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In 1972, L. McLinden E3,4] proposed a perturbation method in order to build the 

dual of a m~n~m~x problem. This method is similar to Rockafellar's for dual minimi- 

zation problems but is much more complicated for several technical reasons. In 

particular, McLinden permanently works with classes of equivalent convex-concave 

functionals. 

Our aim is to present an equivalent theory of duality for minimax problems, 

using only the classical duality theory for minimization problems and a notion of 

partial minimization. 

I. NOTATIONS 

The notations are essen~ially the same as in [1,2]. We denote by X and X' two 

locally convex topological linear spaces in duality ; < x,x' > being the value of 

the bilinear form at x E X and x' E X'. In the same way Y, Y' are in duality ; 

YI" Y~ ; X2' X~ ; and so on .... We consider functionals f defined on X (or 

X', Y, Y',...) with values in~ = ~ U (+~) U (-~) . The set of functionals f 

defined on X which are the supr~n~n of a fsmily of continuous affine functionals 

will be denoted by F(X). The conjugate of f will be denoted by f~ ; it is an element 

of F(X' ). If a functional f is defined on a product XY, ~ means the conjugate of f 

with respect to the two variables ; it is an element of F(X'Y'). We will need a 

notion of partial co~jugency ; for example, if f is defined on XY, pyf will denote a 

functional defined on XY' w~ich is obtained by partial conjugency with respect to 

yEY: 

p y f ( x , y ' )  = Sup ( < y , y '  > - f ( x , y ) )  . 
~ Y  

The conjugency (or partial conjugency) operation will always be applied to convex 

functio~is. Rather to define a notion of eonjugency for concave D~nctionals g, we 

will use the "change of sign operator" e (such that eg = -g) and take the conjugate 

of ~g . For example, if f E F(XY), pyf is concave with respect to x E X and we can 

define PX e pyf . It is easy to see that : 

PX 0 p y f ( x ' , y ' )  = f ~ ( x ' , y ' )  = py  0 p x f ( x ' , y  ' )  . 



384 

II. DUAL MINIMIZATION PROBLEMS AND DUAL MINIMAX PROBLEMS. 

Following Rockafellar [5] , but using notations as in [1,2] , a pair of dual 

minimization problems is defined by two convex functionals ~ 6 F(XY') and Y 6 F(X'Y) 

which are mutually conjugate (i.e. such that Y = ~x and ~ = yx). 

If we define f(x) =~(x,y' = O) (~) and g(y) = W(x' = O, y) , the two dual 

problems are : 

(P) ~ = I n f  f ( x )  
x6X 

(Q) B = Inf g(y) 
yEY 

We always have - B ! ~ . The variables y' and x' act as perturbatinn variables. 

If we consider the two families of minimization problems : 

(Py,) h(y') = Infqo(x,y') 
xEX 

(qx,) k(x , )  = i n r  ~(x '  ,y) 
yEY 

t h e  problems (P) and (Q) correspond to  t he  v a l u e  ze ro  o f  t he  p e r t u r b a t i o n  v a r i a b l e s  

y' and x'. 

The duality between (P) and (Q) could also be defined by the class L of 

equivalent (see [5] ) convex-concave functionals, the extreme elements of which are : 

[(x,y) = epy,~(x,y) =,- Sup 
Y'EY' 

~ ( x , y )  = p x , 7 ( x , y )  = Sup 
x'6X' 

(< y,y' > -~(x,y')) 

(< x,x' > -~(x',y)) 

The min~ problem (S) associated to the functionals ~ and y consists in 

finding [x,y] 6 XY such that : 

(s) Z(x,Y) S ~(x,Y) ! Z (x ,y )  , f o r  a l l  x 6 X and y 6 Y 

(the solutions of (S) are the same for all ~ E L). 

(x) The notation ~(x,y' = O) instead of ~(x,O) helps to recall that the variable 

which is taken equal to zero is y' E Y'. This method will be very useful later for 

more complicated cases. 
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It is well-known that the following three propositions are equivalent : 

(i) [x,y] is a SOlution of (S). 

(ii) x is a solution of (P), y is a solution of (Q) and ~ : - ~ . 

(iii) f(~) + g(y) = 0 . 

Thus, hereafter, a minims~ problem will rather be given by a pair of mutually 

conjugate functionals ~ and ~ which are defined on a product of two spaces. 

DEFINITION : Consider two minimax problems S i (represented by the two functionals 

911 and Yil' and the associated minimization problems (P1) and (Qi)) and S 2 (repre- 

sented in the Same way by ~22 ' Y22 ' and the associated problems (P2) and (Q2)). 

We will say that S i and S 2 are dual if 

- P1 and Q2 are dual (with respect to 912 and ~i2 ) 

- P2 and QI are dual (with respect to 921 and Y21 ) 

This definition can be summarized by the following diagram : 

~ 11 
~ 11 

In the next section we will show how this diagram can be easily obtained in 

the classical framework of duality for two minimization problems, using partial 

~£nimization. 

III. DUAL MINIMAX PROBLEMS AND PARTIAL MINIMIZATION. 

Let (P) and (Q) be two dual minimization problems corresponding to ~ E F (XY') 

and ~ E F(X'Y) (with W : ~), but suppose that the variable x E X splits into two 

variables x I 6 X 1 and x 2 E X 2, i.e. X is the product XIX 2. In the same way, suppose 

Y to be the product YIY2 . The spaces X : XIX 2 and X' : XIX 2' ' are in duality and simi- 

larly the spaces Y : YiY2and Y' : YIY2' ' are in duality. 
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The problem (P) can be written : 

(P) a : Inf f(xl,x 2) 
XlEX 1 

with f(xl,x 2) : ¢(Xl,X2,Y ~ = O, y~ = 0), while the problem (Q) is : 

(Q) B : Inf g(yl,Y2 ) 
YlEY1 

Y2EY2 

with g¢yl,y2) = ~¢xl = 0, x~ = o, yl,y2) . 

Now we construct a problem (P1) which Consists in minimizing over X 1 the 
functional fl which is the result of a partial minimization with respect to the 

variable x2. Conversely we call (P2) the problem of minimizing over X 2 the functio- 

nal f2 which is the result of a partial minimization with respect to x I. 

In the same way we construct the problems (Q1) and (Q2) . Let us write the four 

problems at the vertices of a square : 

(P1) : ~ = In_f fl(Xl) 
XlEX 1 

with fi(xl) : l~f f(xl,x 2) 
x2EX 2 

(QI) : B : Inf gi(Yl ) 
YlEY1 

with gi(yl) = Inf g(y I ,y2 )  
Y2EY2 

(P2) : ~ = Inf f2(x2) 
x2EX 2 

with f2(x2) = Inf f(xl,x2) 
XlEX 1 

(Q2) : B = Inf g2(Y2 ) 
Y2EY2 

with g2(Y2 ) = Inf g(yl,y2 ) 
YlEYI 

We will show that the duality relations described in the diagram of section II 

can be easily obtained : 

Q Duality between (P1) and (Q1) : 

The objective functionals of (PI) and (Q1) can be written : 

fl<Xl) : Inf ~<Xl,X2,Y ~ = O, y~ = O) 
x2EX 2 
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g l ( Y l )  = I n f  T(x~ = O, x~ = O, y l ,Y2  ) 
Y2EY2 

The dual variable of Yl being y~, we consider the function of x I mud y~ defined 

by : 

and_ s i m i l a r l y  : 

z ~  ~ % , x 2 , y ~ , y  ~. = o) = epx2 
x2EX 2 

~ ( X l , X  ~ = O, yl,Y2' ' = O) 

$11(x~,Yl) = Inf ~(x~,x~ = 0,Yl,Y2) = epy 2 Y(x~,x~ = 0, yi,y ~ = O) 
Y2EY2 

The functionals ¢11 and YII are convex ; in general they do not belong to 

F(XIY~) and F(X~YI) respectively, and they are not mutually conjugate. But under weak 

assu~otions these properties can be satisfied. Let us consider for example the follow- 

ing two assumptions : 

(H i ) for all x~ E X~ , the functional 

, , ePx2 [xl,yl,y2] ÷ ¢(x x' ~T, v,~ ~"  i' 2'~i'~2" 

belongs to F(XIY~Y~). 

(K i) for all y~ E Y~, the functional 

I ! I X 1 I 
[Xl,X2,Y 1] + epy2T(x i, 2,Y1,Y2 ) 

belongs to 7(X~X~Y1). 

The assumption (HI) means that the projection of the epigraph of ~ (which is a closed 
I! convex set of XIX2Y~Y~IR) onto the space XiYiY2~ is closed. There are many sufficient 

conditions for obtaining this property. 

PROPOSITION : 

and the assumption (KI) that The assumption (HI) implies that ~11 = Yll 

~11 = ~11 ' 

PROOF : We have : 

~11(x1,Y1) = (pv,epy)6py~(xl,x 9 = 0, yl,y ~ = 0) 

Y11(x~,Y1) = epyJ (X~ ,X~  = O, y l , y  ~ = O) 
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By assumption (KI) , if we take the conjugate of Opy ~ with respect to the variables 

x,v,Vl~2~l , and thenthe conjugate with respect to XlX2~, we obtain 0PY2Y itself : 

(pV,0py Op-f )(Pv ePY,oPY,)epv T = 
- i  ~i "'2 -1 ~1 ~2 ~2 epyJ . 

But pylePx~0Px ~0pY2~ = T ~ = ¢ . It follows that pyiePxi0Px 7 = epy2Y , hence ¢~i = Yil" 

By similar arguments, we prove that assumption (Hi) implies Yil =¢ii " 

Thus, under (H i) and (Ki) , the functionals ¢ii and Yil are n~atually conjugate 

and they define a duality between (Pi) and (Qi) . We will call (S I) the corresponding 

minimax problem. 

Q Duality between (P2) and (q2) : 

Proceeding in the same way, we define 

~22(x2,y~) = inf ~%,x2,y i = O,y~) = Opx/(~ 1 = o,x2,y i = o,y~) 
xlEX 1 

~22(x~,y2) = Inf ~(xl = O,x~,yl,y 2) = opy1~(x i = o,x2,y I' ' = o,y 2) 
YlEY1 

and we consider the two assumptions : 

(H 2) for all x~ E X~, the functional 

X ~ T ) ) [ 2,Yi,Y2 ] + OPii ¢(x~,x2,Yi,Y 2) 

belongs to r (x2YiY ~) 

(K 2) for  a l l  y~ E Yi , the funct ional  

[ x ~ , ~ , y  2] ~ 0py1 ~(xl ,x~,y l ,y2)  

belongs to r(x~i~Y2). 

~ With (H2) and (K 2) The assumption (H 2) implies that ~22 = Y22 and (K 2) that ~22 = ~22" 

the two functionals ~22 and W22 are mutually conjugate and define a duality between 

(P2) and (Q2). We will call ~2)the corresponding min~ problem. 

Q Duality between (S I) and (S 2) : 
In order to define a duality between (S i) and ($2) we have to define 

i°/ a duality between the two minimization problems (PI) and (Q2) and 

2°/ a duality between (P2) and (QI). 



389 

Consider the two functionals : 

~ i 2 ( x ~ , y p  -- epx~(X~ ,X  ~ = o,y I -- o , y p  

12(x~,Y2) = @pyi~(x~,x~ = 0,y~ = O,y 2) 

One can prove tha t  the assumption (H i )  impl ies tha t  ~o12 = T~2 and the assumption (K 2) 

tha t  T12 = qo12 . Thus the two assumptions (H1) and (K2) together imply tha t  qo12 and 
~12 are mutua l ly  conjugate and def ine a d u a l i t y  between (PL) and (Q2) . 

Similarly, we define : 

= O,x2,Yl,y 2 

@py2~(x ' ' = O) ~21(x~,yl )  = ~ = O ,x2 ,y l ,y  2 • 

With the two assumptions (H2) and (K1) these two func t iona ls  are mutual ly  conju- 
gate and they define a duality between (P2) and (Q1) . 

Finally~ with the four assumptions (H1) , (H2) , (K 1) and (~), we have obtained 

two dual minimax problems (Si) , which is the pair (P1) , (QI), and ($2) , which is the 

pair (P2) , (Q2) . The problems (PI) , (P2) , and the problems (Q1) , (Q2) are obtained by 

partial minimization of two problems, respectively (P) and (Q), which are dual of each 

other in the classical sense. This situation is summarized in the following diagram : 

\\ / 
~ )  \ // 

/ / /  N\\\ 

J 
\ 

/ 
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IV. STABILITY AND CHARACTERIZATION OF THE SOLUTIONS . 

Using the characterization theorem of section I~ and the fact that (PI) and 

(©~) are dual as well as (P2) and (QI), we have the following result : 

The pair [xl,Yl] is a solution of (S I) and the pair [x2,Y 2] is a solution of 

(S 2) if and only if the following two conditions hold : 

f1(~) + g2(~2 ) = 0 and f2(~2) + gi(~i) = 0 

Using the terminology introduced in [1,2] , the problem (P1) is stable with 

respect to the perturbation y~ if the functional : 

XlEX 1 

is finite and continuous at y~ = O. 

In the same way, (Q1) is stable with respect to x~ if the functional 

~l(X~) = Inf Y21(x~,Y1) 
YlEY1 

is finite and continuous at x~ = O. 

Speaking of the duality between (S 1) and ($2) , it is logical to say that (S 1) 

is stable if h12 and ~i are finite and continuous at y~ = 0 and x~ = 0 respectively. 

We have then the following characterization theorem : 

If ($1) is stable, then [xl,Yl ] is a solution of ($1) , if and only if there 

exists [x2,Y2 ] E X 2 Y2 such that : 

fi(~i) + g2(~2) = o and %(~2) + gi(~i) = 0 . 

(obviously such a pair [x2,Y2 ] is a solution of ($2)). 

V. EOC~4PLES. 

In both examples we suppose that the assumptions (HI),(N2),(KI) and (K 2) are 

satisfied. 

Ex~r~ole i : 

Suppose we have X I = Y~, X~ = Y2' X2 = Y~' X~ = T I and let ~i E F(XIX 2) 

and ~2 E F(XIX2). Define : 

~(xl,x~,y~,y ~) = ~l(xl,x2) + %(x~-y~, x2-y ~) 
Then the conjugate of ~ is : 

T(x~,x~,yl,y 2) = ~1(Y1+X1 , Y2+X~) + ~2(-Y1,-Y2) 

It follows that the minimax pro]olem (S 1) is defined by : 
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~ll(Xl,Y~) = inf (~i(Xl,X2) + ~2(Xl-Y~,X2)) 
x2EX 2 

ll(x~,Yl) = Inf 
Y2EY2 

and ($2) by : 

(~i(Yl+Xl,Y2) + oJ2(-yl,-y 2)) 

~22(x2,Y~) : Inf (mi(xl,x2) + ~2(xl,x2-Y~)) 
xleX I 

~22(x~,Y2) = Inf LwlLyl,y 2 X2) + ~2(-yl,-y2 )) 
YlEY1 

(The functionals 912 ~12 ~21 ~21 ar~ defined in the same way). 

The four problems which form ($1) and ($2) are : 

(P$) a : Inf fl(xl) 
xiEX i 

f1(xl) = ~ (¢l(Xl,X2)+¢2(xI,x2)) 
x2 x2 

(P2) ~ = Inf f2(x2) 
x2EX 2 

f2(x2) = Inf (ml(Xl,X2)+m2(xl,x2)) 
XlEX 1 

(Qi) B : Inf gi(Yl ) 
YlEYI 

+ gl(Yl ) : Inf (~o1(Y1,Y2) ~o2(-Y1,-Y2)) 
Y2EY2 

(Q2) B = Inf g2(Y2 ) 
Y2EY2 

g2(Y2 ) = Inf(~I(Yl,Y2)+~2(-Yl,-Y2 ) ) 
YlEY1 

Example 2 : 

Let Y1 = Y~ = IRm and Y2 = Y~ = ~n . Suppose ~ E F(XIX2), fi E r(XL), 
i=l .... ,m and gj E F(X2), j=l,...,n . 

Define : 

qo(Xl,X2,yl,y 2) = 

~(xl,x 2) if fi(xl)+y~i!O , i=l,...,m 

and gj(x2)+Y~j !O , j=l .... ,n 

+ ~ elsewhere. 

The conjugate of ~ has the following expression : 

~(x'~x',y ,y ) = 1 2 1 2 

Sup (< xl,x ~ > + < x2,x ~ > - ~(xl,x 2) 
xlx 2 

" E Yli fi(xl ) - ~ Y2j gj(x2)) 
i J 

if Yli hO, i=l, .... m and Y2j h 0" j=l .... ,n , 

+ = elsewhere. 
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If we define : 

c I : {xl ~ x11fi(xl ) i o, i=I, .... m] 

C a : { x  2 e X21gj(x 2) SO , ~ = l , . . . , n }  

the min imaxproblem (S i )  i s  g iven hy : 

~11(xl,y{) : 

hl(~,yl) = 

i Inf 
x2EC 2 

~(Xl,X 2) if fi(xl) + Y~i 10 , i=l,...,m 

elsewhere 

Inf Sup 
Y2 ~0 x16X 1 

x2EX 2 

(< Xl,X ~ > - ~(xl,x2) 

m n 
Yli fi(xl ) - gj(x2)) 

i:1 j~l y2j ' 

if Yli ~ 0 , i=l,...,m , 

+ ~ elsewhere 

and the minimax problem (S2) is given by : 

Inf ~(xl,x 2) ifgj(x 2) + y~j ~ 0 , j=l, .... n , 
x!EC I 

M22(x2,Y~) = 
+ ~ elsewhere 

~22(x~,Y2) = 

Inf Sup 
ylZO x1 x I 

x2EX 2 

(< x2,x ~ > - ~(xl,x 2) 

m n 
i j1i fi(xl ) - j ly2j gj(x2)) , 

if Y2j h 0 ~ j=1 ..... n , 

+ co elsewhere. 

Finally, the four problems which compose (S 1) and (S 2) are : 

(P1) ~ = Inf ~1(Xl) 
XlEC 1 

~1(Xl) = Inf ~(Xl,X2) 
x2EC 2 

(P2) ~ = Imf ~2(x2) 
x2EC 2 

~2(x2) = Inf ~(Xl,X2) 
xIEC 1 

(QI) B = Inf ql(Yl) 
hr 

q1(y 1) =-Inf (~(Xl,X 2) + ~. Ylifi(xl ) 
x16X 1 m 

x2EC 2 

(Q2) 6 = Inf q2(y 2) 
Y2K 0 

n2(y 2) =-It* (~(xl,x 2) + ~ y2jgj(x2) 
XlEC I J 

x2EX 2 
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