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Let the motion of a competitively controlled system be des-—
cribed by the differential equation

doc [dt = G, xu,v), x@)=x,, D)

where X e Rn is the phase vector of the system; W and J are
the vectors controlling the actions of the players with restrictions
ultle P < R? , vitleQe qu ; P anda QU are com-
pacts; the function {(t,x, L, U) is continuous in the totality of
the arguments and continuously differentiable in W , In addition,
we will assume that the formulated in [’!] condition of uniform ex-
tendsbility of the solutions for the egquation ( ’l) is fulfilled.
Given are some instant s > 'tc , & closed set < [to,ﬂ;l
a compact A= {(\Xm)ﬁe'{', m e -/ag} in R**' | where
g= {m: (\zm) el and a functionn w (‘J, x, m)
defined on the set {(J,x’m):(\zm)éﬂ,xéR } is continuous in
the totality of the arguments and continuously differentiable in X
in the domain W, <« W < w’ ., ~
We will call a mixed strategy U = }1{-\-_’3;} (CLU') of the

first player a function }L{t:«x} ( cLu.) which puts the Borel
regular normed measures P,(d,u) on P in correspondence to
any position {t;x}. Let us define a motion X [’t;'t.:,'ra,u] gene—
rated by the strategyﬁ as any uniform limit of Euler splines

< S0 (2D , for almost all +t e [ :’, "E(«LK ,3{ satisfying
the equation -

dEgartd/db= é é F( X g LUV M 7 o p 3 da), )
5‘?‘—-{?}4 A(K)’ A('K-)-— O for k—-»-eo, s)t(cb\f) is a Borel
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regular weak measurable in + on [‘to,a'o:_\ function normed on Q@
that is, a function

a ) = élq(v) Yy (dw)

is a Lebesgue measurable function on ['to,\?o) for any arbitrary
continuous function "} (\f) = C (Q) . Analogously a mixed
strategy V = QH'- xj (CW‘) of the second player and a motion
generated by this st.’rategy and also a motion generated by the coup~
le {U,V are defined.

Problem I, For a fixed position {'l:o,ﬁco}, and a num—
ber € it is reguired bto find a mixed strategy U which guaran-
tees the inequality

mun min w (3, x CU], m) <c
VeT mge/ﬂg— ~
for any motion X [‘\:;’to, Lo, ui .

Problem II. PFor a fixed position {'to, ’_’39,8 and a nume-
ber € it is required to find a mixed strategy V which guaran-
tees the inequality

min  mu w(? 3([3], m) zcC
VGT mo.e. .
for any motion x [t;t,, xo, V] .

Let us introduce an auxiliary programmed construction for
solving these problems. Namely on the space of generalized prog-
rammed controls - Borel regular measures M= N (d,ud/u)
defined and normed on P x Q for all te [t, ﬁo) and weak
measurable in t on [to, o) we will assign a totality
of sets called programs. o

Then let us define an elementary progranm { ).L_tx{k H‘.*,%)S
on H.,ej) as a set of all comtrols B, on {(te,¥)  which
are represented in the form on‘; the direct product Qi:= ’1 X Q: ,
where M, € {}l {__} and Y £ are weak measurable on
['t*, 9') Borel regular measures for any te it *,%) defined and
normed on P and Q respectively.

We will put in correspondence to each position {‘\:*, xw}

(‘i‘.x— e [t o, V., 1 ) the quantity

g°(t, %)= min mox min min co(lx(:‘;‘u,x,‘, )lc,,X)(_,\,m)
TYeT % My meldl

where ’JCG:)=-—’3C (JC‘,‘t.‘,’JC*, }l(_)X\)(.)) is a programmed motion satis-
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fying for almost all te [Jt,e,a' ) the equation

da/dt = {§ 4¢,%,uv) u(du) ), (du) .3

PQ o
Given by(2) optimal programmed controls )-L?t , \)t and rrfe_ud ,
e T exist on account of weak compactness in themselves of the
elementary programs and the set {\)t‘j [t 3’) of the cont-

rols \)t on CJc,,,,,\'T) +» Incidentally under the weak convergen—~

ce of the sequences we understand the convergence in € -~ weak Lo~

pology of the sequences of continuous linear functionals defined by

the Borel regular measures }_L(“‘ = }_L(‘“ m(dt) , Q“‘) =
\1 £ m(dt) , () - the Lebesgue measure on R}

We will say that the elementary program {P%X\)-b E‘th%)&
where Qt is an optimal control for {'t*,’x* s is regular
in position {{:x, ’X:.,(,} s if the problem (2) hgs an essentially
unique solution },L; for the fixed conbtrol \)-l: , in addition,
the minimal point mM° € AL is also unigue.

There ig valid the following assertion which is an analogy of the
maximum principle [2] in the case under study.

Theorem I, ILet the regularity condition of the program

{ Mm%V, [t*’& vy be fulfilled and £°(t,, X, ) e
e (w,, * +« Then for the optimal programmed motion
x°(1)= ’I:(‘\: -+t 'x,, )J.ux 90 there is the following minimax con-
dition

[ (') 6,2, uu) pg () Vg (o) =
PQ

min max {§ '@ 4)$e,xo @), uv) p(du)) (dw)
M PQ

for almost all te i‘t*,%—l . Here ’)OK(J,'\C)z - [aw (’3'
2o @), m) /ool St 760, Kok V), S, O, pax Vey)

is the fundamental solution matrix of the first variational approximati-
on equation for equation (3) compubted on the motion XX ('{:)= x ('\:;
't,‘,x.,, H()x(j’( ))u,- the prime denotes tral'fposition.

et Q A Q‘t and {Q_‘A be a set of all

controls \2_‘: for each of which exists such a sequence { Q“}
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(;
that Ht) % QS‘) W, Qt . Then the weak closure of the

set {93 in % - weak topology CT([EI1xPxQ)  we
will call the program ﬂ ( Q : ) . We will say that the program

n (\)o ) is optimal, if a sequence which formg it is maximizing
for {’:&,'x' L] . We will call 04: a regular control, if for
any optimal f ( \)& ) the minimizing control ¥ ° in it is

unique and also unique is m"e Al . Let us denote by T (t«, %)
the set of the problem s (2) solutions \7 and by S . Xy, 3°
the set of all vectors 4 (\79{), Ve T°(te,xl) correspo
nding to all kindsof ©° for {t., 2.} .

We shall suppose that for any {‘Cx,‘x,fﬁ (t, =t =
éga);. t%é Tb('txf,'xn) y where €° (4:»,3:,‘) c (Wo, W)
and any Borel regular normed measure \)*(c{.!\r) on (A there exists
an instant 30 e T® (“: ,.é,’rg) for which two following conditi-
ons are fulfilled.

A, Any control Qt is regular for {'t 'JC,,]] .

B. There exists a Borel regular normed measure (c{u)
on P such that for any 5(3, <) E ‘é" G‘_*'x Y )

§ (7@ F e, 1) i (du)V* () <

P Q
< minman { ($AT)$ (2 uv) p(dw)V(de).
MooV o
Theorem 2. Let E°(ox,) <C (wo, °) and

conditions A, B be fulfilled, Then the mixed strategy U. which is
extremal [3] to the set Wc = {{t,x}: T, 2)ec} solves
Problem I.
Let us denote by 2 (‘l: », Koe ) %o) the set of all \).\._
for {‘cﬁ,'x:..ﬁ and some Je T° G, x) 3 (b, x)=
= U Sc(‘h s, W %e) We shall now suppose that two follo-

T, X &) :
wing conditions are fulfilled for any {t, .}: (k. X € (Wo,w0°)

instead of A, B.
C. Sets 2 ('t,‘,'x,, 3 NEl ) are upper weak semicontinuous
in each point e T° (., ).
D. There exists \)* (dw) on Q for any « (dw) on
P such that for any  »°(¥° 1) S (t., r)c*)
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(5 @7t $ta e, 1 V) (i) Ve () >
PR

> max min S SS"({’?JLJ Flama,u ) p (du) Y {d) .
Vo4 PQ

Theorem 3. ILet £°(t. ’x.,) C e (W, w?) and
conditions C, D be fulfllled. Then the mixed strategy \f() which
is extremal to the set \/\/fc} ={{tx): € x) > C} solves
Problem II.

With conditions A - D fulfilled simultaneously, the situa-
tion of equilibrium takes place.
If the saddle point condition

min maosx {> {(‘L'Dculf%— maone min & - -,F(chuv)
ueP veQ veQ wueP

for the minor game is fulfilled for any 6,'[3, x , then the prob-
lems I, II are solvable in pure strategies.
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