YO = 05xo3,0v =

= 0,x

t 1
2:y1 :y2

_O)’

With the two assumptions (H2) and (Kl) these two functionals are mutually conju-
gate and they define a duality between (Pg) and (Qi) .

Finally, with the four assumptions (Hi)’ (HZ}, (K1> and <K2)’ we have obtained

two dual minimax problems (Sl)’ which is the pair (P’_I)’ (Ql)’ and (82), which is the
pair (PZ)’ (QZ)' The problems (Pi)’ (Pz)’ and the problems (Qi)’ (QE) are obtained by
partial minimization of two problems, respectively (P) and (Q), which are dual of each

other in the classical sense. This situation is summarized in the following diagram :

[x]
(B)

[Hy

)

[*]

P .
(%] [x]
% A
QI\\\ e {v

1/ N ?(/
%7 S
XS %
¥4 [N
" oo '\?‘:.:.5
] BN

(%]
@)

Q)

[Y%]

"
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IV. ITABILITY AND CHARACTERIZATION OF THE SCLUTTONS .
Using the characterization theorem of section II and the fact that (Pl) and
(Qz) are dual as well asA(P2) and (Qi)’ we have the following result :

The pair [§1,§1] is a solution of (S;) and the pair [§2,§2] is a solution of
(82) if and only if the following two conditions hold :

£,0x) + g,(3,) = 0 and  f,(x) +g(y) =0

Using the terminology introduced in [1,2] , the problem (Pl} is stable with
respect to the perturbation yé if the functional :

1y = 1
1%
is finite and continuous at yé = 0.
In the same way, (Qi) is stable with respect to xé if the functional

¥4€¥,

is finite and contimuous at xé = Q.

Speaking of the duality between <Sl> and (82), it is logical to say that (Si)
is stable if h12 and k?l are finite and continuous at yé = 0 and xé = 0 respectively.

We have then the following characterization theorem :

If (5,) is stable, then {i1,§1] is a solution of (S,), if and only if there

exists [§2,§2] € X, Y, such that :
£,(x) +g(y,) =0 and () + g(y) =0

(obviously such a pair [22,52] is a solution of (52)).

V. EXAMPLES.
In both examples we suppose that the assumptions (Hi)’(H2)’(K1) and (Kz) are
satigfied.

Example 1 :

Suppose we have Xl = Yé, Xi = Y2, X2 = Yi, Xé = Y1 and let wy € F(Xixg)
and Wy € F(X1Xé). Define :

1 1 - -y ! —_

P2 5%,,51555) = 0 (%5%,) + W (2y-¥], %57Y5)

Then the conjugate of ¢ is :
*x *
Y(x]5x3,5157,) = Wiy, yorad) + wp(-yy,7y,)

It follows that the minimax prolilem (Sl) is defined by :
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0 Gepy)) = I Gy (ryap) + 0500 y05%,))
X2€X2
Yo (x!,y,) = Inf (P axlys) + =y ,y,))
111%45¥ W AT TR sT) T BT
€Y,
and (82) by :
Pop(Xps¥) = TInf Ly (xy5%p) + uy(y,%,753))
X, €%
Y (x0,0,) = Inf (Y, ,yo4x)) + wn(-¥,,-9,))
2o\ %o ¥p AR PARLER S

(The functionals P45 ¥

y1€%y

12 %21 ¥oq

The four problems which form (Sl) and (82) are :

are defined in the same way).

() a= Inf £0x) @) 8= I g ly)
€44 y4€44
x *
£,00) = Inf (o (g %, )+ (% 5%,)) g (y)) = Inf Wiy s¥,)+us(=y,579,))
XX V€Y
272 2=72
(PE) o = x12§ fz(X2> (QE) B = Ing gz(yz)
Pt V€S
. % *
£,(x,) = Inf (wy (%%, )40, (% ,%,)) 85(¥y,) = Inf (wy(y,,9,)4wy(=y,57¥,5))
x,€X v.€Y
1~ -1
Example 2 :
= Y'Y = mn = = n
. Let Y1 Y1 B’" and Yg Yé R™ . Suppose @ € F(Xi}{z), fi ¢ 1‘(}{1),
i=t,...,m and gj € T(XZ), J=l,005n .
Define :
m(xi,xg) if fi(x1)+yii <0 , i=l,...,m
P(x,%5,¥]5¥5) = and gi(x)4y)5 <0, J=l,...5n

+ elsewhere.

The conjugate of ® has the following expression :

Wx],%0,5,5Y,) =

Sip (< xl,x{
X%

T I Vq4
1

if Y43 205 i=1,...,m and y2j > 0, j=1,.

elsewhere.

f.
i

(Xl)

> + < xg,xé > - w(Xl,XE)

- g y2j gJ(XZ))

cesll
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If we define :
¢, =1x ¢ Xllf’i(xl) <0, i=1,...,m
c, = {X2 € XE}gj(XE) <0, i=l,...,0}

the minimax problem (Si) is given by :

i

Inf w(xi,xg) if fi<X1) +y5,20,1i71,.0m

X.€C
09 (x05¥9) = 2%

+ o elsewhere

Inf Sup (< x,,.x! > - w(x, ,x,)

1271 1272
V20 X1€Xy
x,€%, m n
- - L y.. £.(x,) - Iy, g.0x,))
t - 2

\Pll(xl’yl) 121 11 i 521 23 =2jte

irf Vi3 2 0, di=1,...,m,
+ elsewhere

and the minimax problem (82) is given by :

Inf ‘”“‘1’}‘2) if gj(xz} + yéj <0, J=l,...,n,

x,€C
1571
©0,,(x,,¥4) = '
e2rre + »  elsevwhere
Inf Sup (< x.,x! > - w(x,,x,)
2372 1272
¥20  %EX,
x26X2 m n (53)
- I y4. T.(x) - T oys. g.(x s
. 1 . 2 2
Yoo (X555,) = f= 1T TR

if y2j >0, j91,...,n,
+ o  elsewhere.

Finally, the four problems which compose (81) and (Sg) are :

(P,) a= Inf w(x) () 8= Inf n.(y,)
1 17 1 1l
w,(x,) = Inf w(x,,x,) Ny (yy) ==Inf (0(x;,%,) + I y1ifi("1))
x2602 xleX1 1
X2602
(P,) a= Inf w,(x) (Q,) B = Inf mn,(y,)
2 2272 2 292
wy(xy) = xlné‘ w(xy,%,) n,(y,) =;Iné‘ (w(xl,x2) + 2 Y0385 (x,))
1€C1 15%1 J
x25X2
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