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Lebesgue integral of a set-valued funciion is a conception of

growing importance for the theories of the optimal control asnd of
the differential games (see for example [1] ). For solving con-
crete problems it will be often useful to reduce a Lebegue set-
integral to a riemannien one, In this ariticle we shall find suffi-
cient and necessary conditions of existence of riemannien integral
of a set-valued function and prove the equality beiween riemannien
and Lebesgue set-integrals in the case when riemannien set-integral
exists.

I. Notations., Definitions, Auxiliary Propositions.

Let A" be an ewclidean n-space, (x,y) - the scalar product of
x,7€R", [=[a,81C R?, V={xeR"ixik{§, W={veRlivi=1} . 1et A
andB be dom'pact gubgsets of R". The Hausdorff distance is definded
by formula h(A B) MLR[?>0{ACB+ZVBC,4+ZV} We shall denote by

the gpace of all compact subsets of /? with Hausdorff metric in
it. If {AJEQ » then we shall define ZH Ai" A {Qi
+a,,,[a;€A‘-} : 1fAG.Q ~ then tend A is closure of extreme
points of A and [A]=h(A,0).

We shall say thatf*];%tfzniS» set-valued function. The conceptions
of limit in the metric spaceﬂh(denote[/m) and of continuity of
functionF*[—>L2" are defined as usual.

We shall say that mapF31?f£2" is convex-valued function if g1l +the
sets/??)CY?" are convex for every fixed 7€/, Support function of
the set ACR" is the function S (¥, A)=3up{(¥%)[x€f}. we shall
consider the support function only forveW.

We shall say that mapf?]iffzn is Lebesgue measurable funciion on
if for any closed setDCK"the set {fé]/F(-(')/)D¢¢} is Lebesgue
measurable set,

Definition 1 TLebesgue integral of the set-valued function
F: I—?ﬂ" on I (get-integral) is the set l.] F(Ydt —-[w'ek" 3/'({)6/‘-6{)

r(t) is Lebesgue measurable function on [ and such that&l-{ﬂﬂ%h?}
I

Subdivision of an interval [E:[Q,B] ig finite set of numbers

={{,t,., 8y} such thet f=a, t<tn,, ta=6 . Let At; =t~
j\ nmx{afl}be diameter of the subdivision@) . Let ?‘-e ['ét,f:.‘u]
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be an arbitrary point. We shall consider in this article only bound-
ed maps F:[—QQ", that means: JA>0: |F(D|<x Vtel,

Definition 2 Riemannien integral of the bounded set-valued
function F:J— " on | 1is the limit of sets: RfF/f}df=[IMZF(;’;)A{£,
provided this limit exists. z A0
We shall use following well-known propositions:

Proposition 1. Convex-valued function F: I'—'ﬂnis continuous
iff it is bounded and suppori function S(‘f’, F(é)) is continuous by
¢t for any YEW. ([2])

Proposition 2. (C-property). Map /CI""Q" is measurable on |
iff for any € >0 there exists closed set [1 C[ such that Lebesgue
measure M ([\11)<6 and F(t) is continuous on [1([3]) .

Propogition 3., Let F5 I—rﬂn be measursble function on Z and
let there exist the Lebesgue summable function (l)>0 on [ such
that [F(8) < p(¢) . Then the Lebesgue integral of F(¢) is nom
empty convex compact subset of R"™ ana LfF(-{)J'}, :LICOF(HJ?!
(Here "co" means "convex").([4]). /4 I

2. The mgin lemmas,

n

Lemma 1. The bounded convex-valued function F-‘I"’Q is con-
tinuous a.e. (almost everywhere) on] iff the function {({) =
= S(¥,F(t)) is continuous a.e. on [ for anyyeW.

The proof follows from proposgition 1.

Lemma 2, Let the suppositions of proposition 3 be satisfied.
Then §(Y, lfIF(ch{f)""j;s(q': F“)}dt
Proof, By proposition 3 the integral Lf Féldt is convex
compact, therefore for any V’GW there e}cistsz vector X€& LfF{Hc{f
such that S (¥, z.f F(#)df) =(#,X) . Then by definition 1 there exists
measurable function rit) € F(t) such that x= tfr‘(ﬂdf. Hence

s(?’,ng({)Jf)#% Ajlr({}a/é) = z[f(w,r({))dt < 1;fi.s‘(‘i', F)dt.

On the other hand let us consider map R(%,¥)= [XGF(HIS(‘I’, F(¢)=
=(¥ X)}. This map is measurable because R (&, ¥)=F({)N Qt,Y)
where Q({,‘F)={IGR",5(‘KF(U)= (¢x)} . But the map R, ) is
measurable because A ( Q(f,‘}’), At ‘l’))= IS(‘I’,F({))—S'(‘P, F(f‘))[

But if /?(t',ﬁ”) is measurable then there exists the measurable func-

tion r(t)€ R(t,¥) . Hence we have S (¥, F({)= (¥, r(¢) .FPinally
Lfs (%, FENdE = [ (%, rd)dt = (¥ ofrd)dt) < s(¥, L[F(t)d1).
z I I I
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Lemma 3. If convex-valued funciion F-’[—-'.Qn ig continuous a,e.
on I then function tend F: [—’ﬂ" is continuous s.e. on [ .
Proof. Let W (¥,.,¥%)={veW|[(¥¥)=0,1<i{<K} . Let us
consider a set of mutually orthogonal points %,...,‘Vn fromw . We
shall define the maps R{t, ‘/’1,...,‘[’,‘) in such a way:

R(t, V)= {xeF(#) | S(¥F()=(¥, %} ,

R(t,%,¥%) = {xeR({,¥) | s(¥2, R({, %)) =(%,%)})

R (tr %.) '-';wh) = {JCGR({', wi:"'!wn-l)/s (Wm R ({) ﬁ)“': n—z)) = (%,x)} .

Tt iseasy to show (es in lemma 2) that function €—=>RE¥,.., Yn) )
is continuous s.e. on | and that tend F({)::
= ngw «rgwm o sty Bt ).

Lemme 4. Let function F: ]—»_Q"be summable on | by Riemsnn
(that is there exists riemannien integral of F(f) }. Then for any
veW the support function f({) = §(¥ F(4) is summable by Riemann
and S(¥, R[F{)¢) = &[S (¥, F(£)dt.

7 I

Proof. It is easy to show that if [IIII/?,:P , then for any ‘I’éw

n——» oo

:S'('/’, P} =f‘_'t’fws(v’,a) . From here follows
S (4 R[F(OdE) = s(¥,Lim ZF(;;M&P% S(hZFE)at) =
1 - —

= lm 3 S(¥, F(T)at; = feg s(w, F()dE.
A

Lemma 5. Let {F,‘}G_Q_" , 20 ,Féﬂn, /Faléd . Let sets
Fa and F be convex and for any YeW f(fm .S'(‘Ifa) =S(‘P,F) .
—0

Then there exists the limit of sets F'a in space .Qn and
LimfF, = F,
A >0

Proof of this lemma is similar to the proof of proposition 1,

Lemma 6. Let F:]—+Q" be convex-valued function on | and
for any ve W the support function {/vt.‘)-‘= S(‘l’, F(t‘)) be summable
by Riemann on [ . Then F(z‘} is summable by Riemann and

RIF(O)dt =2[F(&)dt.
z 1
Proof, By lemma 2 we have ,S'(‘P,LI[F(f)C{f) =££S(V,F(‘é»0(f =

= R[S(¥,F(O)dt = fa‘mo 3 st F(T:)at; =fin; S, ZF(5at:).
I A— ”"
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FProm here and lemma 5 follows the proof.

Lemma 7., Let P€Q™. Then pra[f =(6-a) coP.
Proof. Let & ={#4,..,¢s} e subcIiivision of [=[a,8] . consider
sets ,DA =g(P4£‘) . It is easy to show that ’DA C(K—Q)COP,
On the other hand let X G(g‘a)COP . By Carateodory’s theorem
there exist some points X¢ €€oP and numbers /W,;)O,(:':l,... K K<n+d,
M/l =1, such that % =(B-@) (M X+ .. +pMcXc) . Let IP| €o .Denote
M =C-a)min{p; |1<i<x} and A(x) = min{pulx), £ }.
It is obvious that A{a) >0 and xe €V for eny subdivision with
diemeter A SAE) . If Bg(x)—:{gé/?"[l!X—leE-} then

Bg(x)CB\ +E& V » If we take & finite covering of compact set
(ﬁ—a} coP by neighborhoods 8z(x) then we shall find ,>0 such
that for any subdivision with A<d, .(g-a)ch@+gV . Pinally

h (P ,ba)coP)<e -

3, The main theorems,
Theorem 1. TLet FI*-?ﬂn be a convex-valued function on [ .

Map F.‘[—-’Qn ig summable by Riemann on ] iff FI"’Q"" is
continuous a.e. on ] . With such conditions riemannien integral of

F is equal to Lebesgue integral ofF .
Proof, It is well-known that a usual function is summable by
Riemann on [ iff it is continuous s.e., on 1 . Therefore the proof
is consequence of lemmag 4, 1 and 6,

Theorem 2, If F!]-—»Qn is continuous function on I then it
is summable by Riemann and fo{{)o({' =R]COF({)¢{'£' .

Proof. By theorem 1 and by contlnulty of F{f) for any €20 there
exists ;>0 such that for f f 6[ I{ i.l<é\ , and for any subdivi-
sion Wy ={Tq,..., T}t with dla.meter d we have:

FICFt) + 555V h(E cof(ylaz; , e[coF(f)df) <£,
where §; € [T, Tyl , AT = 'l" —-7;.

Let us consider subdivision Cg)z = [fﬁ, ‘t;z,.‘. i,xl f:u;

£22)“') t2K2= f.?!)"'; éml}
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with £1,1='Z”:a, ;f21=2'z) . 'f,w—’-"Z;V:g s and let diameter €U,

be & . The integral sum for &, is of a form:
N-1 K-{

> Z F(?‘J)A{‘J where ?‘J é[fl.j;'étﬁl] at f/'" [y zl‘J

c=1 j=q
On every segment [T;, Tpy]  while _R-—-ro the sum Z F(&)Af

tends to limit which is equal to /?_/ F(Xc)ol'é = COF{J';)AT

&
Let us choose A, >¢ such that for any W; with dismeter A <A, for

every (=1,.. /41 we get A(Z F(XJA{;_I)COF(&)AT) 3(4’1)

From here /I(Z ZF(yL Afu,anF(x.)ark . From [§:-%ij]< 8
1 Ki-1

h( Z ZF(wAf, , z z /-'(mu‘,) z z (), Fadnty < £
Hence for any A <A, : h (Z' Z F(fq)dfq) K]COF/{)(,{{)<£

Theorem 3, If map F: 1—-’_(2 is contlnuous g.e, On ] then it

ig summable by Riemenn and RfF(-l)cI{ = RICOF{f)df

Proof. Let 1-1 be set of points of cease of F{{) on ] . thenlﬂIfO

Let & >0 be such that [F(#)] £ oL fort€] . Let €20 and J<é%(. .

There exists an open setI2 such that MIz‘-:J and ],CIZC ]

For any subdivision & the integral sum may be decomposed into two
parts: 2 F(}'i)d‘fi = ZIF(?e)A'f,; -+ Zu F(?)A'f , where Z
consists of those indexes { for which ['& ,‘tux]nIg #¢ . By
theorem 2 we can choose o> 0 such that for any subdivision with

diemeter A €Ay we’ll have 27 At <24 andh(ZIF(?L)Al‘“ RfCOF(t‘)cI{)(-&
h (R[coF($)dt, = F(5)at;) < h(RfcoF({)c/{ ZF(}’.)M )+
Therefore 4 h(choF({)d{ Z,,F(f.)mf ) <£+3ad<e,

Theorem 4. The function F I—’Q is summable by Riemann iff
the function COF I—’ﬂ is continuous sa.e, on] . Under this
condition the following equalities hold:

kfco}—({ )t =R f/:({)d{— Rf tendco FdY kfF({}cH zéF(Ha/i
Proof Let CO F({) be contlnuous a.e., on _[ then 'éeudCOF{'U is

continuous a.e. on | (lemma 3). By theorem 3 and by inclusion:

COF({)D F(‘U?WCOF({) we get the existence of riemannien
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integral of f:/¥) and equality of three integrals., On the other hang
if /:(Z) is summable by Riemann then it is easy to show that

co F(t) is continuous a.e. on [ (by lemmas 4 and 1). By equality
of three integrals, by theorem 1 and prgposition 3 we get:

RIF(L)dt = 2fF(tld¢.
I L
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