CHARACTERISTICS OF SATURATION OF THE CLASS OF CONVEX FUNCTIONS

G.Ŝ.Rubinstein

Institute of Mathematics
Siberian Branch
U.S.S.R. Academy of Sciences
Novosibirsk

I. Formulation of the problem

In many cases real-valued functions are essential only in respect of perfect pre-orders they induce on their domains. Thus we define the following equivalence relation in the space $\overline{F}(G)$ of all real-valued functions given on one and the same set G:

 $(f \sim g) \iff (f(x) \leqslant f(y) \iff g(x) \leqslant g(y)).$ Equivalence classes f corresponding to functions $f \in F(G)$ have the following simple functional description:

$$F_f = \{ u \circ f : u \in U(T_f) \},$$

where $U(T_f)$ is the set of all increasing functions defined on the numerical set $T_f = f(G) = \{f(x): x \in G\}$ and $u \circ f$ is a superposition on u and f, that is function $g(x) = u(f(x)), x \in G$.

As usual the saturation of the class $\Phi \subset F(G)$ related to the above-described equivalence is defined as the set

$$U\phi = \bigcup_{\varphi \in \varphi} F_{\varphi} = \{u \circ \varphi : \varphi \in \varphi, u \in U(T_{\varphi})\}.$$

In other words a function $f \in F(G)$ belongs to saturation $U \Leftrightarrow G$

the class $\Phi_{\mathsf{CF}(G)}$ if there exists such a function $u \in U(T_{\mathsf{f}})$ that $u \circ_{\mathsf{f}} \in \Phi$.

If the class $\Phi \subset F(G)$ coincides with its saturation $V \Phi$ then it's called saturated.

Hereafter, it will be considered that G is arbitrary (containing more than one point) relatively open convex set in a real vector space, that is such a convex set that for any $x, y \in G$ there exists $\lambda > 0$ for which $y + \lambda (y - \infty) \in G$.

By $V(\mathcal{G})$ we shall designate the class of convex functions, that is such functions $\mu \in F(\mathcal{G})$ that

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) \tag{I}$$

holds for arbitrary $x,y \in G$ and $\lambda \in (0,1)$. By W(G) we shall designate the class of quasi-convex functions, that is such functions $f \in F(G)$ that

$$f(\lambda x + (1-\lambda)y) \leq \max\{f(x), f(y)\}$$
 (2)

holds for any $\infty, y \in \mathbb{C}$, $\lambda \in (0,1)$ and the inequality is strict when $\varphi(x) \neq f(y)$.

It is clear that the class of quasi-convex functions is saturated. Hence, it contains saturation UV(G) of more narrow class of convex functions. But there always exist functions $f \in W(G)$ which do not belong to UV(G). In connection with this the American mathematician W.Fenchel stated a well-known problem of characterizing quasi-convex functions that belong to saturation UV(G) of the class of convex functions (see [1], p.115-137). The present report is devoted to solving that problem.

2. Auxiliary Functions

Let $F_c(G)$ be a subspace that consists of functions $f \in F(G)$ such that their traces on the cross-cuts of G with any straight line is continuous.

Let us note now that it's sufficient to solve the question on the quasi-convex functions, we are interested in, for more narrow class $W_c(G) = W(G) \cap F_c(G)$.

Indeed, for every function $f \in W(G) \setminus W_c(G)$ it is possible to construct an equivalent function $f \circ = v \circ f$, where $v \in U(T_f)$ coincides with Lebesque measure of set $T_f \cap [t_0, t]$ when $t \in T_f$ is greater than some fixed $t \circ \in T_f$ and if $t \leqslant t$ then it equals Lebesque measure of

set $T_t \cap [t,t_0]$ multiplied by - I. If in this case $f_0 \in F_c(G)$ then the initial function $f \in W(C)$ does not undoubtedly belong to the set UV(G), we are interested in. Otherwise, the question is to examine function $f_{c} \in W_{c}(G)$.

It's known (see [2]) that if traces of function $f \in F(G)$ on cross-cuts of the set G with any straight line are measurable then inequalities (I) and (2) are implications of related inequalities with some fixed $\lambda \in (0,1)$, for instance, with $\lambda = \frac{1}{2}$. Specifically, it's true for all functions from $UF_c(6)$. And that means we may study question concerning functions from $f \in W_c(G)$ in terms of auxiliary functions

$$\tau_{f}(t,t') = \sup \{ f(\frac{x+y}{2}) : x \in f^{-1}(t), y \in f^{-1}(t') \}$$

defined on $T_4 \times T_4$.

Evidently, function $f \in W_c(G)$ belongs to set UV(G) if and only if such a function $u: T_f \to R$ exists that inequalities

$$u(t')-u(t)>0\;,\;\;u(t)+u(t')-2u(\mathcal{T}_{f}(t,t'))\geqslant0 \tag{3}$$
 hold for any $t< t'$ from \mathcal{T}_{f} . Under this condition the function $u\in V(\mathcal{T}_{f})$ is automatically continuous.

All functions $f \in F_c(G)$ evidently have connected ranges. At that if function fe Wc (G) is not constant it cannot attain its maximum on relatively open convex set G . So, its range T_4 either coincides with its open core \mathcal{T}_{t} or contains, besides, one additional point $\theta = \min_{x \in G} f(x)$.

We shall call the point $t^* \in T_f$ regular, the function $f \in W_c(G)$ beeing fixed, if for some $\varepsilon > 0$ there is such a function $u: T \to R$, where $T = T_f \cap (t^* - \varepsilon, t^* + \varepsilon)$, that for any t < t' from T inequalities (3) hold.

It's clear that if the function $f \in W_c(G)$ belongs to UV(G)then all points of the set T_4 are regular. The following inverse statement is also correct (its complete proof is given in [3]):

Theorem I. If all points of set $\mathring{T}_{\mathbf{f}}$ are regular for the function $f \in W_c(G)$ then the function is equivalent to some function $\varphi \in V(G)$.

So, if function $f \in W_c(G)$ does not belong to $U_cV(G) =$ = $F_c(G) \wedge UV(G)$, then at least one interior point of set T_f is not regular. To complete the characterization of the set $U_{
m c}\,V(G)$ we are to find out necessary and sufficient regularity conditions of

interior points of sets T_f corresponding to functions $f \in W_c$ (G).

3. Characteristics of regular points

Let us introduce auxiliary normed linear space of additive functions with finite supports belonging to some bounded connected set $T \in R$. For the purpose let us assign to every $t \in T$ an additive function $\mu_t: \mathcal{L}^T \to R$ which equals 1 on sets $e \in \mathcal{L}^T$ containing t and equals 0 otherwise. Further let $\mathcal{L}_{\mathcal{L}}(\mathcal{L}^T)$ be the set of all finite linear combinations of introduced elementary functions with the coefficient sum equal to 0. The norm $\mathbb{H} \cdot \mathbb{H}_{\mathcal{L}}$ in linear space $\mathcal{L}_{\mathcal{L}}(\mathcal{L}^T)$ is defined as the full variation of corresponding additive functions.

Let us assign now to every function $f \in W_c(G)$ and interval $T = [\alpha, \beta]$ from T_f a cone $K(f, T) \subset \mathfrak{P}(2^T)$ which is the conical hull of the union of two sets:

$$A(f,T) = \{ \alpha_{tt'} = M_{t'} - M_t : t < t' \text{ from } T \},$$

$$B(f,T) = \{ \beta_{tt'} = M_t + M_{t'} - 2M_{T_t(t,t')} : t < t' \text{ from } T \}.$$

According to one of non-classical separation theorems (see [4], theorem 9) and some properties derived from proof of theorem I of the preceding paragraph it is possible to demonstrate the validity of the following statements:

Theorem 2. Whatever a function $f \in W_c(G)$ and an interval $T = [\alpha, \beta]$ from T_f are, (*)-closure of the cone K(f, T) coincides with closure of this cone in the topology of normed space $\Phi_r(2^T)$ and, hence, also with its closure in the strongest local-convex topology.

Theorem 3. The interior point t^* of the range T_f of the function $f \in W_c(G)$ is regular if and only if for some $\alpha < t^* < \beta$ from T_f the point $-\alpha_{\alpha t^*}$ does not belong to the closure of the cone $K(f, [\omega, \beta])$ in one of the three topologies of Theorem 2 (and, therefore, in all the topologies).

Corollary I. The necessary and sufficient regularity condition of inner point t^* of the range T_f of function $f \in W_c(G)$ is the existence of some $a < t^* < b$ such that set T = [a, b] satisfies the condition

$$\rho_v\left(-a_{\alpha t^*}, K\left(f, T\right)\right) = \inf_{a \in K\left(f, T\right)} \|a + a_{\alpha t^*}\|_v > 0.$$

Corollary 2. If $f \in W_c(G)$ and all points of an interval $[\alpha_0, \beta_0]$ are regular, then for any $t^* \in (\alpha_0, \beta_c)$ inductively defined points

$$\alpha_{i} = \tau_{f}(\alpha_{i-1}, t^{*}), \quad \beta_{i} = \tau_{f}(t^{*}, \beta_{i-1}), \quad i = 1, 2, ...$$

are such that for some natural number m inequalities

$$\tau_f(\alpha_i, \beta_{i+m}) < t^*$$

holds for all i = 0, 1, 2, ...

With the help of the last corollary we can easily verify, for example, that for $\mathcal{G}=(-3,1)$ function

$$f(x) = \begin{cases} -x-2 & \text{if } -3 < x \le -1 \\ x^3 & \text{if } -1 < x < 1 \end{cases}$$

from $W_c(G)$ is not equivalent to any convex function, because the point $\theta \in \mathring{T}_i$ is not regular.

In conclusion let us mention one circumstance which is often useful for the practical solution of poblems of transformation of quasi-convex functions into the convex ones.

First of all it's clear that if functions $f \in W_c(G_1)$ and $g \in W_c(G_2)$ have the same range and $T_f(t,t') \leq T_g(t,t')$ is true for any t < t' from $T_f = T_g$, then the function $u \in U(T_g)$ for which $u \circ g \in V(G_2)$, satisfies also the condition $u \circ f \in V(G_1)$. Specifically, it covers the case when $G_2 \subset R$ and function $g \in W_c(G_2)$ is increasing. Then the function $u = g^{-1} \in U(T_g) = U(T_f)$ can be taken as the transforming one for f.

Let us note here that if T < R is a connected set without the largest element and a function $\tau: T \times T \to R$ is such that for any t < t' from T

$$\tau(t,t) = t$$
, $t < \tau(t,t') < t'$,

then for the existence of an increasing function g satisfying condition τ_g = τ , it's necessary and sufficient that for any t_4, t_2, t_3 and t_4 from τ the following equality takes place

$$\tau(\tau(t_1,t_2),\tau(t_3,t_4)) = \tau(\tau(t_1,t_3),\tau(t_2,t_4)).$$

Besides, the function ${m g}$ we are interested in can be effectively constructed with the help of the function ${m \tau}$.

References.

- I. W.Fenchel. Convex cones, set and functions. Princeton, 1953.
- 2. Б.А.Вертгейм и Г.Ш.Рубинштейн. К определению квазивыпуклых функций. Сборник "Математическое программирование", Москва, 1966, с. I2I-I34.
- 3. Г.Ш.Рубинштейн. Характеристика насыщения класса выпуклых функций. Сборник "Оптимизация", вып.9, Новосибирск, 1973, с. 165-180.
- 4. Г.Ш. Рубинштейн. Теоремы отделимости выпуклых множеств. Сибирский математический журнал, т.5, № 5, I964,с. I098-II24.